
Bitlis Eren Üniversitesi Fen Bilimleri Dergisi
BİTLİS EREN UNIVERSITY JOURNAL OF SCIENCE

ISSN: 2147-3129/e-ISSN: 2147-3188

VOLUME: 13 NO: 3 PAGE: 871-884 YEAR: 2024

DOI:10.17798/bitlisfen.1527670

871

 Deep Learning Based Offline Handwritten Signature Recognition

Bahar ÇİFTÇİ1*, Ramazan TEKİN2

1Siirt University, Distance Education Application and Research Center
2Batman University, Faculty of Engineering and Architecture, Department of Computer Engineering

(ORCID: 0000-0001-5976-6236) (ORCID: 0000-0003-4325-6922)

Keywords: Deep Learning,

Signature Recognition, Image

Classification, CNN Architectures

Abstract

In our digitalized world, the need for reliable authentication methods is steadily

increasing. Biometric authentication methods are divided into two main categories:

physiological and behavioral. While physiological biometrics include features such

as face, iris, and fingerprint, behavioral biometrics encompass dynamics such as

gait, speech, and signature. Most of these methods require specialized equipment,

whereas signatures can be easily obtained without additional tools, making them

ideal for verifying the legality of documents. Although manual signature

recognition is effective, it is resource-intensive, slow, and susceptible to errors.

With advancements in technology, the need to automate the signature recognition

process to enhance accuracy and efficiency has become increasingly important.

Based on this need, in this study, five different DL techniques (GoogLeNet,

MobileNet-V3 Large, Inception-V3, ResNet50 and EfficientNet-B0) are used to

classify signature images with detailed analyses. DL methods have outperformed

traditional techniques by leveraging the power of CNNs to automatically learn and

extract complex features from signature data. The dataset used consists of a total

of 12,600 images belonging to 420 individuals, each contributing 30 original

signatures. The dataset is divided into training, validation, and test sets in different

proportions to analyze classification performance. The pre-trained DL models were

fine-tuned to optimize their parameters for the signature dataset. The results

demonstrate that DL models achieve high accuracy in signature classification, with

the GoogLeNet and Inception-V3 models reaching an accuracy of 98.77% at a 20%

test rate. The study also highlights the impact of different test rates on model

performance.

1. Introduction

In our digitalized world, the need for reliable

authentication methods is increasing. Biometric

authentication methods are divided into two main

categories: physiological and behavioral.

Physiological biometrics include features such as

face, iris, and fingerprint, while behavioral biometrics

encompass dynamics such as gait, speech, signature,

and keystroke dynamics [1], [2]. Although other

techniques, such as fingerprint, iris/retina scanning,

facial recognition, and voice recognition, are more

precise, they require specialized equipment. In

contrast, signatures can be easily obtained without

*Corresponding author: bahar.ciftci@siirt.edu.tr Received: 03.08.2024, Accepted: 12.09.2024

additional tools, making them indispensable for daily

transactions and verifying the legality of documents

such as certificates, checks, letters, approvals, visas,

and passports. Traditional signature verification has

been a manual process involving the comparison of a

sample signature with previously obtained genuine

signatures. With advancements in technology, there

has been an increasing need to automate the signature

verification process to enhance accuracy and

efficiency. Handwritten signature recognition is

divided into two primary categories according to the

method of signature acquisition: online and offline.

Online signature recognition involves capturing

dynamic features such as ink pressure and writing

https://dergipark.org.tr/tr/pub/bitlisfen
https://doi.org/10.17798/bitlisfen.1527670
https://orcid.org/0000-0001-5976-6236
https://orcid.org/0000-0003-4325-6922
mailto:bahar.ciftci@siirt.edu.tr

B. Çiftçi, R. Tekin / BEU Fen Bilimleri Dergisi 13 (3), 871-884, 2024

872

speed during the signing process using devices like

electronic handwriting pads or touch screens [3], [4].

Offline signature recognition, on the other hand,

involves writing the signature on paper, scanning it,

and digitally processing the image [5]. Additionally,

signature analysis encompasses two methods:

signature verification and signature recognition.

Signature recognition is a classification process

where the signatory is identified from among many

signatures. Signature verification, however, involves

comparing two signatures to determine their

similarity and conclude whether a signature is

genuine or forged. Signature recognition studies

require datasets with multiple signatures from

different individuals, whereas signature verification

necessitates the presence of both genuine and forged

signatures for each individual.

Studies on offline signature recognition and

verification date back to the early 1990s [6]. In their

work, Sabourin and Drouhard Jean-Pierre classified

offline signature images using Feedforward Neural

Networks (FFNN) and the Probability Density

Function (PDF) [6]. Ismail and Gad used various

preprocessing techniques to classify 220 genuine and

110 forged Arabic signature images using different

algorithms based on fuzzy concepts [7]. Deore and

Handore's study utilized Discrete Wavelet Transform

(DWT) and Principal Component Analysis (PCA) for

extracting features, followed by Artificial Neural

Networks (ANN) to implement an offline signature

recognition system [8]. As technology advances, the

methods we use to verify signatures must also evolve

to remain robust against ever-progressing forgery

techniques. The integration of ML and DL techniques

into signature recognition systems has proven to be

highly effective, enhancing accuracy and efficiency

while preserving the authenticity of documents and

the integrity of transactions. Calik and colleagues

used the SUSIG-Visual dataset for classification with

CNNs [9]. Gumusbas and Yildirim achieved high

accuracy with CapsNet using the CEDAR [10]

dataset, which contains genuine and forged signatures

Gumusbas & Yildirim, 2019). In another study, the

same authors used CapsNet for signature verification

with different datasets (GPDS-100 and MCYT) [12].

Tarek and Atia used various CNN models, including

VGG-16, ResNet50, Inception-v3, and Xception, to

classify genuine and forged signatures from two

separate datasets [13].

For the recognition and verification of offline

signatures, various feature extraction processes are

performed before proceeding to the classification

stage with ML and DL. In their study, Jain et al. used

GoogLenet for feature extraction and then used SVM

method for classification [14]. Foroozandeh et al., in

their study, used SigNet, SigNet-F, VGG16, VGG19,

InceptionV3, and ResNet50 for feature extraction,

and then preferred the Support Vector Machine

(SVM) method for classification [15]. Özyurt et al., in

their study, performed feature extraction using the

MobileNetV2 method on the large dataset they

obtained. During the feature selection phase, they

used Neighborhood Component Analysis (NCA),

Chi-Square (Chi2), and Mutual Information (MI)

methods for classification. Their evaluation employed

various ML classifiers, including Support Vector

Machine (SVM), K-Nearest Neighbors (KNN),

Decision Tree (DT), Linear Discriminant Analysis

(LDA), and Naïve Bayes. The study results showed

that the highest accuracy of 97.7% was achieved

using SVM with NCA feature selection [16].

Pokharel et al., in their signature recognition

application, used GoogLeNet for both feature

extraction and classification [17].

The drive to develop and improve signature

classification systems arises from the need to ensure

the security of identities and transactions in an

environment where the boundaries between the

physical and digital worlds are increasingly blurred.

The main motivation of this work is to develop

efficient and reliable authentication systems that can

respond to the growing demands of modern society,

while ensuring that signatures remain a reliable means

of authentication

2. Material and Method

2.1. Dataset

The dataset used in this study consists of 12,600

images from 420 different individuals, with each

participant contributing 30 genuine signatures

(Özyurt et al., 2024). The signatures were obtained

from students and faculty members at Raparin

University in Ranya, Iraq, and Firat University in

Elazig, Turkey. Collected within two months, the

signatures were cropped using MATLAB and then

resized to 500x600 pixels.

Figure 1. Signature samples from six different users in

the dataset

B. Çiftçi, R. Tekin / BEU Fen Bilimleri Dergisi 13 (3), 871-884, 2024

873

2.2. Proposed Method

The classification of the signature images in this

dataset was performed using five DL techniques,

considering the remarkable success of DL in various

fields.

In the approach proposed for the study, the

dataset was divided into different proportions to

analyze the performance of classification accuracy.

The dataset was split into 20% test and 80% (train +

validation) sets. The validation data was then split

from the training data as 20%. Thus, in the first

scenario, the dataset was divided into 20% test, 16%

validation, and 64% train. In the second scenario, the

dataset was split into 30% test and 70% (train +

validation) sets. The validation data was then split

from the training data as 30%. Thus, the second

scenario consisted of 30% test, 21% validation, and

49% train. In the third scenario, the dataset was split

into 40% test and 60% (train + validation) sets. The

validation data was then split from the training data as

40%. Thus, the third scenario consisted of 40% test,

24% validation, and 36% train. Various preprocessing

methods were then applied to the train-validation and

test datasets. The DL models used were pretrained DL

models. The pretrained weights were applied to the

dataset, and parameters were optimized for new

models. Subsequently, each of these models was fine-

tuned individually to enhance their performance. For

each classification scenario, train-validation, and test

success, loss, and weights were recorded for all

epochs. The flowchart of the proposed method is

shown in detail in Figure 2.

 2.3. Preprocessing

Preprocessing is essential in classification tasks,

including signature classification, as it cleans and

standardizes raw data, which often contains

inconsistencies and irrelevant information. This step

enhances DL classifier models' effectiveness and

helps prevent overfitting, leading to more accurate

results. (James & Koresh, 2023). The preprocessing

methods used in this study include Resize,

CenterCrop, ColorJitter, GaussianBlur, Grayscale,

and Normalize. Resize is used to resize images to a

fixed size. CenterCrop; makes a crop of a certain size

from the center of the image. For the Inception-V3

model used in the study, Resize 299 and CentreCrop

value 299 were used. For EfficientNet-B0,

MobileNet-V3-Large, GoogLeNet and ResNet50

models, Resize 299 and CenterCrop 299 were used.

Normalization is a pre-processing step in which the

pixel values of the images are scaled to a certain range

or distribution. Since the DL models used in the study

are Pretrained models previously trained with

ImageNet; Normalization values are used as [0.485,

0.456, 0.406] and [0.229, 0.224, 0.225].

Figure 2. Flowchart of the Implemented Signature Recognition Application

B. Çiftçi, R. Tekin / BEU Fen Bilimleri Dergisi 13 (3), 871-884, 2024

874

Colourjitter is a preprocess that adjusts the brightness,

contrast, saturation and hue of the image.

GaussianBlur applies a Gaussian blur to the image.

For this study, p=0.1 was chosen for the Colourjitter

and GaussianBlur methods, and the transformations

were applied with a 10% probability. In the

GaussianBlur method, a Gaussian blur with a kernel

size of 3x3 was applied. The GrayScale method

converts the image to gray scale. Below in Figure 3,

the appearance of several different signature samples

from the dataset is shown after applying each of the

preprocessing steps used in the study individually.

Figure 3. Preprocessing Steps Applied to Several Different Signature Samples from the Dataset

2.4. Classification

In this study, a signature classification application

was implemented using advanced DL architectures.

CNN architectures were selected for this task because

of their superior capabilities in image processing. The

CNN architectures used are GoogLeNet [18],

MobileNet-V3 Large [19], Inception-V3 [20],

ResNet50 [21] and EfficientNet-B0 [22].

In the approach proposed for the study, the

data set was divided into train, validation and test. By

using a validation set, the possibility of overfitting a

model that performs well on the training data and

poorly on the unseen data is avoided. The separation

of train, validation and test provides an unbiased

assessment of the performance of the final model,

ensuring that the success of the model is not due to

overfitting in the validation set. The CNN

architectures used are pre-trained on the ImageNet

dataset. ImageNet is a massive dataset

ctable3ontaining over 14 million images (Deng et al.,

2010). These models can be repurposed for other

tasks without requiring training from scratch, as they

have learned a rich set of features from millions of

images (Zhuang et al., 2019). This significantly

shortens the training time, provides higher accuracy

and performance, reduces the computational

resources required for training, and offers better

generalization capability, making them extremely

valuable for practical applications (Zhuang et al.,

2019). By fine-tuning the final layers of the models,

they were better adapted to the signature classification

task, resulting in higher accuracy and performance

during the training process. Below in Table 2, the

original and modified states of the final layer of each

model and their total number of parameters are

shown. In the implementation, the highest number of

parameters is found in the Inception-V3 model, with

27,481,128 parameters, while the MobileNet-V3-

Large model has the lowest number of parameters,

with 4,714,196. Detailed information about the layers

was accessed using the ‘torchscan’ and ‘torchstat’

libraries provided by PyTorch.

Table 1. Modifications and total number of parameters applied to the final layers of the classification models before and

after fine-tuning

 The original state

of the last layer

Modified last layer Total

parameters

EfficientNet- B0 [0]: Linear (in =1280, out = 1000) [0]: Dropout(p=0.2)

[1]: Linear (in =1280, out =1024

[2]: ReLU ()

[3]: Linear (in =1024, out =420)

6,185,248

B. Çiftçi, R. Tekin / BEU Fen Bilimleri Dergisi 13 (3), 871-884, 2024

875

GoogLeNet [0]: Linear (in =2048, out =1000 [0]: Dropout(p=0.2)

[1]: Linear (in =2048, out =1024

[2]: ReLU ()

[3]: Linear (in =1024, out =420)

5,288,548

MobileNet-V3-

Large

[0]: First Linear (in = 960, out = 1280)

[1]: Hardswish

[2]: Dropout (p = 0.2)

[3]: Last Linear (in = 1280, out = 1000)

[0]: Dropout(p=0.2)

[1]: Linear (in =1280, out =1024

[2]: ReLU ()

[3]: Linear (in =1024, out =420)

4,714,196

Inception-V3 [0]: Linear (in =2048, out =1000) [0]: Dropout(p=0.2)

[1]: Linear (in =2048, out =1024

[2]: ReLU ()

[3]: Linear (in =1024, out =420)

27,481,128

ResNet50 [0]: Linear (in =2048, out =1000) [0]: Dropout(p=0.2)

[1]: Linear (in =2048, out =1024

[2]: ReLU ()

[3]: Linear (in =1024, out =420)

26,036,708

EfficientNet-B0

EfficientNet-B0 is a member of the EfficientNet

family of architectures (B0, B1, B2, ..., B7, B8),

developed to provide a more fluid and effective

approach to scaling DL models (Tan & Le, 2019).

This model is distinguished by its use of a systematic

method called Compound Scaling, which scales

CNNs in a balanced way across all dimensions. It

emerged from the idea that balancing the depth,

width, and input resolution of a network can provide

better efficiency and effectiveness. The core

components of the EfficientNet-B0 model are

MBConv Blocks, which are previously known as

bottlenecks in MobileNetV2. These blocks include

expansion and squeeze layers that recalibrate feature

maps, further enhancing performance (Sandler et al.,

2018). In this study, the use of the EfficientNet-B0

model was preferred based on its balance of time and

performance efficiency. The schematic diagram of the

fine-tuned EfficientNet-B0 model architecture used in

this study is shown in Figure 4. a.

 GoogLeNet

Inception V1, also known as GoogLeNet, is a deep

convolutional neural network developed by Google

(Szegedy et al., 2014). The distinguishing feature of

GoogLeNet is the Inception module. This module

includes multiple convolutions of different sizes (1x1,

3x3, and 5x5) and a 3x3 max pooling operation, all

performed in parallel. The outputs from these

operations are concatenated to form the final output

of the module. In this study, GoogLeNet achieved

effective classification with an average of only 5.2

million parameters. For this study, the GoogLeNet

model, previously trained on the ImageNet dataset,

was fine-tuned with the modifications shown in Table

1. The schematic diagram of the fine-tuned

GoogLeNet model architecture used in this study is

shown in Figure 4. b.

Inception-V3

Developed by researchers at Google, Inception-V3 is

designed to provide high accuracy with efficient

computation by optimizing the structure of

convolutional networks (Szegedy et al., 2015).

Inception-V3 introduces the idea of factorizing

convolutions into smaller operations to reduce

computational load while maintaining or enhancing

the network's ability to capture critical features.

Inception-V3 also employs Auxiliary Classifiers

placed at intermediate points in the network during

training. These classifiers add additional

regularization, helping to prevent overfitting. While

the outputs of these classifiers are not used during

inference, they play a crucial role during the training

phase. A schematic diagram of the fine-tuned

Inception-V3 model architecture used in this study is

shown in Figure 4. c.

MobileNet-V3-Large

MobileNetV3-Large is part of the MobileNet family

of neural network models. The main purpose of

MobileNets is to design a lightweight CNN for

efficient performance on mobile and edge devices

with lower capacity than computers (Sandler et al.,

2018). MobileNet V1 has a structure that uses width

and resolution multipliers. MobileNet V2, in addition

to the structure of the MobileNet V1 model, used

inverted residual structures that provide more

efficient memory usage (Sandler et al., 2018).

B. Çiftçi, R. Tekin / BEU Fen Bilimleri Dergisi 13 (3), 871-884, 2024

876

a) b) c) d) e)

Figure 4. Schematic diagram of the fine-tuned a) EfficientNet-B0, b) GoogLeNet, c) Inception-V3, d) MobileNetV3-

Large, e) ResNet50 model architecture used in this study

MobileNet V3 is a more optimized and improved

version of the architectures (Howard et al., 2019). The

efficiency of the network is increased by removing

complex layers. With approximately 4.7 million

parameters, MobileNetV3-Large is both lightweight

and fast. A schematic diagram of the fine-tuned

MobileNetV3-Large model architecture used in this

study is shown in Figure 4.d.

ResNet50

The Residual Network with 50 layers, abbreviated as

ResNet-50, is a CNN architecture widely used in

image processing tasks, including signature

recognition. Developed by Microsoft Research,

ResNet-50 has significantly impacted the field of

computer vision due to its innovative design that

addresses the vanishing gradient problem often

encountered in deep networks (He, Zhang, & Ren,

2015). The core idea behind ResNet is the

introduction of residual learning. The convolutional

layers of ResNet-50 effectively extract hierarchical

features from signature images, ranging from simple

edges and textures in the initial layers to more

complex patterns and shapes in the deeper layers.

The ResNet50 architecture, previously

trained on the ImageNet dataset, was used for this

study. It accepts input images of 224x224 pixels. A

schematic diagram of the fine-tuned ResNet50 model

architecture used in this study is shown in Figure 4.e.

B. Çiftçi, R. Tekin / BEU Fen Bilimleri Dergisi 13 (3), 871-884, 2024

877

2.5. Performance Metrics

Performance metrics provide a comprehensive

evaluation of the effectiveness of a classification

model [23]. The performance metrics used in this

study are Accuracy, Precision, Recall, F1-Score.

 Accuracy is a fundamental metric for

evaluating classification models and refers to the

proportion of correctly predicted samples (both true

positives and true negatives) in the total samples. It is

calculated as shown in Equation 1.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(%) = 100 ∗
∑𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 (1)

Precision is a metric that quantifies the number of

accurate positive predictions made by the model

relative to the total number of positive predictions. It

is calculated as shown in Equation 2.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 (2)

Recall is also known as precision or true positive rate.

It measures the proportion of true positive samples

that the model correctly identifies. It is calculated as

shown in Equation 3.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 (3)

The F1-Score is a widely used metric in ML and

statistics that combines precision and recall into a

single measure. It is particularly useful when you

need to balance the trade-off between these two

metrics. It is calculated as shown in Equation 4 below:

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (4)

3. Results and Discussion

In this section, the signature dataset has been

classified in several experiments and the results are

presented. All tests were performed with Pytorch.

PyTorch is an open-source ML library written in

Python and developed by Facebook's Artificial

Intelligence Research Lab (FAIR). It is widely used

to develop and train DL models due to its flexibility,

ease of use and dynamic computational graph feature.

The experiments were conducted on a computer with

a 13th Gen Intel(R) Core (TM) i9-13900HX

processor, 64 GB RAM, and an Nvidia GeForce RTX

4060 graphics card. In the implemented application,

the model was evaluated with three different train-

validation and test ratios. In the first scenario, the

dataset was divided into 20% test and 80% (train +

validation). In the second scenario, the dataset was

divided into 30% test and 70% (train + validation). In

the third scenario, the dataset was divided into 40%

test and 60% (train + validation). The dataset was

evaluated using five different CNN models:

EfficientNet-B0, ResNet50, MobileNet-V3-Large,

Inception-V3, and GoogLeNet. The parameters and

methods determined for the classification process

were optimized in detail. Firstly, the Batch Size,

which determines the amount of data to be used in

each epoch, was selected as 32. This value ensures

that the model receives sufficient information during

training while balancing memory usage. For

optimization, the AdamW algorithm was chosen.

AdamW effectively regularizes weight decay,

enhancing the model's overall performance. AdamW

improves the overall performance of the model by

regulating the weight decay more efficiently.

Learning Rate was initially set as 0.001. However, in

order for the model to have a more stable and efficient

learning process, it was considered to decrease the

learning rate gradually. For this purpose, Step_size

was set to 3 and Gamma to 0.8. These parameters

ensure that the learning rate is reduced every 3 epochs

by multiplying the Learning Rate by a certain

coefficient, Gamma. Thus, the Learning Rate is

updated as shown in equation 5:

𝐿𝑅𝑛𝑒𝑤 = 𝐿𝑅𝑜𝑙𝑑 × (𝑔𝑎𝑚𝑚𝑎)𝑓𝑙𝑜𝑜𝑟(𝑒𝑝𝑜𝑐ℎ/𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒) (5)

This equation allows the model to learn

rapidly at first, but then to progress in smaller steps

over time and to get closer to the result. All tests

performed were run for 50 epochs. This allows the

model to complete the learning process on the data

with a sufficient number of iterations. Cross-entropy

was chosen as the loss function used in the study. A

Label Smoothing value of 0.11 was chosen. Label

Smoothing is a technique used to prevent

overconfident predictions in classification problems.

After each train and validation step, the tests

performed using the test dataset and the

corresponding model parameters were copied to

memory. This is vital for monitoring the

generalization ability and actual performance of the

model. In Table 2 and Table 3, it is seen that

Inception-V3 and GoogLeNet models have the

highest test accuracy (98.77%) at 20% test rate. The

result values of GoogLeNet for Precision, Recall and

F1-Masure were found to be 0.99 for all three criteria.

B. Çiftçi, R. Tekin / BEU Fen Bilimleri Dergisi 13 (3), 871-884, 2024

878

However, in Inception-V3, Precision and F1-Score

results were 0.98 and Recall result was 0.99 as in

GoogLeNet.

Table 2. Test results of Inception-V3 at different Train-

Validation-Test ratios

Train-Test

Ratio

Test

Accuracy

(%)

Precision Recall F1-

Score

20% Testing,

80% (Train

+Validation)

98.77 0.98 0.99 0.98

30% Testing,

70% (Train

+Validation)

98.17 0.98 0.98 0.98

40% Testing,

60% (Train

+Validation)

97.64 0.98 0.98 0.98

Table 3. Test results of GoogLeNet at different Train-

Validation-Test ratios

Train-Test

Ratio

Test

Accuracy

(%)

Precision Recall F1-

Score

20% Testing,

80% (Train

+Validation)

98.77 0.99 0.99 0.99

30% Testing,

70% (Train

+Validation)

98.36 0.99 0.98 0.98

40% Testing,

60% (Train

+Validation)

97.30 0.97 0.97 0.97

Figure 5 presents a comparative graphical

representation of the accuracy performance of the five

different models used in the study at varying test

ratios. The accuracy of GoogLeNet at a 30% test ratio

dropped from 98.77% to 98.36%. In contrast,

Inception-V3 showed a more significant decrease to

98.17% compared to GoogLeNet at the same 30% test

ratio. At a 40% test ratio, GoogLeNet’ s accuracy fell

to 97.30%, whereas Inception-V3 experienced a

lesser decline to 97.64%. As the test ratio increased, a

performance drop was observed in both models. The

second most successful model, EfficientNet-B0,

achieved the highest test accuracy of 98.65% at a 20%

test ratio. For EfficientNet-B0, the Precision and

Recall values were both determined to be 0.99, while

the F1-Score was 0.98. Performance declined slightly

in the other two scenarios, with an accuracy of

98.25% at a 30% test ratio and 97.76% at a 40% test

ratio.

Table 4. Test results of EfficientNet-B0 at different

Train-Validation-Test ratios

Train-Test

Ratio

Test

Accuracy

(%)

Precision Recall F1-

Score

20% Testing,

80% (Train

+Validation)

98.65 0.99 0.99 0.98

30% Testing,

70% (Train

+Validation)

98.25 0.98 0.98 0.98

40% Testing,

60% (Train

+Validation)

97.76 0.98 0.98 0.98

The third most successful model, ResNet50,

had the highest test accuracy (98.10%) at 20% test

rate (Table 5). The result values of ResNet50 for

Precision, Recall and F1-Score were found to be 0.98

for all three criteria. In the other two scenarios, with

30% and 40% test ratios, a slight decline in

performance was observed. At the 30% test rate, the

accuracy value was 97.96%, while at the 40% test rate

it showed a greater decrease (2.30%) compared to the

other four models and was obtained as 95.26%. It

achieved the highest test accuracy of 97.14% at a 20%

test ratio.

Table 5. Test results of ResNet50 at different Train-

Validation-Test ratios

Train-Test

Ratio

Test

Accuracy

(%)

Precision Recall F1-

Score

20% Testing,

80% (Train

+Validation)

98.10 0.98 0.98 0.98

30% Testing,

70% (Train

+Validation)

97.96 0.98 0.98 0.98

40% Testing,

60% (Train

+Validation)

95.26 0.95 0.95 0.95

The result values of MobileNet-V3-Large for

Precision, Recall and F1-Score were 0.97 for all three

criteria (Table 6). In the other two scenarios, i.e. 30%

and 40% test rates, it was observed that the

performance decreased slightly. While the accuracy

value was 96.61% at 30% test rate, the accuracy value

decreased to 95.14% at 40% test rate.

B. Çiftçi, R. Tekin / BEU Fen Bilimleri Dergisi 13 (3), 871-884, 2024

879

Table 6. Test results of MobileNet-V3-Large at different

Train-Validation-Test ratios

Train-Test

Ratio

Test

Accuracy

(%)

Precision Recall F1-

Score

20% Testing,

80% (Train

+Validation)

97.14 0.97 0.97 0.97

30% Testing,

70% (Train

+Validation)

96.61 0.97 0.97 0.96

40% Testing,

60% (Train

+Validation)

95.14 0.96 0.96 0.95

Figure 5. Classifier test accuracies at different Test Ratios

for dataset

Figure 6 shows the Training and Validation

accuracy graphs of the models over 50 epochs on the

dataset divided with a 20% test ratio. We observe a

rapid increase in accuracy during the early epochs for

all models, indicating efficient learning. Inception-V3

and GoogLeNet show the best performance with

minimal gaps between training and validation

accuracy, suggesting good generalization and

minimal overfitting, highlighting their stable and

robust performance. This observation is further

supported by their highest test performance as shown

in Table 2 and Table 3. EfficientNet-B0 and

ResNet50 also show no significant gaps between

training and validation accuracy, indicating the

absence of significant overfitting. Conversely, the

MobileNet-V3-Large model, which is less successful

compared to the other four models, shows a relatively

larger gap between training and validation accuracy,

suggesting potential overfitting.

The dataset used in our study was previously

has only been utilized in a single study in the literature

[16]. In their signature recognition application, they

employed Transfer Learning for feature extraction,

followed by classification using various ML methods.

The researchers primarily focused on the feature

extraction phase. As seen in Table 3, the highest

accuracy achieved in their application was 97.7%

using the SVM method. The other ML methods used

included KNN, Decision Tree (DT), Linear

Discriminant Analysis (LDA), and Naïve Bayes.

They obtained accuracy rates of 92.54% with LDA,

90.28% with KNN and DT, and 82.50% with Naïve

Bayes. In this study, instead of ML techniques, we

fine-tuned five different pre-trained DL models,

saving time and cost while enhancing performance.

The results of the EfficientNet-B0, ResNet50,

Inception-V3, and GoogLeNet models surpassed

those obtained in the study by Özyurt et al. Only the

MobileNet-V3-Large model used in this study

performed slightly less successfully than the SVM

result from their research but outperformed the other

models (KNN, DT, LDA, Naïve Bayes) in terms of

accuracy Compared to our study, the direct use of a

pre-trained DL model, as well as fine-tuning the

model, provided both time and cost savings and

higher accuracy values. The data preprocessing

methods used in our study are largely similar to those

in other studies in the literature. However, additional

methods such as ColorJitter and GaussianBlur were

used to enrich the data. The use of these methods, in

addition to commonly used techniques like resizing,

grayscale, and normalization, contributed to the

improved performance of the model. Table 3 shows

that DL methods, especially CNN models, have been

widely used in signature recognition applications in

the literature in recent years. Researchers such as

Calik et al.[9], Jampour et al. [24], Kancharla et al.

[25], Noor et al. [26], Pokharel et al. [17] and Tarek

and Atia [13] have achieved high accuracy values

using CNN models in their studies. With the use of

DL models, the need for the feature extraction stage

has decreased and accuracy rates have increased. For

example, Kancharla et al., integrated CNN and

Jampour et al. integrated CapsNet and ResNet models

and achieved very high accuracy values such as 100

%.

B. Çiftçi, R. Tekin / BEU Fen Bilimleri Dergisi 13 (3), 871-884, 2024

880

Figure 6. Training and validation accuracy on the signature dataset for a) Inception-V3, b) GoogleNet, c) EfficientNet-B0

and d) MobileNet-V3-Large e) ResNet50

The dataset used in this study has a

considerably larger data volume compared to other

studies in the literature. Large datasets improve the

overall performance of DL models by allowing them

to learn more features (Lecun et al., 2015). This is a

crucial factor behind the high accuracy values

obtained in our study. In the literature, datasets

created by researchers, which are not widely

available, typically consist of a relatively smaller

number of signature images [13], [27], [28]. The

extensive size of the dataset in our study allowed the

DL models to learn more features and improve their

performance [29].

Table 7. Literature summary of offline signature recognition applications using ML and DL

Authors

(year)

Database/Number of

people / Number of

samples

Data pre-

processing

Feature

extraction

ML techniques Signature

application

Accuracy

[30] GPDS/2106 signature Boundary extraction Modified

Direction Feature

(MDF)

centroid, surface

area, length, skew

RBP Neural

Network

(Resilient

Backpropagation),

RBF Network

(Radial Basis

Function)

Classification 91.21%,

88%

[31] Self-built/100/3000

signature

Conversion to

Binary Images,

Normalization,

Reshaping

Global Features

Extraction

(Signature Height,

Image Area, Pure

Width and Pure

Height)

ANN, MLP Classification 75.20%

[9] SUSIG-

Visual/100/2000

signature

Resizing,

Grayscale

conversion

- CNN Classification 92%

B. Çiftçi, R. Tekin / BEU Fen Bilimleri Dergisi 13 (3), 871-884, 2024

881

[25] SigComp 2011

Dutch/10/240

signature,

SigComp 2011

Chinese/10/240

signature,

UTsig Farsça/10/240

signature

Grayscale

Conversion,

Finalization,

Erosion, Dilation,

Image Resizing

- CNN Classification 100%,

85.11%,

96.29%

[11] CEDAR/55/2640

signature

Image Resizing,

Otsu thresholding,

binarizing

- CapsNet Verification 98.8%

[12] CEDAR/55/2640

signature,

GPDS-

100/400/216,000

signature,

MCYT/75/2250

Image Resizing,

Otsu thresholding,

binarizing

- CapsNet Verification 97.96%,

94.89%,

91%

[26] Self-built/4/10

signature

Self-built/10/240

signature

Self-built/54/648

signature

Self-built/33/165

signature

Grayscale

Conversion,

Normalization,

Inverting,

Image Resizing

- CNN Classification 99%,

89.1%,

80.8%,

72.7%

[15] GPDS

Senthtetic/4000/2160

00 signatures, MCYT-

75/75/2250

signatures,

UTSig/115/7935

signatures,

FUM-PHSD/20/600

signatures

Binarization (Otsu's

algorithm),

Noise removing,

Gussian filter,

Normalization

SigNet, SigNet-F,

VGG16, VGG19,

InceptionV3,

ResNet50

SVM Classification 99.7%,

100%,

98.71%,

100%

[17] Self-built/25/2,500

signature

Cropping image,

Scaling dimension,

GoogLeNet GoogLeNet Classification 95,2%

[27] Self-built/30/450

signature

Decoding, Resizing,

Padding

CNN Siamese Network Classification 84%

[24] CEDAR/55/2640

signature,

MCYT/75/2250

signature

UTSig/115/8280

signature

Centralized padding,

Image Resizing

- CapsNet,

ResNet

Classification 100%,

99.66%,

99.38%

[14] MCYT-75/75/2250

signatures,

BHSig260(Bengali)/1

00/5400 signatures,

BHSig260(Hindi)/160

/8640 signatures,

 MCYT‐75/75/2250

signatures

Image Resizing GoogLeNet SVM

Classification 96.5%,

95.7%,

93%

[32] 4NSigComp2012/5/3

00,

SigComp2011/10/576

,

BHSig260(Bengali)/1

00/5400 signatures,

BHSig260(Hindi)/160

/8640 signatures,

Bounding Box

Method, Resizing,

Binary

Thresholding,

Inversion,

Normalization

- Siyam Ağlar Verification 93.23%,

92.11%,

89.78%,

91.3%

[28] Self-built/20/200

signature

Image acquisition,

Grayscaling,

Segmentation, Area

filtering, Object

bounding areas.

Local Binary

Pattern (LBP),

Uniform LBP,

LBP 8 rotation,

Learning Vector

Quantization

(LVQ)

Classification 90%

B. Çiftçi, R. Tekin / BEU Fen Bilimleri Dergisi 13 (3), 871-884, 2024

882

4. Conclusion and Suggestions

The proposed methodology offers a robust and

efficient approach for signature recognition, with

potential applications in various fields such as

banking, law, and security systems. However, since

the focus of this study is on offline handwritten

signatures, further research is needed for other types

of signatures, such as digital signatures. For future

studies, the application of larger and more diverse

datasets, as well as the use of next-generation DL

techniques like transformers and attention

mechanisms, could allow for the capture of more

complex and variable signature features.

Additionally, incorporating dynamic

information from the signing process (e.g., pressure,

speed) along with signature images could lead to the

development of multimodal learning models. This

would further enhance the reliability of signature

verification systems.

In conclusion, this study demonstrates the

potential of DL in the field of signature recognition.

Future research, in parallel with technological

advancements, will contribute to the emergence of

more advanced and reliable signature recognition

systems.

Conflict of Interest Statement

There is no conflict of interest between the authors.

Statement of Research and Publication Ethics

The study is complied with research and publication

ethics

References

[1] A. K. Jain, K. Nandakumar, and A. Ross, “50 years of biometric research: Accomplishments, challenges,

and opportunities,” Pattern Recognit Lett, vol. 79, pp. 80–105, Aug. 2016, doi:

10.1016/J.PATREC.2015.12.013.

[2] M. A. Ferrer, J. F. Vargas, A. Morales, and A. Ordóñez, “Robustness of offline signature verification

based on gray level features,” IEEE Transactions on Information Forensics and Security, vol. 7, no. 3, pp. 966–

977, 2012, doi: 10.1109/TIFS.2012.2190281.

[3] N. S. Kamel, S. Sayeed, and G. A. Ellis, “Glove-Based Approach to Online Signature Verification,”

IEEE Trans Pattern Anal Mach Intell, vol. 30, no. 6, pp. 1109–1113, Jun. 2008, doi: 10.1109/TPAMI.2008.32.

[4] Z. Wang, M. Muhammat, N. Yadikar, A. Aysa, and K. Ubul, “Advances in Offline Handwritten

Signature Recognition Research: A Review,” IEEE Access, vol. 11, pp. 120222–120236, 2023, doi:

10.1109/ACCESS.2023.3326471.

uniform LBP 8

rotation

[13] Self-built/30/300

signature

Self-built/140 images

Grayscale

Conversion,

Resizing

- VGG-16,

ResNet50,

Inception-v3,

Xception,

modified CNN

Classification 75%,

86%,

77%,

70%,

75%

[16] Self-built/420/12,600

signature

Cropping, Resizing MobileNetV2,

Neighborhood

Component

Analysis (NCA),

Chi-Square

(Chi2), Mutual

Information (MI)

SVM,

KNN,

Decision Tree

(DT),

 Linear

Discriminant

Analysis (LDA),

Naïve Bayes

Classification 97.7%,

90.28%,

90.28%,

92.54%,

82.50%

This

Study

Built by [16]

/420/12,600

Resize, CenterCrop,

ColorJittter,

GaussianBlur,

Grayscale,

Normalize

- EfficientNet-B0,

ResNet50,

Inception-V3,

GoogLeNet,

MobileNet-V3-

Large

Classification 98.65%,

98.10%,

98.77%,

98.77%,

97.14%

B. Çiftçi, R. Tekin / BEU Fen Bilimleri Dergisi 13 (3), 871-884, 2024

883

[5] A. Rıza Yılmaz et al., “İmza Tanıma Uygulaması için Çok Katmanlı Algılayıcıların Diferansiyel

Gelişim Algoritması ile Eğitimi Training Multilayer Perceptron Using Differential Evolution Algorithm for

Signature Recognition Application,” 2013.

[6] R. Sabourin and Drouhard Jean-Pierre, “Offline signature verification using directional pdf and neural

networks,” International Conference on Pattern Recognition, 1994.

[7] M. A. Ismail and S. Gad, “Off-line arabic signature recognition and verification,” Pattern Recognit, vol.

33, no. 10, pp. 1727–1740, Oct. 2000, doi: 10.1016/S0031-3203(99)00047-3.

[8] M. R. Deore and S. M. Handore, “Offline signature recognition: Artificial neural network approach,” in

2015 International Conference on Communications and Signal Processing (ICCSP), 2015, vol. 2, pp. 1708–

1712..

[9] NN. Calik, O. C. Kurban, A. R. Yilmaz, L. D. Ata, and T. Yildirim, “Signature recognition application

based on deep learning,” in 2017 25th Signal Processing and Communications Applications Conference (SIU),

2017, vol. 20, pp. 1–4..

[10] MM. K. Kalera, S. Srihari, and A. Xu, “Offline signature verification and identification using distance

statistics,” Intern. J. Pattern Recognit. Artif. Intell., vol. 18, no. 07, pp. 1339–1360, 2004.

[11] D. Gumusbas and T. Yildirim, “Offline signature identification and verification using capsule network,”

in 2019 IEEE International Symposium on INnovations in Intelligent SysTems and Applications (INISTA), 2019.

[12] D. Gumusbas and T. Yildirim, “Offline signature identification and verification based on capsule

representations,” Cybernetics and Information Technologies, vol. 20, no. 5, pp. 60–67, Dec. 2020, doi:

10.2478/CAIT-2020-0040.

[13] OO. Tarek and A. Atia, “Forensic handwritten signature identification using deep learning,” in 2022

IEEE 9th International Conference on Sciences of Electronics, Technologies of Information and

Telecommunications (SETIT), 2022, vol. 39, pp. 185–190..

[14] A. Jain, S. K. Singh, and K. Pratap Singh, “Multi-task learning using GNet features and SVM classifier

for signature identification,” IET Biom, vol. 10, no. 2, pp. 117–126, Mar. 2021, doi: 10.1049/BME2.12007.

[15] A. Foroozandeh, A. Askari Hemmat, and H. Rabbani, “Offline handwritten signature verification and

recognition based on deep transfer learning,” in 2020 International Conference on Machine Vision and Image

Processing (MVIP), 2020.

[16] F. Özyurt, J. Majidpour, T. A. Rashid, and C. Koç, “Offline Handwriting Signature Verification: A

Transfer Learning and Feature Selection Approach,” Traitement du Signal vol.40, no.6, 2024.

[17] S. Pokharel, S. Giri, and S. Shakya, “Deep Learning Based Handwritten Signature Recognition,” NCE

Journal of Scince and Engineering, vol.1, no.1, pp. 21-24, 2020.

[18] C. Szegedy et al., “Going deeper with convolutions,” in 2015 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2015.

[19] A. Howard et al., “Searching for MobileNetV3,” in 2019 IEEE/CVF International Conference on

Computer Vision (ICCV), 2019.

[20] C.C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception architecture

for computer vision,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[21] K.K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in 2016 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[22] M. Tan and Q. V. Le, “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks,”

36th International Conference on Machine Learning, ICML 2019, vol. 2019-June, pp. 10691–10700, May 2019,

Accessed: Jul. 25, 2024. [Online]. Available: https://arxiv.org/abs/1905.11946v5

[23] OO. El Melhaoui, S. Said, A. Benlghazi, and S. Elouaham, “Improved signature recognition system

based on statistical features and fuzzy logic,” e-Prime - Advances in Electrical Engineering, Electronics and

Energy, vol. 8, no. 100505, p. 100505, 2024.

B. Çiftçi, R. Tekin / BEU Fen Bilimleri Dergisi 13 (3), 871-884, 2024

884

[24] M. Jampour, S. Abbaasi, and M. Javidi, “CapsNet regularization and its conjugation with ResNet for

signature identification,” Pattern Recognit, vol. 120, p. 107851, Dec. 2021, doi:

10.1016/J.PATCOG.2021.107851.

[25] K. Kancharla, V. Kamble, and M. Kapoor, “Handwritten signature recognition: A convolutional neural

network approach,” in 2018 International Conference on Advanced Computation and Telecommunication

(ICACAT), 2018, vol. 2709, pp. 1–5..

[26] F. Noor, A. E. Mohamed, F. A. S. Ahmed, and S. K. Taha, “Offline handwritten signature recognition

using convolutional neural network approach,” in 2020 International Conference on Computing, Networking,

Telecommunications & Engineering Sciences Applications (CoNTESA), 2020, pp. 51–57.

[27] S. Mshir and M. Kaya, “Signature Recognition Using Machine Learning,” in 2020 8th International

Symposium on Digital Forensics and Security (ISDFS), 2020.

[28] E. K. D. Kette, D. R. Sina, and B. S. Djahi, “Digital image processing: Offline handwritten signature

identification using local binary pattern and rotational invariance local binary pattern with learning vector

quantization,” J. Phys. Conf. Ser., vol. 2017, no. 1, p. 012011, 2021.

[29] YY. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, 2015.

[30] S. Armand, M. Blumenstein, and V. Muthukkumarasamy, “Off-line signature verification using the

enhanced modified direction feature and neural-based classification,” in The 2006 IEEE International Joint

Conference on Neural Network Proceedings, 2006, pp. 684–691.

[31] A.A. A. M. Abushariah, T. S. Gunawan, J. Chebil, and M. A. M. Abushariah, “Automatic person

identification system using handwritten signatures,” in 2012 International Conference on Computer and

Communication Engineering (ICCCE), 2012, pp. 560–565.

[32] M. V. Arısoy, “Signature verification using siamese neural network one-shot learning,” International

Journal of Engineering and Innovative Research, vol. 3, no. 3, pp. 248–260, Sep. 2021, doi:

10.47933/IJEIR.972796.

