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Abstract. This work proposes a matrix called the minimum covering Seidel Laplacian matrix and a new type of
graph energy called the minimum covering Seidel Laplacian energy ES Lc (G), which depends on the appropriate
minimum covering set of the graph G. Upper and lower bounds on ES Lc (G) are presented.

2020 AMS Classification: 05C50, 15A18

Keywords: Minimum covering Seidel Laplacian energy, eigenvalue, graph.

1. Introduction and Preliminaries

In this work, G is considered as a simple graph that has vertex set V and edge set E of cardinality n, e. The adjacent
vertices vi, v j and degree of a vertex vi are consecutively indicated as vi ∼ v j and di. The ordinary graph energy is
considered in [5] as sum of the absolute values of the graph eigenvalues. Inspired by this concept, many researchers
have worked on other types of graph energy related to minimum covering set [1, 8, 9]. The reader can follow more
background on graph energy and applications from [6, 7, 10, 14] and the references therein.

Let ∅ , C ⊂ V. The set C is called vertex cover, if each edge of G has at least one of member of C as an endpoint.
The smallest vertex cover for a graph, called the minimum vertex cover or minimum covering set, which will be
denoted by C. The minimum covering Seidel matrix S c = S c (G) =

(
si j

)
is defined [8] as

si j=


−1
1
1
0

vi ∼ v j

vi ≁ v j

i = j & vi ∈ C
i = j & vi < C

and the minimum covering Seidel energy ES c (G) is known as

ES c (G) =
n∑

i=1

|θi| ,

where θ1, θ2, ..., θn are the eigenvalues of S c.

We introduce the minimum covering Seidel Laplacian matrix S Lc = S Lc (G) =
(
sc

i j

)
of G as
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sc
i j =


1
−1

n − 2 − 2di

n − 1 − 2di

vi ∼ v j

vi ≁ v j

i = j & vi ∈ C
i = j & vi < C

with eigenvalues ρ1, ρ2, ..., ρn. The reader can conclude that S Lc = D−S c, where D = diag(n−1−2d1, n−1−2d2..., n−
1 − 2dn).

This paper focuses on the bounds for the minimum covering Seidel Laplacian energy of a graph. The presented
bounds are related to many graph parameters. This new type of energy will be examined from a mathematical perspec-
tive. It is possible that this new energy may have applications in chemistry and other fields.

Theorem 1.1 ( [3]). Let M,N ∈ Cn×n be symmetric matrices. Then,

σi (M + N) ≤ σi (M) + σi(N) ,

where σi (.), i = 1, 2, ..., n stands for singular value of a matrix.

2. Main Results

This section is concerned with the bounds on the minimum covering Seidel Laplacian energy, which will be defined
here. Let us give the below theorem related to the trace of S Lc, which is essential for the study we will carry out.

Theorem 2.1. The assertions below hold.

tr(S Lc) =n (n − 1) − 4e − |C| ,

tr
(
(S Lc)2

)
=

n∑
i=1

(n − 1 − 2di − εi)2 + n (n − 1) ,
(2.1)

where εi =

{
1,
0,

vi ∈ C
vi < C .

Proof. We have

tr(S Lc) =
n∑

i=1

ρi =

n∑
i=1

sc
ii

=

n∑
i=1

(n − 1 − 2di − εi)

=n (n − 1) − 2
n∑

i=1

di −

n∑
i=1

εi

=n (n − 1) − 4e − |C| .
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Also, we get

tr
(
(S Lc)2

)
=

n∑
i=1

ρ2
i

=

n∑
i=1

n∑
j=1

(
sc

i js
c
ji

)
=
∑
i, j

(
sc

i j

)2
+

n∑
i=1

(
sc

ii
)2

=2
n∑

i< j

(
sc

i j

)2
+

n∑
i=1

(n − 1 − 2di − εi)2

=2
(
e (1)2 +

(
n (n − 1)

2
− e

)
(−1)2

)
+

n∑
i=1

(n − 1 − 2di − εi)2

=n (n − 1) +
n∑

i=1

(n − 1 − 2di − εi)2 ,

which completes the proof. □

Proposition 2.2. If G is a k-regular graph and θ1, θ2, ..., θn are the eigenvalues of S c, then n− 1− 2k− θ j, j = 1, 2, ..., n
are the eigenvalues of S Lc.

Proof. As S Lc = (n − 1 − 2k) In − S c, the proof is clear. □

The study in [12] implies that the energies of graphs can be considered as special cases of matrix norms defined on

Cn×n. Trace norm of B ∈ Cn×n is defined as ∥B∥∗ =
n∑

i=1
σi (B) , where σi denote singular values. Clearly,

∥∥∥∥∥B −
tr (B)

n
In

∥∥∥∥∥
∗

=

n∑
i=1

∣∣∣∣∣ϑi −
tr (B)

n

∣∣∣∣∣ (2.2)

holds, where ϑ1, ϑ2, ..., ϑn are the eigenvalues of B. By setting A (adjacency matrix) instead of B in (2.2) and tr (A) = 0,
then graph energy coincides with ∥A∥∗. The energy of B ∈ Cn×n is introduced as

E (B) =
n∑

i=1

∣∣∣∣∣ϑi −
tr (B)

n

∣∣∣∣∣ (2.3)

in [2], which is a generalization of the graph energy.
By considering (2.1) and (2.3), we may define the minimum covering Seidel Laplacian energy of G as

ES Lc (G) =
n∑

i=1

∣∣∣∣∣ρi −
n (n − 1) − 4e − |C|

n

∣∣∣∣∣ . (2.4)

v1

v2 v3

v4 v5

v6

Figure 1. G
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Example 2.3. The graph in Figure 1 with possible minimum covering sets C1 = {v2, v4, v6} and C2 = {v1, v4, v6} has
the following corresponding matrices.

S 1
Lc =



1 1 −1 1 −1 −1
1 −2 −1 1 −1 1
−1 −1 3 −1 −1 1
1 1 −1 −4 1 1
−1 −1 −1 1 1 1
−1 1 1 1 1 −4


, S 2

Lc =



0 1 −1 1 −1 −1
1 −1 −1 1 −1 1
−1 −1 3 −1 −1 1
1 1 −1 −4 1 1
−1 −1 −1 1 1 1
−1 1 1 1 1 −4


.

S 1
Lc has eigenvalues ρ1 ≈ −5.5311, ρ2 ≈ −4.6032, ρ3 ≈ −1.2864, ρ4 ≈ −0.2451, ρ5 ≈ 2.5311, ρ6 ≈ 4.1347 and

S 2
Lc has eigenvalues ρ1 ≈ −5.5604, ρ2 = −4.3521, ρ3 ≈ −1.0280, ρ4 ≈ −0.4433, ρ5 ≈ 2.3222, ρ6 ≈ 4.0615.We have

n(n−1)−4e−|C|
n ≈ −0, 8333. Consequently, ES Lc1 (G) ≈ 17, 8414 and ES Lc2 (G) ≈ 16, 8809. Thus, the minimum covering

Seidel Laplacian energy depends on C.

Theorem 1.1 helps us to find the bound below involving ES c (G) and the average degree.

Theorem 2.4.

ES Lc (G) ≤ ES c (G) +
n∑

i=1

∣∣∣∣∣2 (
d − di

)
+

1
n
|C|

∣∣∣∣∣ , (2.5)

where d is the average degree.

Proof. We have S Lc −
(

n(n−1)−4e−|C|
n

)
In =

[
D −

(
n(n−1)−4e−|C|

n

)
In

]
+ (−S c) , as S Lc = D + (−S c). The diagonal matrix[

D −
(

n(n−1)−4e−|C|
n

)
In

]
has eigenvalues 2

(
d − di

)
+ 1

n |C| , where d = 2e
n . By Theorem 1.1, we have

ES Lc (G) =
n∑

i=1

σi

(
S Lc −

(
n (n − 1) − 4e − |C|

n

)
In

)

=

n∑
i=1

σi

(
D −

(
n (n − 1) − 4e − |C|

n

)
In + (−S c)

)

≤

n∑
i=1

σi

(
D −

(
n (n − 1) − 4e − |C|

n

)
In

)
+

n∑
i=1

σi (−S c)

=

n∑
i=1

∣∣∣∣∣2 (
d − di

)
+

1
n
|C|

∣∣∣∣∣ + ES c (G) .

Thus, (2.5) is obtained. □

Let βi := ρi −
n(n−1)−4e−|C|

n in (2.4). Then, we express ES Lc (G) as

ES Lc (G) =
n∑

j=1

∣∣∣β j

∣∣∣ . (2.6)

The following lemma serves to find new bounds on ES Lc (G) .

Lemma 2.5. The assertions below hold.
n∑

j=1

β j = 0,

n∑
j=1

β2
j =

n∑
j=1

(
n − 1 − 2d j − ε j

)2
+ n (n − 1) −

1
n

(n (n − 1) − 4e − |C|)2 : = M. (2.7)

Proof. By Theorem 2.1
n∑

j=1

β j =

n∑
j=1

ρ j −
1
n

n∑
j=1

(n (n − 1) − 4e − |C|)

=n (n − 1) − 4e − |C| − n (n − 1) + 4e + |C| = 0.
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n∑
j=1

β2
j =

n∑
j=1

(
ρ j −

n(n−1)−4e−|C|
n

)2

=

n∑
j=1

ρ2
j −

2
n

(n (n − 1) − 4e − |C|)
n∑

j=1

ρ j +
1
n2

n∑
j=1

(n (n − 1) − 4e − |C|)2

=

n∑
j=1

(
n − 1 − 2d j − ε j

)2
+ n (n − 1) −

2
n

(n (n − 1) − 4e − |C|)2

+
1
n2

n∑
j=1

[
(n (n − 1) − 4e)2 − 2 (n (n − 1) − 4e) |C| + |C|2

]
=

n∑
j=1

(
n − 1 − 2d j − ε j

)2
+ n (n − 1) −

2
n

(n (n − 1) − 4e − |C|)2

+
1
n

(n (n − 1) − 4e − |C|)2

=

n∑
j=1

(
n − 1 − 2d j − ε j

)2
+ n (n − 1) −

1
n

(n (n − 1) − 4e − |C|)2 .

□

In the rest of the work, some bounds will be established on ES Lc (G) with the help of Lemma 2.5 and mathematical
inequalities.

Theorem 2.6. √√√√
M + n(n − 1)

∣∣∣∣∣∣∣
n∏

i=1

βi

∣∣∣∣∣∣∣
2
n

≤ ES Lc (G) ≤
√

nM.

Proof. Using Cauchy-Schwarz inequality leads to n∑
j=1

∣∣∣β j

∣∣∣2

≤

n∑
j=1

1
n∑

j=1

β2
j .

By (2.6) and (2.7), we obtain
ES Lc (G) ≤

√
nM.

From AM-GM inequality, we get

1
n(n − 1)

∑
i, j

|βi|
∣∣∣β j

∣∣∣ ≥ ∏
i, j

|βi|
∣∣∣β j

∣∣∣
1

n(n−1)

=

 n∏
i=1

|βi|
2(n−1)


1

n(n−1)

=

∣∣∣∣∣∣∣
n∏

i=1

βi

∣∣∣∣∣∣∣
2
n

.

Thus,
∑
i, j
|βi|

∣∣∣β j

∣∣∣ ≥ n(n − 1)

∣∣∣∣∣∣ n∏
i=1
βi

∣∣∣∣∣∣
2
n

. Using this fact with (2.7) implies

(ES Lc (G))2 =

n∑
i=1

|βi|
2 +

∑
i, j

|βi|
∣∣∣β j

∣∣∣
≥M + n(n − 1)

∣∣∣∣∣∣∣
n∏

i=1

βi

∣∣∣∣∣∣∣
2
n

.
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□

Theorem 2.7. Let G be a graph with |β1| ≥ |β2| ≥ ... ≥ |βn| > 0. Then,

ES Lc (G) ≥
|β1| + |βn|

2
√

nM |β1| |βn|
.

Proof. Let a j, b j ∈ R
+ (1 ≤ j ≤ n). Then,

n∑
j=1

a2
j

n∑
j=1

b2
j ≤

1
4

√U1U2

u1u2
+

√
u1u2

U1U2

2  n∑
j=1

a jb j

2

, (2.8)

where U1 = max
1≤ j≤n

{
a j

}
, U2 = max

1≤ j≤n

{
b j

}
; u1 = min

1≤ j≤n

{
a j

}
, u2 = min

1≤ j≤n

{
b j

}
(see [11], p.60). Setting a j = 1 and b j =

∣∣∣β j

∣∣∣ in

(2.8)
n∑

j=1

1
n∑

j=1

∣∣∣β j

∣∣∣2 ≤ 1
4


√
|β1|

|βn|
+

√
|βn|

|β1|


2  n∑

j=1

∣∣∣β j

∣∣∣2

holds. Then, by (2.7)

nM ≤
1
4

(|β1| + |βn|)2

|β1| |βn|
(ES Lc (G))2 ,

i.e.,

ES Lc (G) ≥
1

2
√

nM

 |β1| + |βn|√
|β1| |βn|

 .
□

Theorem 2.8. Let G be a graph with |β1| ≥ |β2| ≥ ... ≥ |βn| > 0. Then,

ES Lc (G) ≥

√
nM −

n2

4
(|β1| − |βn|)2.

Proof. If a j, b j (1 ≤ j ≤ n) are nonnegative real numbers, then

n∑
j=1

a2
j

n∑
j=1

b2
j −

 n∑
j=1

a jb j

2

≤
n2

4
(U1U2 − u1u2)2 , (2.9)

where U j, u j defined as in (2.8) (see [13]). By setting a j =
∣∣∣β j

∣∣∣, b j = 1 in (2.9) leads to

n
n∑

j=1

∣∣∣β j

∣∣∣2 −  n∑
j=1

∣∣∣β j

∣∣∣2

≤
n2

4
(|β1| − |βn|)2 ,

i.e.,

nM − (ES Lc (G))2 ≤
n2

4
(|β1| − |βn|)2 .

Now, the proof is clear. □

Theorem 2.9.

ES Lc (G) ≥ |β1| + 2 (n − 1)


n∏

j=1

∣∣∣β j

∣∣∣ 2n−1
2n(n−1)

|β1|
1

2(n−1)

−
1
2

n∏
j=1

∣∣∣β j

∣∣∣ 1
n

 .
Proof. Let b1, b2, ..., bn ≥ 0 and k1, k2, ..., kn ≥ 0 with

n∑
j=1

k j = 1. Then,

n∑
j=1

b jk j −

n∏
j=1

bk j

j ≥ nK

1
n

n∑
j=1

b j −

n∏
j=1

b
1
n
j

 , (2.10)
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where K = min {k1, k2, ..., kn} [4]. By setting b j =
∣∣∣β j

∣∣∣, 1 ≤ j ≤ n, k1 =
1

2n , k j =
2n−1

2n(n−1) for 2 ≤ j ≤ n and K = 1
2n in

(2.10) implies
|β1|

2n
+

2n − 1
2n(n − 1)

n∑
j=2

∣∣∣β j

∣∣∣ − |β1|
1
2n

n∏
j=2

∣∣∣β j

∣∣∣ 2n−1
2n(n−1) ≥

1
2

1
n

n∑
j=1

∣∣∣β j

∣∣∣ − n∏
j=1

∣∣∣β j

∣∣∣ 1
n


=

1
2n

ES Lc (G) −
1
2

n∏
j=1

∣∣∣β j

∣∣∣ 1
n .

(2.11)

We also have |β1|
1

2n
n∏

j=2

∣∣∣β j

∣∣∣ 2n−1
2n(n−1) = |β1|

− 1
2(n−1)

n∏
j=1

∣∣∣β j

∣∣∣ 2n−1
2n(n−1) =

n∏
j=1
|β j|

2n−1
2n(n−1)

|β1 |
1

2(n−1)
and

n∑
j=2

∣∣∣β j

∣∣∣ = ES Lc (G) − |β1| . Using these facts in

(2.11) yields (
1

2n
−

2n − 1
2n(n − 1)

)
|β1| +

(
2n − 1

2n(n − 1)
−

1
2n

)
ES Lc (G) ≥

n∏
j=1

∣∣∣β j

∣∣∣ 2n−1
2n(n−1)

|β1|
1

2(n−1)

−
1
2

n∏
j=1

∣∣∣β j

∣∣∣ 1
n ,

i.e.,

−
1

2(n − 1)
|β1| +

1
2(n − 1)

ES Lc (G) ≥

n∏
j=1

∣∣∣β j

∣∣∣ 2n−1
2n(n−1)

|β1|
1

2(n−1)

−
1
2

n∏
j=1

∣∣∣β j

∣∣∣ 1
n .

Then, we get

ES Lc (G) ≥ |β1| + 2 (n − 1)


n∏

j=1

∣∣∣β j

∣∣∣ 2n−1
2n(n−1)

|β1|
1

2(n−1)

−
1
2

n∏
j=1

∣∣∣β j

∣∣∣ 1
n

 .
Thus, the statement holds. □

Theorem 2.10.
ES Lc (G) ≤

M
2
+
√

Mn.

Proof. By Minkowski inequality, we have n∑
j=1

(
1 +

∣∣∣β j

∣∣∣)2


1
2

≤

 n∑
j=1

∣∣∣β j

∣∣∣2
1
2

+

 n∑
j=1

1


1
2

. (2.12)

Using Bernoulli inequality in (2.12) and applying (2.7) states that

(n + 2ES Lc (G))
1
2 ≤
√

M +
√

n,

which implies

ES Lc (G) ≤
M
2
+
√

Mn.

□

Conclusions

In this work, we introduce the minimum covering Seidel Laplacian energy of a graph ES Lc (G), which depends
on both the underlying graph G and its particular minimum covering set C. We study the minimum covering Seidel
Laplacian energy from the mathematical aspects and establish some upper and lower bounds on ES Lc (G) using mathe-
matical inequalities. The obtained bounds involve |C|, vertex degree, average degree, and eigenvalues of the minimum
covering Seidel Laplacian matrix.
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[7] Havare, Ö.Ç., The inverse sum indeg index (ISI) and ISI energy of hyaluronic acid-paclitaxel molecules used in anticancer drugs, Open Journal

of Discrete Applied Mathematics, 4(2021), 72–81.
[8] Kanna, R., Jagadeesh, R., Farahani, M.R., Minimum covering Seidel energy of a graph, Journal of the Indonesian Mathematical Society,

22(2016), 71–82.
[9] Kanna, M.R., Dharmendra, B.N., Sridhara, G., Laplacian minimum covering energy of a graph, Advances and Applications in Discrete

Mathematics, 13(2014), 85–108.
[10] Li, X., Shi, Y., Gutman, I., Graph Energy, Springer, New York, 2012.
[11] Mitrinovic, D.S., Vasic, P.M., Analytic Inequalities, Springer, Berlin, 1970.
[12] Nikiforov, V., The energy of graphs and matrices, J. Math. Anal. Appl., 326(2007), 1472–1475.
[13] Ozeki, N., On the estimation of inequalities by maximum and minimum values (in Japanese), Journal of College Arts and Science, Chiba

University, 5(1968), 199–203.
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