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Abstract 

In our digitalized world, the need for reliable authentication methods is steadily 

increasing. Biometric authentication methods are divided into two main categories: 

physiological and behavioral. While physiological biometrics include features such 

as face, iris, and fingerprint, behavioral biometrics encompass dynamics such as 

gait, speech, and signature. Most of these methods require specialized equipment, 

whereas signatures can be easily obtained without additional tools, making them 

ideal for verifying the legality of documents. Although manual signature 

recognition is effective, it is resource-intensive, slow, and susceptible to errors. 

With advancements in technology, the need to automate the signature recognition 

process to enhance accuracy and efficiency has become increasingly important. 

Based on this need, in this study, five different DL techniques (GoogLeNet, 

MobileNet-V3 Large, Inception-V3, ResNet50 and EfficientNet-B0) are used to 

classify signature images with detailed analyses. DL methods have outperformed 

traditional techniques by leveraging the power of CNNs to automatically learn and 

extract complex features from signature data. The dataset used consists of a total 

of 12,600 images belonging to 420 individuals, each contributing 30 original 

signatures. The dataset is divided into training, validation, and test sets in different 

proportions to analyze classification performance. The pre-trained DL models were 

fine-tuned to optimize their parameters for the signature dataset. The results 

demonstrate that DL models achieve high accuracy in signature classification, with 

the GoogLeNet and Inception-V3 models reaching an accuracy of 98.77% at a 20% 

test rate. The study also highlights the impact of different test rates on model 

performance. 

 

 

1. Introduction 

 

In our digitalized world, the need for reliable 

authentication methods is increasing. Biometric 

authentication methods are divided into two main 

categories: physiological and behavioral. 

Physiological biometrics include features such as 

face, iris, and fingerprint, while behavioral biometrics 

encompass dynamics such as gait, speech, signature, 

and keystroke dynamics [1], [2]. Although other 

techniques, such as fingerprint, iris/retina scanning, 

facial recognition, and voice recognition, are more 

precise, they require specialized equipment. In 

contrast, signatures can be easily obtained without 
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additional tools, making them indispensable for daily 

transactions and verifying the legality of documents 

such as certificates, checks, letters, approvals, visas, 

and passports. Traditional signature verification has 

been a manual process involving the comparison of a 

sample signature with previously obtained genuine 

signatures. With advancements in technology, there 

has been an increasing need to automate the signature 

verification process to enhance accuracy and 

efficiency. Handwritten signature recognition is 

divided into two primary categories according to the 

method of signature acquisition: online and offline. 

Online signature recognition involves capturing 

dynamic features such as ink pressure and writing 
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speed during the signing process using devices like 

electronic handwriting pads or touch screens [3], [4]. 

Offline signature recognition, on the other hand, 

involves writing the signature on paper, scanning it, 

and digitally processing the image [5].  Additionally, 

signature analysis encompasses two methods: 

signature verification and signature recognition. 

Signature recognition is a classification process 

where the signatory is identified from among many 

signatures. Signature verification, however, involves 

comparing two signatures to determine their 

similarity and conclude whether a signature is 

genuine or forged. Signature recognition studies 

require datasets with multiple signatures from 

different individuals, whereas signature verification 

necessitates the presence of both genuine and forged 

signatures for each individual. 

Studies on offline signature recognition and 

verification date back to the early 1990s [6]. In their 

work, Sabourin and Drouhard Jean-Pierre classified 

offline signature images using Feedforward Neural 

Networks (FFNN) and the Probability Density 

Function (PDF) [6]. Ismail and Gad used various 

preprocessing techniques to classify 220 genuine and 

110 forged Arabic signature images using different 

algorithms based on fuzzy concepts [7]. Deore and 

Handore's study utilized Discrete Wavelet Transform 

(DWT) and Principal Component Analysis (PCA) for 

extracting features, followed by Artificial Neural 

Networks (ANN) to implement an offline signature 

recognition system [8]. As technology advances, the 

methods we use to verify signatures must also evolve 

to remain robust against ever-progressing forgery 

techniques. The integration of ML and DL techniques 

into signature recognition systems has proven to be 

highly effective, enhancing accuracy and efficiency 

while preserving the authenticity of documents and 

the integrity of transactions. Calik and colleagues 

used the SUSIG-Visual dataset for classification with 

CNNs [9]. Gumusbas and Yildirim achieved high 

accuracy with CapsNet using the CEDAR [10] 

dataset, which contains genuine and forged signatures 

Gumusbas & Yildirim, 2019). In another study, the 

same authors used CapsNet for signature verification 

with different datasets (GPDS-100 and MCYT) [12]. 

Tarek and Atia used various CNN models, including 

VGG-16, ResNet50, Inception-v3, and Xception, to 

classify genuine and forged signatures from two 

separate datasets [13].  

For the recognition and verification of offline 

signatures, various feature extraction processes are 

performed before proceeding to the classification 

stage with ML and DL. In their study, Jain et al. used 

GoogLenet for feature extraction and then used SVM 

method for classification [14]. Foroozandeh et al., in 

their study, used SigNet, SigNet-F, VGG16, VGG19, 

InceptionV3, and ResNet50 for feature extraction, 

and then preferred the Support Vector Machine 

(SVM) method for classification [15]. Özyurt et al., in 

their study, performed feature extraction using the 

MobileNetV2 method on the large dataset they 

obtained. During the feature selection phase, they 

used Neighborhood Component Analysis (NCA), 

Chi-Square (Chi2), and Mutual Information (MI) 

methods for classification. Their evaluation employed 

various ML classifiers, including Support Vector 

Machine (SVM), K-Nearest Neighbors (KNN), 

Decision Tree (DT), Linear Discriminant Analysis 

(LDA), and Naïve Bayes. The study results showed 

that the highest accuracy of 97.7% was achieved 

using SVM with NCA feature selection [16]. 

Pokharel et al., in their signature recognition 

application, used GoogLeNet for both feature 

extraction and classification [17].  

The drive to develop and improve signature 

classification systems arises from the need to ensure 

the security of identities and transactions in an 

environment where the boundaries between the 

physical and digital worlds are increasingly blurred. 

The main motivation of this work is to develop 

efficient and reliable authentication systems that can 

respond to the growing demands of modern society, 

while ensuring that signatures remain a reliable means 

of authentication 

 

2. Material and Method 

 

2.1. Dataset 

 

The dataset used in this study consists of 12,600 

images from 420 different individuals, with each 

participant contributing 30 genuine signatures 

(Özyurt et al., 2024). The signatures were obtained 

from students and faculty members at Raparin 

University in Ranya, Iraq, and Firat University in 

Elazig, Turkey. Collected within two months, the 

signatures were cropped using MATLAB and then 

resized to 500x600 pixels. 

 

 
Figure 1. Signature samples from six different users in 

the dataset 
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2.2. Proposed Method 

 

The classification of the signature images in this 

dataset was performed using five DL techniques, 

considering the remarkable success of DL in various 

fields.  

In the approach proposed for the study, the 

dataset was divided into different proportions to 

analyze the performance of classification accuracy. 

The dataset was split into 20% test and 80% (train + 

validation) sets. The validation data was then split 

from the training data as 20%. Thus, in the first 

scenario, the dataset was divided into 20% test, 16% 

validation, and 64% train. In the second scenario, the 

dataset was split into 30% test and 70% (train + 

validation) sets. The validation data was then split 

from the training data as 30%. Thus, the second 

scenario consisted of 30% test, 21% validation, and 

49% train. In the third scenario, the dataset was split 

into 40% test and 60% (train + validation) sets. The 

validation data was then split from the training data as 

40%. Thus, the third scenario consisted of 40% test, 

24% validation, and 36% train. Various preprocessing 

methods were then applied to the train-validation and 

test datasets. The DL models used were pretrained DL 

models. The pretrained weights were applied to the 

dataset, and parameters were optimized for new 

models. Subsequently, each of these models was fine-

tuned individually to enhance their performance. For 

each classification scenario, train-validation, and test 

success, loss, and weights were recorded for all 

epochs. The flowchart of the proposed method is 

shown in detail in Figure 2. 

 

 2.3. Preprocessing 

 

Preprocessing is essential in classification tasks, 

including signature classification, as it cleans and 

standardizes raw data, which often contains 

inconsistencies and irrelevant information. This step 

enhances DL classifier models' effectiveness and 

helps prevent overfitting, leading to more accurate 

results. (James & Koresh, 2023). The preprocessing 

methods used in this study include Resize, 

CenterCrop, ColorJitter, GaussianBlur, Grayscale, 

and Normalize. Resize is used to resize images to a 

fixed size. CenterCrop; makes a crop of a certain size 

from the center of the image. For the Inception-V3 

model used in the study, Resize 299 and CentreCrop 

value 299 were used. For EfficientNet-B0, 

MobileNet-V3-Large, GoogLeNet and ResNet50 

models, Resize 299 and CenterCrop 299 were used. 

Normalization is a pre-processing step in which the 

pixel values of the images are scaled to a certain range 

or distribution. Since the DL models used in the study 

are Pretrained models previously trained with 

ImageNet; Normalization values are used as [0.485, 

0.456, 0.406] and [0.229, 0.224, 0.225]. 

 

 
Figure 2. Flowchart of the Implemented Signature Recognition Application 
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Colourjitter is a preprocess that adjusts the brightness, 

contrast, saturation and hue of the image.  

GaussianBlur applies a Gaussian blur to the image. 

For this study, p=0.1 was chosen for the Colourjitter 

and GaussianBlur methods, and the transformations 

were applied with a 10% probability. In the 

GaussianBlur method, a Gaussian blur with a kernel 

size of 3x3 was applied. The GrayScale method 

converts the image to gray scale. Below in Figure 3, 

the appearance of several different signature samples 

from the dataset is shown after applying each of the 

preprocessing steps used in the study individually. 

Figure 3. Preprocessing Steps Applied to Several Different Signature Samples from the Dataset 

 

2.4. Classification 

 

In this study, a signature classification application 

was implemented using advanced DL architectures. 

CNN architectures were selected for this task because 

of their superior capabilities in image processing. The 

CNN architectures used are GoogLeNet [18], 

MobileNet-V3 Large [19], Inception-V3 [20], 

ResNet50 [21] and EfficientNet-B0 [22]. 

In the approach proposed for the study, the 

data set was divided into train, validation and test. By 

using a validation set, the possibility of overfitting a 

model that performs well on the training data and 

poorly on the unseen data is avoided. The separation 

of train, validation and test provides an unbiased 

assessment of the performance of the final model, 

ensuring that the success of the model is not due to 

overfitting in the validation set. The CNN 

architectures used are pre-trained on the ImageNet 

dataset. ImageNet is a massive dataset 

ctable3ontaining over 14 million images (Deng et al., 

2010). These models can be repurposed for other 

tasks without requiring training from scratch, as they 

have learned a rich set of features from millions of 

images (Zhuang et al., 2019). This significantly 

shortens the training time, provides higher accuracy 

and performance, reduces the computational 

resources required for training, and offers better 

generalization capability, making them extremely 

valuable for practical applications (Zhuang et al., 

2019). By fine-tuning the final layers of the models, 

they were better adapted to the signature classification 

task, resulting in higher accuracy and performance 

during the training process. Below in Table 2, the 

original and modified states of the final layer of each 

model and their total number of parameters are 

shown. In the implementation, the highest number of 

parameters is found in the Inception-V3 model, with 

27,481,128 parameters, while the MobileNet-V3-

Large model has the lowest number of parameters, 

with 4,714,196. Detailed information about the layers 

was accessed using the ‘torchscan’ and ‘torchstat’ 

libraries provided by PyTorch. 
 

Table 1. Modifications and total number of parameters applied to the final layers of the classification models before and 

after fine-tuning 

  The original state 

of the last layer 

Modified last layer Total 

parameters  

EfficientNet- B0 [0]: Linear (in =1280, out = 1000) [0]: Dropout(p=0.2) 

[1]: Linear (in =1280, out =1024 

[2]: ReLU () 

[3]: Linear (in =1024, out =420) 

6,185,248 
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GoogLeNet [0]: Linear (in =2048, out =1000 [0]: Dropout(p=0.2) 

[1]: Linear (in =2048, out =1024 

[2]: ReLU () 

[3]: Linear (in =1024, out =420) 

5,288,548 

MobileNet-V3-

Large 

[0]: First Linear (in = 960, out = 1280) 

[1]: Hardswish 

[2]: Dropout (p = 0.2) 

[3]: Last Linear (in = 1280, out = 1000) 

[0]: Dropout(p=0.2) 

[1]: Linear (in =1280, out =1024 

[2]: ReLU () 

[3]: Linear (in =1024, out =420) 

4,714,196 

Inception-V3 [0]: Linear (in =2048, out =1000) [0]: Dropout(p=0.2) 

[1]: Linear (in =2048, out =1024 

[2]: ReLU () 

[3]: Linear (in =1024, out =420) 

27,481,128 

ResNet50 [0]: Linear (in =2048, out =1000) [0]: Dropout(p=0.2) 

[1]: Linear (in =2048, out =1024 

[2]: ReLU () 

[3]: Linear (in =1024, out =420) 

26,036,708 

EfficientNet-B0 

 

EfficientNet-B0 is a member of the EfficientNet 

family of architectures (B0, B1, B2, ..., B7, B8), 

developed to provide a more fluid and effective 

approach to scaling DL models (Tan & Le, 2019). 

This model is distinguished by its use of a systematic 

method called Compound Scaling, which scales 

CNNs in a balanced way across all dimensions. It 

emerged from the idea that balancing the depth, 

width, and input resolution of a network can provide 

better efficiency and effectiveness. The core 

components of the EfficientNet-B0 model are 

MBConv Blocks, which are previously known as 

bottlenecks in MobileNetV2. These blocks include 

expansion and squeeze layers that recalibrate feature 

maps, further enhancing performance (Sandler et al., 

2018). In this study, the use of the EfficientNet-B0 

model was preferred based on its balance of time and 

performance efficiency. The schematic diagram of the 

fine-tuned EfficientNet-B0 model architecture used in 

this study is shown in Figure 4. a. 

 

 GoogLeNet 

 

Inception V1, also known as GoogLeNet, is a deep 

convolutional neural network developed by Google 

(Szegedy et al., 2014). The distinguishing feature of 

GoogLeNet is the Inception module. This module 

includes multiple convolutions of different sizes (1x1, 

3x3, and 5x5) and a 3x3 max pooling operation, all 

performed in parallel. The outputs from these 

operations are concatenated to form the final output 

of the module. In this study, GoogLeNet achieved 

effective classification with an average of only 5.2 

million parameters. For this study, the GoogLeNet 

model, previously trained on the ImageNet dataset, 

was fine-tuned with the modifications shown in Table 

1. The schematic diagram of the fine-tuned 

GoogLeNet model architecture used in this study is 

shown in Figure 4. b. 

 

Inception-V3  

 

Developed by researchers at Google, Inception-V3 is 

designed to provide high accuracy with efficient 

computation by optimizing the structure of 

convolutional networks (Szegedy et al., 2015).  

Inception-V3 introduces the idea of factorizing 

convolutions into smaller operations to reduce 

computational load while maintaining or enhancing 

the network's ability to capture critical features. 

Inception-V3 also employs Auxiliary Classifiers 

placed at intermediate points in the network during 

training. These classifiers add additional 

regularization, helping to prevent overfitting. While 

the outputs of these classifiers are not used during 

inference, they play a crucial role during the training 

phase. A schematic diagram of the fine-tuned 

Inception-V3 model architecture used in this study is 

shown in Figure 4. c. 

 

MobileNet-V3-Large 

 

MobileNetV3-Large is part of the MobileNet family 

of neural network models. The main purpose of 

MobileNets is to design a lightweight CNN for 

efficient performance on mobile and edge devices 

with lower capacity than computers (Sandler et al., 

2018). MobileNet V1 has a structure that uses width 

and resolution multipliers. MobileNet V2, in addition 

to the structure of the MobileNet V1 model, used 

inverted residual structures that provide more 

efficient memory usage (Sandler et al., 2018).
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a) b) c) d) e) 

Figure 4. Schematic diagram of the fine-tuned a) EfficientNet-B0, b) GoogLeNet, c) Inception-V3, d) MobileNetV3-

Large, e) ResNet50 model architecture used in this study 

 

MobileNet V3 is a more optimized and improved 

version of the architectures (Howard et al., 2019). The 

efficiency of the network is increased by removing 

complex layers. With approximately 4.7 million 

parameters, MobileNetV3-Large is both lightweight 

and fast. A schematic diagram of the fine-tuned 

MobileNetV3-Large model architecture used in this 

study is shown in Figure 4.d. 

 

ResNet50 

 

The Residual Network with 50 layers, abbreviated as 

ResNet-50, is a CNN architecture widely used in 

image processing tasks, including signature 

recognition. Developed by Microsoft Research, 

ResNet-50 has significantly impacted the field of 

computer vision due to its innovative design that 

addresses the vanishing gradient problem often 

encountered in deep networks (He, Zhang, & Ren, 

2015). The core idea behind ResNet is the 

introduction of residual learning. The convolutional 

layers of ResNet-50 effectively extract hierarchical 

features from signature images, ranging from simple 

edges and textures in the initial layers to more 

complex patterns and shapes in the deeper layers.  

The ResNet50 architecture, previously 

trained on the ImageNet dataset, was used for this 

study. It accepts input images of 224x224 pixels. A 

schematic diagram of the fine-tuned ResNet50 model 

architecture used in this study is shown in Figure 4.e. 
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2.5. Performance Metrics 

 

Performance metrics provide a comprehensive 

evaluation of the effectiveness of a classification 

model [23]. The performance metrics used in this 

study are Accuracy, Precision, Recall, F1-Score.  

  Accuracy is a fundamental metric for 

evaluating classification models and refers to the 

proportion of correctly predicted samples (both true 

positives and true negatives) in the total samples. It is 

calculated as shown in Equation 1. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(%) = 100 ∗
∑𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
      (1) 

 

Precision is a metric that quantifies the number of 

accurate positive predictions made by the model 

relative to the total number of positive predictions. It 

is calculated as shown in Equation 2. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
                         (2) 

 

Recall is also known as precision or true positive rate. 

It measures the proportion of true positive samples 

that the model correctly identifies. It is calculated as 

shown in Equation 3. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
                              (3) 

 

The F1-Score is a widely used metric in ML and 

statistics that combines precision and recall into a 

single measure. It is particularly useful when you 

need to balance the trade-off between these two 

metrics. It is calculated as shown in Equation 4 below: 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                   (4) 

 

3. Results and Discussion 

 

In this section, the signature dataset has been 

classified in several experiments and the results are 

presented. All tests were performed with Pytorch. 

PyTorch is an open-source ML library written in 

Python and developed by Facebook's Artificial 

Intelligence Research Lab (FAIR). It is widely used 

to develop and train DL models due to its flexibility, 

ease of use and dynamic computational graph feature. 

The experiments were conducted on a computer with 

a 13th Gen Intel(R) Core (TM) i9-13900HX 

processor, 64 GB RAM, and an Nvidia GeForce RTX 

4060 graphics card. In the implemented application, 

the model was evaluated with three different train-

validation and test ratios. In the first scenario, the 

dataset was divided into 20% test and 80% (train + 

validation). In the second scenario, the dataset was 

divided into 30% test and 70% (train + validation). In 

the third scenario, the dataset was divided into 40% 

test and 60% (train + validation). The dataset was 

evaluated using five different CNN models: 

EfficientNet-B0, ResNet50, MobileNet-V3-Large, 

Inception-V3, and GoogLeNet. The parameters and 

methods determined for the classification process 

were optimized in detail. Firstly, the Batch Size, 

which determines the amount of data to be used in 

each epoch, was selected as 32. This value ensures 

that the model receives sufficient information during 

training while balancing memory usage. For 

optimization, the AdamW algorithm was chosen. 

AdamW effectively regularizes weight decay, 

enhancing the model's overall performance. AdamW 

improves the overall performance of the model by 

regulating the weight decay more efficiently. 

Learning Rate was initially set as 0.001. However, in 

order for the model to have a more stable and efficient 

learning process, it was considered to decrease the 

learning rate gradually. For this purpose, Step_size 

was set to 3 and Gamma to 0.8. These parameters 

ensure that the learning rate is reduced every 3 epochs 

by multiplying the Learning Rate by a certain 

coefficient, Gamma. Thus, the Learning Rate is 

updated as shown in equation 5: 

 

𝐿𝑅𝑛𝑒𝑤 = 𝐿𝑅𝑜𝑙𝑑 × (𝑔𝑎𝑚𝑚𝑎)𝑓𝑙𝑜𝑜𝑟(𝑒𝑝𝑜𝑐ℎ/𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒)            (5) 

 

This equation allows the model to learn 

rapidly at first, but then to progress in smaller steps 

over time and to get closer to the result. All tests 

performed were run for 50 epochs. This allows the 

model to complete the learning process on the data 

with a sufficient number of iterations. Cross-entropy 

was chosen as the loss function used in the study. A 

Label Smoothing value of 0.11 was chosen. Label 

Smoothing is a technique used to prevent 

overconfident predictions in classification problems. 

After each train and validation step, the tests 

performed using the test dataset and the 

corresponding model parameters were copied to 

memory. This is vital for monitoring the 

generalization ability and actual performance of the 

model. In Table 2 and Table 3, it is seen that 

Inception-V3 and GoogLeNet models have the 

highest test accuracy (98.77%) at 20% test rate. The 

result values of GoogLeNet for Precision, Recall and 

F1-Masure were found to be 0.99 for all three criteria. 
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However, in Inception-V3, Precision and F1-Score 

results were 0.98 and Recall result was 0.99 as in 

GoogLeNet. 

 
Table 2. Test results of Inception-V3 at different Train-

Validation-Test ratios 

Train-Test 

Ratio 

Test 

Accuracy 

(%) 

Precision Recall F1-

Score 

20% Testing, 

80% (Train 

+Validation)  

98.77 0.98 0.99 0.98 

30% Testing, 

70% (Train 

+Validation)  

98.17 0.98 0.98 0.98 

40% Testing, 

60% (Train 

+Validation) 

97.64 0.98 0.98 0.98 

 

Table 3.  Test results of GoogLeNet at different Train-

Validation-Test ratios 

Train-Test 

Ratio 

Test 

Accuracy 

(%) 

Precision Recall F1-

Score 

20% Testing, 

80% (Train 

+Validation)  

98.77 0.99 0.99 0.99 

30% Testing, 

70% (Train 

+Validation)  

98.36 0.99 0.98 0.98 

40% Testing, 

60% (Train 

+Validation) 

97.30 0.97 0.97 0.97 

 

Figure 5 presents a comparative graphical 

representation of the accuracy performance of the five 

different models used in the study at varying test 

ratios. The accuracy of GoogLeNet at a 30% test ratio 

dropped from 98.77% to 98.36%. In contrast, 

Inception-V3 showed a more significant decrease to 

98.17% compared to GoogLeNet at the same 30% test 

ratio. At a 40% test ratio, GoogLeNet’ s accuracy fell 

to 97.30%, whereas Inception-V3 experienced a 

lesser decline to 97.64%. As the test ratio increased, a 

performance drop was observed in both models. The 

second most successful model, EfficientNet-B0, 

achieved the highest test accuracy of 98.65% at a 20% 

test ratio. For EfficientNet-B0, the Precision and 

Recall values were both determined to be 0.99, while 

the F1-Score was 0.98. Performance declined slightly 

in the other two scenarios, with an accuracy of 

98.25% at a 30% test ratio and 97.76% at a 40% test 

ratio. 

 
Table 4. Test results of EfficientNet-B0 at different 

Train-Validation-Test ratios 

Train-Test 

Ratio 

Test 

Accuracy 

(%) 

Precision Recall F1-

Score 

20% Testing, 

80% (Train 

+Validation)  

98.65 0.99 0.99 0.98 

30% Testing, 

70% (Train 

+Validation)  

98.25 0.98 0.98 0.98 

40% Testing, 

60% (Train 

+Validation) 

97.76 0.98 0.98 0.98 

 

The third most successful model, ResNet50, 

had the highest test accuracy (98.10%) at 20% test 

rate (Table 5). The result values of ResNet50 for 

Precision, Recall and F1-Score were found to be 0.98 

for all three criteria. In the other two scenarios, with 

30% and 40% test ratios, a slight decline in 

performance was observed.  At the 30% test rate, the 

accuracy value was 97.96%, while at the 40% test rate 

it showed a greater decrease (2.30%) compared to the 

other four models and was obtained as 95.26%.  It 

achieved the highest test accuracy of 97.14% at a 20% 

test ratio. 

 
Table 5. Test results of ResNet50 at different Train-

Validation-Test ratios 

Train-Test 

Ratio 

Test 

Accuracy 

(%) 

Precision Recall F1-

Score 

20% Testing, 

80% (Train 

+Validation)  

98.10 0.98 0.98 0.98 

30% Testing, 

70% (Train 

+Validation)  

97.96 0.98 0.98 0.98 

40% Testing, 

60% (Train 

+Validation) 

95.26 0.95 0.95 0.95 

 

 

The result values of MobileNet-V3-Large for 

Precision, Recall and F1-Score were 0.97 for all three 

criteria (Table 6). In the other two scenarios, i.e. 30% 

and 40% test rates, it was observed that the 

performance decreased slightly. While the accuracy 

value was 96.61% at 30% test rate, the accuracy value 

decreased to 95.14% at 40% test rate. 
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Table 6. Test results of MobileNet-V3-Large at different 

Train-Validation-Test ratios 

Train-Test 

Ratio 

Test 

Accuracy 

(%) 

Precision Recall F1-

Score 

20% Testing, 

80% (Train 

+Validation)  

97.14 0.97 0.97 0.97 

30% Testing, 

70% (Train 

+Validation)  

96.61 0.97 0.97 0.96 

40% Testing, 

60% (Train 

+Validation) 

95.14 0.96 0.96 0.95 

 

 

 
 

Figure 5. Classifier test accuracies at different Test Ratios 

for dataset 

 

Figure 6 shows the Training and Validation 

accuracy graphs of the models over 50 epochs on the 

dataset divided with a 20% test ratio. We observe a 

rapid increase in accuracy during the early epochs for 

all models, indicating efficient learning. Inception-V3 

and GoogLeNet show the best performance with 

minimal gaps between training and validation 

accuracy, suggesting good generalization and 

minimal overfitting, highlighting their stable and 

robust performance. This observation is further 

supported by their highest test performance as shown 

in Table 2 and Table 3. EfficientNet-B0 and 

ResNet50 also show no significant gaps between 

training and validation accuracy, indicating the 

absence of significant overfitting. Conversely, the 

MobileNet-V3-Large model, which is less successful 

compared to the other four models, shows a relatively 

larger gap between training and validation accuracy, 

suggesting potential overfitting. 

The dataset used in our study was previously 

has only been utilized in a single study in the literature 

[16]. In their signature recognition application, they 

employed Transfer Learning for feature extraction, 

followed by classification using various ML methods. 

The researchers primarily focused on the feature 

extraction phase. As seen in Table 3, the highest 

accuracy achieved in their application was 97.7% 

using the SVM method. The other ML methods used 

included KNN, Decision Tree (DT), Linear 

Discriminant Analysis (LDA), and Naïve Bayes. 

They obtained accuracy rates of 92.54% with LDA, 

90.28% with KNN and DT, and 82.50% with Naïve 

Bayes. In this study, instead of ML techniques, we 

fine-tuned five different pre-trained DL models, 

saving time and cost while enhancing performance. 

The results of the EfficientNet-B0, ResNet50, 

Inception-V3, and GoogLeNet models surpassed 

those obtained in the study by Özyurt et al. Only the 

MobileNet-V3-Large model used in this study 

performed slightly less successfully than the SVM 

result from their research but outperformed the other 

models (KNN, DT, LDA, Naïve Bayes) in terms of 

accuracy Compared to our study, the direct use of a 

pre-trained DL model, as well as fine-tuning the 

model, provided both time and cost savings and 

higher accuracy values. The data preprocessing 

methods used in our study are largely similar to those 

in other studies in the literature. However, additional 

methods such as ColorJitter and GaussianBlur were 

used to enrich the data. The use of these methods, in 

addition to commonly used techniques like resizing, 

grayscale, and normalization, contributed to the 

improved performance of the model. Table 3 shows 

that DL methods, especially CNN models, have been 

widely used in signature recognition applications in 

the literature in recent years. Researchers such as 

Calik et al.[9], Jampour et al. [24], Kancharla et al. 

[25], Noor et al. [26], Pokharel et al. [17] and Tarek 

and Atia [13] have achieved high accuracy values 

using CNN models in their studies. With the use of 

DL models, the need for the feature extraction stage 

has decreased and accuracy rates have increased. For 

example, Kancharla et al., integrated CNN and 

Jampour et al. integrated CapsNet and ResNet models 

and achieved very high accuracy values such as 100 

%.
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Figure 6. Training and validation accuracy on the signature dataset for a) Inception-V3, b) GoogleNet, c) EfficientNet-B0 

and d) MobileNet-V3-Large e) ResNet50 

The dataset used in this study has a 

considerably larger data volume compared to other 

studies in the literature. Large datasets improve the 

overall performance of DL models by allowing them 

to learn more features (Lecun et al., 2015). This is a 

crucial factor behind the high accuracy values 

obtained in our study. In the literature, datasets 

created by researchers, which are not widely 

available, typically consist of a relatively smaller 

number of signature images [13], [27], [28]. The 

extensive size of the dataset in our study allowed the 

DL models to learn more features and improve their 

performance [29]. 
 

 

Table 7. Literature summary of offline signature recognition applications using ML and DL

Authors 

(year) 

Database/Number of 

people / Number of 

samples 

Data pre-

processing 

Feature 

extraction 

ML techniques Signature 

application 

Accuracy 

[30] GPDS/2106 signature Boundary extraction Modified 

Direction Feature 

(MDF) 

centroid, surface 

area, length, skew 

RBP Neural 

Network 

(Resilient 

Backpropagation), 

RBF Network 

(Radial Basis 

Function) 

Classification 91.21%, 

88% 

[31] Self-built/100/3000 

signature 

 

Conversion to 

Binary Images, 

Normalization, 

Reshaping 

 

Global Features 

Extraction 

(Signature Height, 

Image Area, Pure 

Width and Pure 

Height) 

ANN, MLP Classification 75.20% 

[9] SUSIG-

Visual/100/2000 

signature 

Resizing, 

Grayscale 

conversion 

- CNN Classification 92% 
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[25] SigComp 2011 

Dutch/10/240 

signature, 

SigComp 2011 

Chinese/10/240 

signature, 

UTsig Farsça/10/240 

signature 

Grayscale 

Conversion, 

Finalization, 

Erosion, Dilation, 

Image Resizing 

 

- CNN Classification 100%, 

85.11%, 

96.29%  

[11] CEDAR/55/2640 

signature 

Image Resizing, 

Otsu thresholding, 

binarizing 

- CapsNet Verification 98.8% 

[12] CEDAR/55/2640 

signature, 

GPDS-

100/400/216,000 

signature,  

MCYT/75/2250 

Image Resizing, 

Otsu thresholding, 

binarizing 

- CapsNet Verification 97.96%, 

94.89%, 

91% 

[26] Self-built/4/10 

signature 

Self-built/10/240 

signature 

Self-built/54/648 

signature 

Self-built/33/165 

signature 

 

 

Grayscale 

Conversion, 

Normalization, 

Inverting,  

Image Resizing 

- CNN Classification 99%, 

89.1%, 

80.8%, 

72.7% 

[15] GPDS 

Senthtetic/4000/2160

00 signatures, MCYT-

75/75/2250 

signatures, 

UTSig/115/7935 

signatures, 

FUM-PHSD/20/600 

signatures 

Binarization (Otsu's 

algorithm),  

Noise removing, 

Gussian filter, 

Normalization 

SigNet, SigNet-F, 

VGG16, VGG19, 

InceptionV3, 

ResNet50 

SVM Classification 99.7%, 

100%, 

98.71%, 

100% 

[17] Self-built/25/2,500 

signature 

Cropping image, 

Scaling dimension, 

GoogLeNet GoogLeNet Classification 95,2% 

[27] Self-built/30/450 

signature 

Decoding, Resizing, 

Padding 

CNN Siamese Network Classification 84% 

[24] CEDAR/55/2640 

signature, 

MCYT/75/2250 

signature 

UTSig/115/8280 

signature 

Centralized padding, 

Image Resizing 

- CapsNet,  

ResNet 

Classification 100%, 

99.66%, 

99.38% 

[14] MCYT-75/75/2250 

signatures, 

BHSig260(Bengali)/1

00/5400 signatures, 

BHSig260(Hindi)/160

/8640 signatures, 

 MCYT‐75/75/2250 

signatures 

Image Resizing GoogLeNet SVM 

 

Classification 96.5%, 

95.7%, 

93% 

[32] 4NSigComp2012/5/3

00, 

SigComp2011/10/576

, 

BHSig260(Bengali)/1

00/5400 signatures, 

BHSig260(Hindi)/160

/8640 signatures, 

Bounding Box 

Method, Resizing, 

Binary 

Thresholding, 

Inversion, 

Normalization 

- Siyam Ağlar Verification 93.23%, 

92.11%, 

89.78%, 

91.3% 

[28] Self-built/20/200 

signature 

Image acquisition, 

Grayscaling, 

Segmentation, Area 

filtering, Object 

bounding areas. 

Local Binary 

Pattern (LBP), 

Uniform LBP, 

LBP 8 rotation, 

Learning Vector 

Quantization 

(LVQ) 

Classification 90% 
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4. Conclusion and Suggestions 

 

The proposed methodology offers a robust and 

efficient approach for signature recognition, with 

potential applications in various fields such as 

banking, law, and security systems. However, since 

the focus of this study is on offline handwritten 

signatures, further research is needed for other types 

of signatures, such as digital signatures. For future 

studies, the application of larger and more diverse 

datasets, as well as the use of next-generation DL 

techniques like transformers and attention 

mechanisms, could allow for the capture of more 

complex and variable signature features.  

Additionally, incorporating dynamic 

information from the signing process (e.g., pressure, 

speed) along with signature images could lead to the 

development of multimodal learning models. This 

would further enhance the reliability of signature 

verification systems. 

 

 

In conclusion, this study demonstrates the 

potential of DL in the field of signature recognition. 

Future research, in parallel with technological 

advancements, will contribute to the emergence of 

more advanced and reliable signature recognition 

systems. 
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