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Abstract — This research introduces a novel approach to cancer cell growth modeling by
integrating principles from the plant-soil analogy and control engineering. The proposed model
offers a flexible alternative to traditional dynamic mathematical models, enabling simulations of
tumor growth under therapeutic conditions. The simulator, operational on an annual basis,
considers diverse patient characteristics and treatment approaches. Nonlinear simulation models
provide a comprehensive comparison, showcasing trajectory and precision improvements relative

mathematical models,
Tumor growth

to conventional time-dependent dynamic mathematical models. The study further proposes an
elastic cancer modeling mechanism, exploring optimal drug dosage concentrations and patient

simulations, resistance to cancer drugs. A dynamic model is introduced to identify optimal dosages and
Therapeutic frequencies for cancer drugs, demonstrating enhanced operational flexibility through computer
conditions, simulations. The proposed elastic modeling mechanism is validated through existing mathematical
Nonlinear simulation  growth models, revealing its practical value within ethical constraints. This research offers a
models promising path for developing effective therapeutic strategies in cancer tumor growth.

1. Introduction

In the realm of biomedical research, classical cell lines and animal models have played a pivotal role,
significantly advancing our understanding of cellular signaling pathways, drug target identification, and the
design of therapeutics for diseases like cancer and infectious diseases during the late 20th and early 21st
centuries (Bahr and Wolf, 2012; Brodaczewska et al., 2016; Gurumurthy and Kent Lloyd, 2019; Lee et al., 2018).
However, challenges arise in translating findings from model systems to humans, with recent studies
emphasizing the importance of human-specific biological processes (Fischer, 2008). In response to these
challenges, human in vitro 3D cell culture approaches, particularly organoids, have attracted attention as
promising tools to overcome limitations associated with traditional models (Bernard et al., 2012; LaBarbera et al.,
2012).

While prior attempts, such as 2D cell cultures, bio-printing, and microfluidic devices, have shown potential in
drug screening and disease research, organoids stand out due to their self-organizing 3D structure that closely
resembles human organs (Hrynevich et al., 2023; Ma et al., 2018; Mi et al., 2018). Generated from pluripotent or
adult stem cells, organoids replicate human development or regeneration, providing valuable insights into these
processes, as well as serving as effective models for studying diseases (Hrynevich et al., 2023; Verfaillie, 2002;
Young and Black, 2004).

Concurrently, understanding and predicting the growth patterns of solid tumors remain paramount in cancer
research (Gerlee, 2013). Despite numerous theories, achieving consensus on these growth patterns has proven
elusive. Accurate tumor growth models are essential for evaluating screening methods, optimizing radiation
treatment protocols, and making informed decisions about patient treatment (Friberg and Mattson, 1997;
Michaelson et al., 1999; Sachs et al., 2001).
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Observing the growth of solid tumors effectively, especially prior to therapeutic interventions, requires volumes
exceeding 1mm®, representing a critical step in carcinogenesis (Sachs et al., 2001). The expansion to neoplasm
size, driven by the upregulation of cell division in malignant cells, is a fundamental observation in cancer studies
(Hanahan and Weinberg, 2011).

The multicellular tumor spheroids (MTS) culture technique emerges as a valuable experimental paradigm,
providing insights into the prevascular phase of tumor growth without the confounding effects of tumor-host
interactions (Sutherland, 1988). This technique facilitates the exploration of three-dimensional cell-cell
interactions that regulate tumor growth. Spheroids, by providing oxygen and nutrients through their surface,
result in the formation of necrotic cells at the tumor's core (Sutherland, 1988).

The Machine Conception of the Cell (MCC), adopting an analogical approach for cell discussions based on
various analogies between machines and organisms, has been instrumental in understanding cellular dynamics
(Nicholson, 2019). Mathematical cancer modeling, spanning over five decades, has explored continuous, discrete,
or hybrid combinations based on a physical representation of key biological components (Al-Tuwairgi et al.,
2020; Altrock et al., 2015; Cunningham et al., 2018; Dhoruri et al., 2020; Hartung et al., 2014; He et al., 2020;
Jarrett et al., 2018; Lo et al., 2013; Marusié, 1996; Piantadosi et al., 1983; Rivaz et al., 2019; Vallverdu et al.,
2018; West and Newton, 2019).

The highly nonlinear and multimodal nature of cancer tumor growth and treatment poses significant challenges,
particularly in therapeutic conditions (Friberg and Mattson, 1997). Identifying optimal or sub-optimal solutions
in the same system becomes complex due to multiple constraints and competing objectives (Guocheng et al.,
2011; Yang et al., 2021)

Despite extensive efforts, accurately simulating tumor progression remains a formidable challenge (Buosi et al.,
2024; Das et al., 2024; Hussein et al., 2024; Zhang et al., 2024). Various growth functions have been proposed in
ecological and epidemiological research (Sethanan et al., 2023), yet a comprehensive model for cancer cell
growth through computer simulations is still elusive (Hanahan and Weinberg, 2011).

This study endeavors to address this complexity by considering personal and therapeutic variables, employing an
electrical simulation across a broad spectrum. The proposed three-layered electrical model, analogous to cancer
cell growth in the MTS culture technique, symbolizes cancer cell growth as an electrical circuit comprising
resistors, capacitors, and inductors. Inspired by the soil-plant model, the electrical analogy provides an effective
means to convert non-electrical systems into electrical systems for accurate and efficient solutions
(Anayochukwu, 2013; Hunt et al., 1991; Jakubaszek and Stadnik, 2019; Molz and Remson, 1970; Ruggiero et al.,
1999; Stirzaker and Passioura, 1996; van Bavel, 1996)

This article is structured as follows: Section 2 presents the problem formulation, materials and methods,
including discussions on mathematical derivations of cancer cell growth models based on electrical analogies,
electrical model structure, and similarities with the plant-soil method, and advancements in cancer cell growth.
Section 3 graphically represents simulation results and discusses simulator performance. Section 4 delves into
the model's results and potential advantages in depth, and Section 5 provides concluding observations and
recommendations for future research.

This comprehensive exploration integrates diverse aspects of biomedical research, ranging from advanced cell
culture techniques and tumor growth dynamics to mathematical modeling and electrical analogies, aiming to
contribute to our understanding of cancer and pave the way for improved treatment strategies.

2. Problem Formulation and Methodology

The understanding of mathematical concepts governing complex systems, despite their pivotal role in
comprehending natural phenomena, remains incompletely deciphered. Drawing inspiration from Newton's
principles, the application of mathematical models encompassing physical, chemical, and biological aspects is
deemed essential for a comprehensive understanding of any system (Ducheyne, 2005). Real-world challenges,
particularly in biological processes, exhibit intricate complexity. Diverse mathematical models, varying in
complexity from basic to highly elaborate, have been formulated to accurately represent these processes, guided
by the dynamics of the system and specific modeling requirements (Rivaz et al., 2019).
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Initiating the mathematical modeling process involves defining functional specifications, including the purpose,
accuracy, boundaries, and time scaling, essential for constructing an effective model. While achieving an exact
replication of "actual" behavior through mathematical models is often unfeasible, establishing modeling
objectives aids in understanding the requirements and determining the necessary degree of precision (Piantadosi
et al., 1983; Stare et al., 2006; West and Newton, 2019) Subsequently, computer simulations are employed to
observe the behavior of these models.

2.1. Classical mathematical models

In the realm of tumor growth analysis, classical mathematical models focus on changes in tumor volume over
time, employing first-order ordinary differential equations based on initial assumptions. This section presents
commonly referenced tumor growth models found in the literature.

2.1.1. Exponential and Malthusian model

One such model is the exponential growth model shown in Figure 1, which approximates tumor growth for small
time values. Equations incorporating intrinsic growth rates, such as the widely used Malthusian model, represent
the simplest form of a differential equation describing tumor growth.

d
=1 1)
V(t) = Vye™ @)

The solution for V(t) = Vye™ , where Vj is the volume at time 0.

The Malthusian model, initially introduced by Collins (Collins et al., 1956) and extensively applied in various
systems, was subsequently employed in the context of cancer cell growth. The utilization of tumor doubling time
(DT = (In 2)/r) served as a quantification of growth rates in their study.
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Figure 1. Exponential growth model

The exponential growth law has been found applicable in modeling leukemia, and an investigation involving
over 300 untreated lung cancers similarly demonstrated the suitability of exponential growth modeling (Friberg
and Mattson, 1997). Particularly advantageous for simulating early tumor growth, this model, however, lacks
consideration for spatial limitations and constraints arising from dependencies on nutrients and oxygen
(Talkington and Durrett, 2015).

2.1.2. The power law model
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Proposed approximately five decades ago (Dethlefsen et al., 1968), the power law differential equation asserts
that the rate of increase is proportionate to the volume raised to the power of a, shown in Figure 2.

d (24
=) 3)

When a is equal to 1, this model transforms into an equivalent of the exponential growth model. However, for
cases where a is less than 1, the equation takes on a different form.

VO = Vo' + (1 — )rp) /- (4)

The power law with linear death formed as follows;

av vV© v\1—¢
T Vv (t)* — raa = v <1 — (E) ) (5)

Comprehending the assumptions and ramifications of these models is essential, as they frequently serve as the
underpinning for more intricate tumor growth models (Forys and Marciniak-Czochra, 2003).

Power Law Growth
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Figure 2. Power law growth model
2.1.3. The Gompertz model

Benjamin Gompertz's research primarily centered on mortality curves in humans, while Wright recognized the
suitability of the Gompertz model for biological growth (Gompertz B., 1825) demonstrated in Figure 3. The
Gompertz model, as proposed by Gompertz, gained prominence in cancer research, with Laird demonstrating its
effectiveness. Wright expressed the alteration in tumor volume through the formulation of a differential equation.

[(11_‘: = a(t)V(t) where i—‘: = —ra(t) ©)

This equation is solved as follows:

V(t) = Vyexp (% (1- e”)) @)

To derive the logistic growth, the first differential equation is

dv

7 = "V(®log(K/V (1) ®)

where K=V =lim,_,,, (V(t))

The solution of this equation is:
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V(t) = Voexp(A(1 — e™™)) 9)
where A=log (Ve /Vy)
A =1n(10'?) = 27.631 (10)
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Figure 3. Gompertz growth model

2.1.4. The generalized logistic

The generalization of the logistic model is achieved through interpolating between the Gompertz and logistic
models.

av _

+ =V A -VO/K)F (11)

The solution to this equation is:
V(t) = K(1+ Qexp(—prt))~"/F (12)
where Q = [(K/Vo)ﬁ — 1] and K is the carrying capacity, r is the growth rate and V; is the initial volume.
When g = 1, the generalized logistic model simplifies to the standard logistic model. The equation becomes:
V(t) = K(1+ Qexp(—rt))! (13)
with Q reducing to:
Q = [(K/Vp) — 1] (14)

This paper illustrates diverse graphical representations of models sourced from the literature depicting the
progression of tumor mass or volume over time. A spectrum of growth prediction models is accessible, spanning
from the elementary single-parameter Exponential model to sophisticated ones such as the Gompertz and
Generalized Logistics models (Forys and Marciniak-Czochra, 2003). Additionally, the Fractional Logistic
Equation presents another model alternative (Varalta et al., 2014).

61



NASE / Natural Sciences and Engineering Bulletin, 2024, 1(2)

Generalized Logistic Growth
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Figure 4. Logistic growth model

Researchers and practitioners often find the generalized logistic differential equation valuable due to its ability to
capture more complex growth patterns compared to simpler models. Its application extends to fields such as
ecology, where it is used to model population dynamics, and epidemiology, where it may describe the spread of
diseases within a population. The generalized logistic differential equation serves as a powerful tool for
modeling diverse growth processes, providing a balance between simplicity and flexibility as shown in Figure 4.
Its parameters allow for fine-tuning the model to match specific scenarios, making it a valuable asset in the study
of dynamic systems across various disciplines.

2.1.5. Bertalanffy growth model

The Bertalanffy Growth Model, proposed by Ludwig von Bertalanffy, is a mathematical representation designed
to capture the growth patterns of organisms over time. Introduced as an alternative to simplistic linear or
exponential growth models, Bertalanffy's model accounts for the biological principle that growth rates tend to
decrease as an organism approaches maturity. This model has found applications in fields such as biology,
ecology, fisheries science, and even in understanding the growth trajectories of individual organisms illustrated
in Figure 5.

The Bertalanffy Growth Model is typically expressed as:
W(t) = W, (1 — e kt-t)) (15)

This model is particularly useful when studying the growth of fish, where it has been extensively applied to
estimate growth parameters and predict the size distribution of populations. The asymptotic maximum length Lo
provides insight into the potential size an organism could reach under optimal conditions, while the growth rate
constant k determines how quickly an organism approaches this maximum length.

One notable feature of the Bertalanffy Growth Model is its ability to accommodate non-linear growth patterns,
which is often observed in organisms that experience changing environmental conditions or resource availability.
This makes it a valuable tool for researchers seeking a more realistic representation of growth dynamics in
natural populations.

The Bertalanffy Growth Model has proven to be a versatile and widely applicable tool in the study of biological
growth. Its consideration of the asymptotic limit and the decelerating growth rate aligns more closely with the
biological realities of many organisms, making it a valuable asset in various scientific disciplines. Researchers
continue to refine and adapt this model to address specific challenges and gain deeper insights into the complex
dynamics of growth in living organisms.
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The von Bertalanffy Growth Model, adapted for fisheries, stands as a cornerstone in fisheries biology, offering a
robust framework to comprehend the growth dynamics of fish populations. This model has been tailored to the
specific characteristics of fish growth, rendering it a vital tool in fisheries science. Its application extends to the
estimation of critical parameters such as asymptotic weight, growth rate, and age at which growth commences

Bertalanffy Growth
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Figure 5. The von Bertalanffy Growth Model

This model plays a pivotal role in elucidating the growth patterns of fish populations over time. Through the
estimation of its parameters from observed weight-at-age data, scientists gain valuable insights for fisheries
management. The von Bertalanffy Growth Model enables the determination of sustainable harvest levels,
evaluation of population structure, and prediction of future size distributions.

2.2. Reaction-diffusion models

Reaction-diffusion models represent a powerful class of mathematical frameworks widely employed to elucidate
the spatiotemporal dynamics of various biological phenomena, including cancer tumor growth. These models
integrate the effects of local interactions (reaction) and movement across space (diffusion) to capture the
complex patterns emerging in biological systems. In this academic text, we delve into the fundamentals and
applications of reaction-diffusion models, with a specific focus on their relevance to the understanding of cancer
biology.

Reaction-diffusion models are partial differential equations (PDEs) that describe how the concentrations of
interacting substances change over both time and space. In the context of cancer biology, these models prove
invaluable in simulating the spread of tumor cells and capturing the emergent patterns arising from interactions
with the microenvironment.

The general form of a one-dimensional reaction-diffusion equation is given by

ou 9%u
M_plt
at dx2

+fw (16)

Here, u(x,t) represents the concentration of a substance (e.g., tumor cells), D is the diffusion coefficient,
and f(u) describes the local reaction, often representing processes such as cell proliferation, death, or migration.

2.2.1. Fisher-KPP equation

The Fisher-KPP equation is a classic reaction-diffusion model frequently applied to describe the invasion of a
new population into a spatial domain. In the context of tumor biology, this equation is particularly relevant for
capturing the spread of cancer cells within tissues. The Fisher-KPP equation is given by:

ou 9%u u
E=D7+ru(1—;) (7)

Here, r represents the net growth rate of the tumor cells, and K is the carrying capacity.
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Reaction-diffusion models in cancer research offer a valuable tool for investigating the interplay between local
cell behaviors and spatial constraints. These models aid in predicting tumor invasion patterns, understanding the
impact of different microenvironmental factors, and evaluating potential therapeutic strategies.

Reaction-diffusion models stand as a valuable and versatile tool in the realm of cancer biology. Their ability to
bridge the gap between molecular-level interactions and macroscopic patterns provides a nuanced understanding
of tumor growth dynamics, paving the way for more informed strategies in cancer treatment and intervention. As
research continues to advance, the refinement and application of reaction-diffusion models will undoubtedly
contribute to unraveling the intricacies of cancer biology.

3. Soil-Plant model analogy for cancer cell growth electrical circuit model

The application of mathematical modeling, drawing inspiration from the electrical analogy of water flow through
the soil-plant system, can help to gain profound insights into the complex dynamics of cancer tumor growth. By
adapting the principles of fluid dynamics and electrical conductivity to the tumor microenvironment, we aim to
provide a quantitative framework for understanding nutrient transport, resistance factors, and their impact on
cancer cell proliferation.

The concept of plant water uptake was devised to enrich our comprehension of the water transport process from
the soil to the leaf. This concept delineates a physiological cycle that unfolds under typical conditions. Various
factors, including plant configuration, soil water potential, root circulation, and climatic variables, collectively
contribute to the non-steady transient flow within this framework (Zhuang et al., 2014).

In the soil-plant system, the electrical analogy represents water flow through the soil as an electrical concept.
Adapting this analogy to cancer biology, we equate nutrient transport within the tumor microenvironment to
fluid dynamics, where the movement of nutrients is analogous to the flow of water. A comprehensive
mechanistic delineation of transient water uptake is yet to be established. Consequently, a non-steady state
biophysical model, rooted in the Electrical Circuit Analogous to Water Flow RLC circuit, has been formulated,
as illustrated in Figure 6.

transpiration LPI (t) l’P] (t)

/ v‘vll M R \‘
L

| Y, (t) W (t)
(@) (b) ©

Figure 6. An electrical analogy of water flow through the soil-plant system: (a) soil-plant system, (b) traditional
steady state model, and (c) non-steady state model.
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Measuring the physiological properties of plants or trees, such as cell wall extensibility, hydraulic resistance, and
hydraulic capacitance, poses considerable challenges. Models derived from the electrical analogy of the soil-
plant hydraulic method incorporate variable capacitors, inductors, and resistors (Chapman et al., 2012; De Pauw
et al., 2008; Hunt et al., 1991). Figure 6 illustrates the water potential difference (¥), depicting a positive
correlation between soil and leaf water uptake. The observed hysteresis in plant water uptake indicates
retardation. A mechanistic approach allows the analysis of changes in uptake rates in response to water stress. In
the electrical analogy, resistances influence the flow of current. Similarly, in cancer biology, resistances to
nutrient diffusion play a crucial role. These resistances can be mathematically represented as barriers impacting
the movement of nutrients within the tumor microenvironment.

Similar to the soil-plant model, the Multicellular Tumor Spheroid (MTS) system, depicted in Figure 7, comprises
three layers: the necrotic core (1), quiescent (non-proliferating) cells (11), and proliferating cells (111). The growth
curves of tumor spheroids can be accurately determined through dense measurements and high precision (Freyei
and Sutherland, 1986). In this study, these three layers are regarded as a combination of three distinct sets of
electrical components, namely, A variable AC source, an RLC circuit transitioning to a purely resistive load, and
another RLC circuit composed of resistance, capacitance, and inductance.

Employing mathematical models that incorporate nutrient transport, resistance factors, and the cellular response
to nutrient availability allows us to simulate cancer cell proliferation dynamics. The simulation provides a
quantitative representation of how nutrient availability influences tumor growth and potentially guides
therapeutic interventions.

Analyzing the cases in these layers provides insights into the growth rate of cancer cells and assists in optimizing
chemotherapy doses.

Figure 7. MTS system presentation as a simple electrical circuit (Growth Control in Tumor Dynamics: Bridging
Electrical Control Systems and Cancer Intervention Strategies)

This study delves into the utilization of mathematical models to comprehend the mechanisms of infinite growth
in tumor development and assess intervention strategies. By incorporating mathematical models that account for
nutrient transport, resistance factors, and cellular responses to nutrient availability, we can simulate the dynamics
of cancer cell proliferation. This simulation provides a quantitative representation of how nutrient availability
influences tumor growth, offering valuable insights into optimizing chemotherapy doses and guiding therapeutic
interventions.

In the context of electrical definitions, the treatment of tumor growth aligns with the concept of a closed-loop
control system. After delineating the natural conditions of tumor growth within an electrical circuit, configuring
it with a control mechanism becomes imperative. This approach allows us to draw analogies between the control
of tumor growth and the principles of closed-loop control systems, shedding light on potential strategies for
effective intervention and treatment modalities in the pathological condition of uncontrolled proliferation.

The incorporation of this concept not only enhances our understanding of tumor dynamics but also underscores
the importance of adopting control strategies to manage and mitigate unregulated proliferation effectively. The
analogy drawn between tumor growth and closed-loop control systems provides a conceptual framework that
may inform innovative approaches to cancer intervention.
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3.1. Model formulation

The following is a typical description of a mass flow of water in the soil-plant concept:

(0 = (5) 20 (18)
Jo() = T (19)

In our examination of the steady-state van den Hornert model, we incorporated the impact of hysteresis by
introducing hydraulic capacitance, a concept consistent with prior research. Analogously, in the context of
patients undergoing chemotherapy, capacitance is conceptualized as the body's tolerance to the treatment.

YO-W©) . d¥i©
Rs-1(t) h ™ g

]v(t) =

(20)

In the tree-soil concept, the fluctuations in instantaneous water flow rates across various segments of the tree
induce an "inductance" effect. This effect has the potential to alter the average driving force of water flow within
the plant, a phenomenon analogous to proliferation in the dynamics of cancer cells. As the root water potential
declines more rapidly than the soil water potential, the presence of a biological contact potential, functioning
akin to a "fuse" in an electrical circuit (Figure 8), is considered susceptible to environmental stress within the
tree-soil concept (16) and (17) ( Edwards et al., 1986; Ghimire et al., 2016; Jackson et al., 2000; Tuzet et al.,
2003; Zweifel et al., 2007).

Electrical Circuit Simulation with *Fuse* Effect

— Voltage across inductor

ai Vana

Current through resistor
== Fuse bipwn

Time

Figure 8. Modeling and Simulation of an Electrical Circuit Analogous to Water Flow in Tree-Soil Systems:
Incorporating an Inductance Effect and Environmental Stress Response

_Ws®-wi() Ly . d¥i®) A
]V(t) - Rg-1(t) Rg_jdt Ch dt Rg—] (21)
__dv®
AP, = ——— (22)
The term RA serves a crucial role in the water flow dynamics between the soil and leaf. Here, A represents a
s—1

constant related to specific hydraulic properties of the system, reflecting an effective area for water movement.
Thee biological contact potential (A in kg/m/s?) acts similarly to a "fuse" in an electrical circuit. This potential is
particularly sensitive to environmental stresses, especially when root water potential decreases more rapidly than
soil water potential.
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To accurately represent these dynamics, we have integrated the principles of "inductance" and "fuse" into (19),
resulting in the formulation of a non-steady state model based on the RCL circuit framework. This model
facilitates a comprehensive understanding of the complex interactions between water potentials and flow rates,
thereby enhancing our insight into the processes governing water movement within the plant system.

The resistance term R,_; denotes the hydraulic resistance to water flow from the soil to the leaf, which can vary
based on factors such as soil moisture content and plant physiology. The expression is similar to a fuse,
regulating the flow dynamics by limiting the maximum flow rate that can occur under certain conditions.

Here, L represents the inductance arising from the diversity of leaf water potentials at various plant heights. The
term dJv(t) acts in opposition to the change in flow rate, signifying the resistance to alterations in flow rate.

4L

4L
T 2mVic (24)
PIIOLNO
Ws(t) === (25)

2. Ari®

Cancer cell growth models exhibit notable similarities with the tree-soil paradigm, as both can be elucidated
using fundamental principles related to electrically conductive materials and growth rates. The mathematical
similarity and electrical analogies prevalent in soil-plant modeling literature are applied in this study to
mechanistically represent cancer cell proliferation.

The tumor growth mechanism is depicted through the utilization of an RLC circuit. An elevation in the value of
dh, attributed to cancer cell activity, indicates a rise in potential energy within the necrotic core. The duration
required for treating cancer over a specified period is perceived as an inductive load on the system, depicted in a
sample in Figure 9.

A pivotal aspect of the modeling process involves defining an appropriate model structure. This structure
captures tumor dynamics by incorporating considerations of initial tumor volume, chemotherapy doses and
frequencies, and tumor proliferation.

R
Yin(t) *—b——’\v/“\'ﬂv—-[—b—*- Wout(t)
L %lv' t

| 2

y.

Figure 9. A simple electrical circuit for tumor proliferation modeling

The electrical analogy derived from the soil-tree concept is seamlessly applied to represent tumor growth in (21),
and the simulator is depicted in Figure 10. (Zhuang et al., 2014)

Win()=¥out(t) Ld]y(t) d¥in (6) A
= - - - 2
]v (t) Rout—in() Rout-indt dt Rout-in ( 6)
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Figure 10. A tumor growth model computer simulator based on electrical analogy

A living cell can be analogized to a piece of machinery, although its intricacy sets it apart from artificially
manufactured machines. Despite recent studies utilizing advanced experimental techniques capable of real-time
tracking of individual molecules within cells, challenging the conventional engineering perspective of the cell,
the machine conception of the cell continues to derive much of its success from the traditional methods
employed in molecular biology (Nicholson, 2019).

The dynamics of the tumor system are inherently nonlinear, playing a pivotal role in determining the optimal
chemotherapy dose and frequency crucial for effective treatment. Advanced optimal control algorithms have
been introduced to investigate tumor treatment under random perturbation conditions. This involves formulating
a model-based optimal control problem and integrating it with updated parameters to devise an optimal treatment
strategy.

Frequent comparisons of simulation results with actual values allow for the assessment of accuracy, facilitating
adjustments to the model to approach the optimal solution. Both system optimization and parameter estimation
rely on this iterative approach. Despite variations in the model's reality, the iterative method effectively
approximates the optimal solution to the initial optimal control problem.

4. Simulations and Test Results

An indispensable tool for initial design studies, a graphical simulator facilitates the enhancement of treatment
strategies by illustrating treatment methodologies in relation to physical performance. At each stage, the
evaluation of process block performance is contingent upon patient-specific characteristics. The capability to
observe tumor growth simulations across diverse pathologies contributes to the formulation of innovative
treatment approaches. The graphical simulator proves instrumental in crafting the most effective and optimized
scenarios, guiding preliminary design research.

Moreover, the simulator serves the purposes of forecasting and long-term planning. During the Research and
Development stages, therapeutic interventions are simulated through a user-friendly interface. The outcomes of a
series of simulations can be extrapolated to similar patients, providing insights into tumor and patient
characteristics. Graphs derived from these simulations play a pivotal role in assessing patient performance under
therapeutic conditions.

4.1. Benchmark of existing mathematical models with an electrical analogy

The simulator undergoes monthly and annual operations for short-term and long-term tests, respectively.
Monthly simulations facilitate the observation of various tumor growth scenarios and the assessment of system
dynamics accuracy, while annual simulations offer insights into long-term conditions. The outcomes are then
juxtaposed with data obtained from one year of observations based on existing mathematical models.

Current research findings from actual measurements can be treated as system output data based on a nonlinear
model. These nonlinear measurements are compared to validate the process model employed in the simulation.
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Figure 7 illustrates the Electrical Analogy (EA) method alongside a comparison with the existing exponential
growth model, with the results scaled over an annual period. The EA method provides an accurate and
observable modeling approach for different tumor growth parameters. However, it is crucial to acknowledge that
this model is suitable for demonstrating tumor growth in an infinite space without considering treatment methods
and natural conditions.

The notion of unbridled tumor growth proves impractical; the assumption of exponential tumor growth is
encumbered by various constraints. Consequently, multiple models have been devised to incorporate saturation
limits. Notable examples include the Gompertz and generalized logistic models, which have demonstrated
satisfactory outcomes in the scientific literature. The nonlinear model based on the electrical analogy of tumor
growth is simulated to achieve an efficient and adaptable treatment approach. This simulator elucidates the
optimal configuration of a cancer cell growth model, taking into consideration treatment effects and natural
conditions within the human body. The equivalent circuits for tumor growth are dynamically specified.

Within the simulator, the dynamic behavior of the tumor in the analogous electrical model is observed, allowing
for the classification of tumor sizes and characteristics. The simulation results of the proposed alternative
electrical analogies model are scrutinized and interpreted within the context of existing studies.

Different tumor types may require the utilization of varied models in various studies focused on simulating
tumor growth. In Figure 11, the interface of the simulator developed within the scope of this study is presented,
enabling a comparative evaluation of the system's exponential growth with the electrical analogy model.
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Figure 11. Exponential growth and EA growth performance

Figures 12-17 illustrate power-law and Gompertz models for comparative analysis, respectively. This approach
allows for the examination of model effectiveness across different tumor types, contributing to a more
comprehensive understanding of tumor growth dynamics in simulation studies.
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Consequently, Electrical Analogy (EA) emerges as a versatile alternative to create personalized models by
incorporating pertinent control parameters into the control structure. Within this control framework, factors like
cancer cell types and cell growth rates can be effectively modeled, especially in the presence of therapeutic or
external disturbances. This approach is pivotal for formulating precise and dynamic treatment strategies within
the framework of control engineering.

MSE = =3, (y; — 1) (27)

where n is the total number of observations, y; is the observed value (actual data), y;is the predicted value

(model output).
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Table 1. Comparison of Tumor Growth Models: Mean Square Error Analysis

Existing Tumor Growth Models Mean Square Error
Exponential 0.0061
Power Law 0.0059
Gompertz 0.048
Bertalanffy 0.0093
Reaction-Diffusion Models 0.0057
Fisher-KPP Equation 0.0034

5. Conclusion and Future Works

The comprehensive integration of principles from the plant-soil analogy and control engineering into
mathematical modeling for cancer research presents a novel and dynamic framework for understanding tumor
growth. This interdisciplinary approach not only contributes to the theoretical foundation but also holds
significant promise in guiding the development of targeted therapeutic strategies in the ongoing battle against
cancer.

The research adopts an electrical analogy of water flow through the soil-plant system to construct a cancer cell
growth model, providing a quantitative and dynamic representation of tumor development under various
treatment methods. In contrast to traditional dynamic mathematical models, this model simulates tumor growth
specifically under therapeutic conditions. The simulations consider a range of treatments and patient scenarios,
offering insights into the advantages of different treatment strategies and optimal designs for the efficient
eradication of cancer cells. The simulator operates annually, incorporating diverse patient characteristics and
treatment approaches.

Utilizing nonlinear simulation models allows for a comparative analysis of results in terms of trajectory and
precision, providing a valuable alternative to conventional time-dependent dynamic mathematical models. The
introduction of a novel elastic cancer modeling mechanism further contributes to the identification of optimal
drug dosages and frequencies for cancer treatment. Through computer simulations, the model demonstrates
substantial improvements in operational flexibility, showcasing its effectiveness in cancer treatment.

The proposed elastic modeling mechanism is suggested as a case study, demonstrating the practical value of the
approach within ethical boundaries. The empirical results highlight that the optimally designed tumor growth
system outperforms existing models, emphasizing the pragmatic significance of the study. Consequently, the
proposed approach offers a promising avenue for modeling and formulating therapeutic strategies in cancer
tumor growth, with potential implications for advancing cancer treatment methodologies.

The current study presents a robust framework for comprehending tumor growth and optimizing therapeutic
strategies. However, several promising pathways for future research and exploration warrant attention:

Integration of Multi-Omics Data: The incorporation of multi-omics data, encompassing genomics,
transcriptomics, and proteomics, into the existing modeling framework can significantly enhance predictive
precision. Future investigations may delve into methodologies to effectively integrate these complex datasets,
providing a more nuanced portrayal of the molecular intricacies governing tumor behavior.

Personalized Treatment Approaches: Subsequent research efforts could focus on refining the model to facilitate
personalized treatment approaches. This entails tailoring therapeutic strategies based on individual patient
characteristics, including genetic profiles, with the objective of optimizing treatment efficacy while minimizing
adverse effects.

Incorporation of Immunotherapy: Given the rising prominence of immunotherapy in cancer treatment, future
models could benefit from incorporating immune system dynamics. Such an inclusion would allow for an
assessment of the synergistic effects between traditional treatments and immunotherapies.
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Validation and Clinical Trials: Rigorous validation of the proposed model through both retrospective analyses
and prospective clinical trials is imperative. Collaborative efforts with clinical researchers and oncologists will
be instrumental in translating theoretical insights into pragmatic applications, ensuring the model's relevance and
reliability in real-world clinical scenarios.

Exploration of Drug Resistance Mechanisms: A deeper understanding of drug resistance mechanisms is pivotal
for developing effective long-term treatment strategies. Future research could delve into the molecular intricacies
underlying resistance and integrate this knowledge into the model for predicting and counteracting emerging
resistance patterns.

Continuous Model Refinement: Embracing a dynamic approach, the model should undergo continual refinement
to align with advancements in cancer research. This may involve the incorporation of real-time patient data, fine-
tuning simulation parameters, and adapting the model to evolving therapeutic paradigms.

Ethical and Social Implications: The ethical dimensions of model development and implementation are
paramount. Subsequent research endeavors should address ethical concerns related to patient privacy, consent,
and the responsible utilization of predictive models in clinical decision-making.

Global Collaboration: Encouraging collaboration among researchers, clinicians, and institutions on a global scale
holds promise for the amalgamation of diverse datasets and perspectives. Such collaborative efforts can lead to
more comprehensive models that account for population-specific variations and global trends in cancer biology
and treatment.

In summation, prospective research endeavors should strive to augment the precision, applicability, and ethical
considerations of cancer growth models. By addressing these areas, researchers can make significant
contributions to the evolving landscape of cancer research and facilitate the development of more effective and
personalized cancer treatments.
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