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 Land Use and Land Cover (LULC) maps are important geospatial information sources for 
different applications such as city planning, vegetation analysis, natural resource 
management, natural disaster analysis, and land change determination. In recent decades, the 
demand for more frequent creation and updating of LULC maps has grown significantly, driven 
by the rapid and continuous changes occurring on the Earth surface. Moreover, the increased 
availability of satellite images and processing power led to improvements in LULC mapping. 
However, traditional classification approaches are prone to several errors emerging from high 
human interaction and algorithm limitations. In addition, they generally suffer from 
processing time performance due to software limitations and generally singular hardware 
configurations, especially when very high resolution (VHR) images are of concern. In this 
study, we aim to produce LULC maps of the Aksu region of Bursa city Türkiye, using 
Worldview-3 VHR images and deep learning (DL) methods. We applied two widely used DL 
architectures, Unet++ and DeepLabv3+, and evaluated results using overall accuracy, average 
accuracy, error matrix, weighted accuracy, recall, precision, F-1 score, IoU score, and kappa 
metrics. Among several experimental setups, we achieved the best accuracy with the Unet++ 
architecture, using the ResNeXt-50 backbone and Adam optimizer, resulting in an 
approximately 84% IoU score and 91% F-1 score. This study demonstrates that utilizing 
appropriate datasets and CNN-based segmentation models for LULC mapping ensures 
efficient, accurate, and high-performance results, significantly contributing to long-term 
monitoring and sustainable development goals.  
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1. Introduction  
 

The production and revision of Land Use and Land 
Cover (LULC) maps are critical in many fields currently. 
Accurate and timely LULC maps are required for a variety 
of applications, including urban and regional planning, 
natural resource and environmental management, 
disaster and hazard monitoring, and food security [1-3]. 
The use of these maps in such diverse and important 
areas also requires them to be up-to-date [4-7]. 

According to Carter and Herold (2019), while 
national land cover maps produced by certain countries 
may be of high quality in specific contexts, their accuracy 
and update frequency may be suboptimal [8]. This 
demonstrates the need for more effective and faster 
approaches to update LULC maps in a world that is 
continually and rapidly changing as a result of human 
and technological influences. Update requirement of 
LULC maps can occur frequently in some landscapes, 

such as industrial zones, as a result of variables such as 
unstable agricultural markets and an increase in 
population owing to migration [9].  

LULC maps are also very important in sustainability 
efforts. The "Brundtland Report" introduced the concept 
of "Sustainable Development" in 1987, which 
necessitated a rethinking of the main principles of future 
planning. It is well known that LULC maps are crucial for 
monitoring and continuing indicators for the Sustainable 
Development Goals (SDG). National statistics and 
geospatial information can be efficiently used to track 
SDG indicators by combining appropriate satellite and 
Earth observation datasets, such as land cover maps [8]. 

The primary goal of LULC map classification is to 
identify the physical land use and land cover types within 
a region [10]. The data required for producing LULC 
maps can be obtained from various sources. Among 
them, the most popular and widely used one is the 
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remote sensing (RS) based images. According to Shi et al. 
(2019), various organizations, such as the European 
Space Agency (ESA), the National Aeronautics and Space 
Administration (NASA), the United States Geological 
Survey (USGS), and the National Oceanic and 
Atmospheric Administration (NOAA), provide extensive 
free RS and geospatial data for LULC mapping. In 
addition, social media platforms such as Facebook, 
Twitter, and Instagram can now generate large amounts 
of data with geospatial information that can be used for 
LULC mapping [11].  Even though RS images and the 
above-mentioned data are used for LULC maps, these 
data must be of certain standards, accuracy, quality, and 
resolution, to generate accurate maps for its intended 
purpose. In the field of RS, there is access to a large 
amount of data, but most of the data is unlabeled, 
therefore, a classifier is needed to segment this data [12]. 
Although several datasets are freely available for 
different deep-learning tasks, it is still problematic to 
have reliable references or ground truth data, especially 
for input images [13]. 

Recently, machine learning (ML)based algorithms 
were tested and used for LULC classification. One of the 
recent studies evaluated different ML based algorithms 
in LULC mapping on heterogenous environment that is 
defined by 11 classes. Authors of the study evaluated 
logistic regression, k-nearest neighbor, random forest 
and support vector machine classifiers with different 
image setups, and concluded with higher performances 
of random forest and SVM classifiers applied on bi-
temporal satellite images [9]. Currently, deep learning 
(DL) models use architectures based on multi-layer 
convolutional neural network (CNN) architectures. 
Henry et al. (2019), define a neural network as a 
mathematical abstraction loosely based on the 
functioning of nerve cells (neurons) in the brain. A neural 
network is made up of layers of neurons, and the term 
deep learning refers to a neural network that has many 
more layers and parameters than a standard neural 
network. These algorithms learn to perform tasks by 
identifying patterns in large, labeled (classified) data sets 
[14]. DL models have become a common approach for 
analyzing satellite imagery. More recently, developments 
in DL-based architectures tailored for the field of RS 
research have led to quicker and more precise LULC 
mapping, particularly for segmentation and classification 
needs [13].  

The current CNN architectures, AlexNet, VGGNet 
and GoogLeNet, have achieved significant success in 
image segmentation tasks and based on these great 
successes, Long et al. proposed to adapt modern DESA 
architectures to Fully Convolutional Neural Networks 
(CNNs) for use in semantic segmentation [15]. DESAs 
have been successfully adapted to solve remote sensing 
problems [14]. Considering all these achievements, a few 
performance-based CNN architectures that stand out are 
VGGNET, ViT, DenseNET, ResNET, UNet, DeepLabv3+ 
and GoogLeNET. According to Sertel et al., the 
DeepLabv3+ architecture gave the highest accuracy 
results in the generation of LULC maps among Pyramid 
Attention Network (PAN), U-Net++, Feature Pyramid 
Networks (FPNs), Linknet, Pyramid Scene Parsing 

Network (PSPNet) architectures with ResNeXt50 
backbone [13].  DeepLabv3+ with ResNeXt50 encoder 
was chosen in light of its superior performance in 
semantic segmentation tasks (especially when 
processing complex boundaries and multiple classes) 
according to Sertel et al. study. This model is an excellent 
option for mapping land use and land cover in VHR 
satellite imagery due to its proven flexibility in various 
geographic contexts [13]. In their thorough analysis of 
the image scene classification task, Cheng et al. [56] 
covered the specifics of image scene classification 
techniques based on autoencoders, convolutional neural 
networks (CNNs), and generative adversarial networks 
(GANs). A thorough review of the semantic segmentation 
of remotely sensed images was carried out by Yuan et al. 
[57]. They covered the CNN architectures used in 
semantic segmentation, including DeepLab, SegNet, and 
U-Net, in particular. 

ResNet50 and its extended version, ResNeXt50, are 
utilized as backbones to examine their impact on feature 
extraction in segmentation tasks. The investigation 
focuses on evaluating ResNet's capability to mitigate 
overfitting in deep architectures and ResNeXt's potential 
to enhance performance through its wider network 
structure enabled by group connections. Sertel et al. 
obtained 0.8946 IoU and 0.9434 F-1 scores for 
ResNeXt50 and 0.8732 IoU and 0.9308 F-1 scores for 
Resnet50 with DeebLabv3+ in their segmentation with 
VHR images and completed segmentation with high 
accuracy [13]. 

Segmentation involves breaking an image into 
smaller parts and characterizing each uniformly, which is 
crucial for constructing LULC maps using deep learning 
(DL) structures. This process, combined with 
classification, helps define homogeneous land cover 
zones. Semantic segmentation faces a conflict between 
local (where) and global (what) information [15]. 
Architectures like DeepLabv3+, UNet, Mask R-CNN, 
SegNet, and Fully Convolutional Networks (FCN) employ 
encoding and decoding structures for this purpose [16, 
17]. Convolution processes create new output values by 
combining data points with their neighbors and are used 
for operations such as edge detection, blurring, and 
sharpening. The stride determines the shift of the 
convolution process, and the filter size affects the area of 
application. Larger filter sizes and fewer steps increase 
processing time and load. 

High segmentation accuracy of RS data often 
requires a large collection of training and validation 
samples [18]. VHR data sets with a very high spatial 
resolution, enough images, and different class types are 
needed for the production of LULC maps. The usage of 
segmentation and image analysis techniques has 
expanded and become easier owing to VHR data. 
Different classes can be detected in such data effectively, 
and object-based segmentation techniques outperform 
pixel methods at high spatial resolution. One of the 
primary sources for creating VHR datasets is RS 
satellites, which are currently in widespread usage and 
were constructed using cutting-edge technologies. VHR 
images can be received from the WorldView 3, GeoEye 1, 
Pleiades, and Skysat satellites, which are some examples 
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that are currently in service. Additionally, these satellites 
provide a range of spectral resolutions. 

Pixel-based and object-based segmentation are two 
examples of segmentation types. Considering the 
integrity and properties of the objects in the image, each 
pixel is allocated to a particular object class. According to 
recent studies, object-based image analysis (OBIA) is an 
essential component of image segmentation, particularly 
when it comes to identifying objects and blending 
geographic characteristics [19]. Apart from object-based 
segmentations, there are also pixel-level segmentations. 
This segmentation method provides segmentation 
according to the reflectance value of each pixel. 

This study aims to produce accurate LULC map of 
the Aksu region of Bursa city Türkiye, using VHR satellite 
imagery and DL approaches. The performance of two 
CNN-based segmentation architectures, effects of loss 
functions, backbones, batch size, learning rate, and 
iteration size were evaluated in different experiments. 
Different accuracy metrics are presented to compare the 
performance of various hyper-parameters for the Unet++ 
and DeepLabv3+ segmentation architectures. 

 

2. Method 
 

2.1. Study area and dataset 
 

The Aksu region of Bursa province in Türkiye was 
chosen as the case study area, since it contains a variety 
of agricultural and forest areas, as well as land use areas 
such as urban settlements and mining (Figure 1). This 

region is located at 40.18°N, 29.07°E, within the 
boundaries of Bursa, at an elevation of 150 m.  

The images used in this study were acquired by 
Worldview 3 (WV-3) satellite and collected on 
September 6, 2020. The four multi-spectral bands (red, 
green, blue, and near infrared) at 1.24 m resolution and 
the panchromatic (PAN) image at 31 cm resolution were 
combined using the PANSHARP2 algorithm to create 
pan-sharpened images at 30 cm spatial resolution with 
four spectral bands [13, 20, 21].   

In a previous study, the same pan-sharpened (PSP) 
WV-3 images of the Aksu and Kestel regions were 
segmented and classified using an object-based approach 
(OBIA) using the E-cognition software [13]. We used 
those classified images as labelled date.  This dataset 
includes eight second level CORINE classes, including 
forest, mining-casting and construction sites, road and 
railway, discontinuous urban texture, arable farmland, 
heterogeneous agricultural areas, permanent 
agricultural areas, inland water resources, and areas 
with no data.  

Since the distribution of each class in the images is 
unbalanced (Figure 2), the unrepresented classes were 
adjusted in each sample to ensure proper training during 
the DL model implementation. For this purpose, the 
“compute_sample_weight” function from Ski-learn was 
used to calculate the weights of each sample, taking into 
account the number of different classes in each sample 
[22,23]. 

 

 
 
Figure 1. a) General representation of the Bursa region within the borders of Turkey through the Open Street map, b) 
Satellite image representation of the Bursa province from Google Earth, c) Satellite image representation of the Aksu 
region from Google Earth. 
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Figure 2. Percentage representation of LULC class distributions in the Aksu region with the tree map graphic method 
[13].  
 

Figure 2 shows the distribution of LULC classes: 
Forests are 44.1%, heterogeneous agricultural areas are 
26.5%, no data is 12.4%, arable agricultural lands are 
8.9%, permanent agricultural areas are 5.0%, 
intermittent urban texture is 1.0%, internal water 
resources are 0.9%, mine-casting, and construction sites 
are 0.7%, roads, and railways are 0.5%. There is a total of 
586 image patches of 512*512 pixel size in the Aksu WV-
3 dataset. When developing statistical and machine 
learning models, it is common to divide the data set into 
two parts, training and testing [24,25]. On the other hand, 
the validation set can be used to fine-tune the model 
performance, such as selecting hyperparameters or 
regularization parameters in the model [26]. Based on 
this knowledge, the dataset was divided into 70% 
training, 20% validation, and 10% test, thus, 412 patches 
for training, 116 patches for validation, and 58 patches 
for testing. The sample view of the dataset with true color 
images and ground truth pairs is provided in Figure 3.  

To increase the volume of the data set, augmentation 
techniques are adopted by applying basic image 
processing techniques [12,13]. The albumentations 
library was used to apply these techniques, including 
padding, random rotation, mirroring, shifting, scaling, 
rotation, and normalization, to increase the robustness of 
the model against various image deformations and 
orientations, minimize overfitting, and improve 
performance. 

 
2.2. Methodological Structure  

 

After the generation of the data set, we used the 
Pytorch library to utilize DL models. PyTorch is an open-
source machine learning library used for applications 
such as computer vision and natural language 
processing. It was mainly developed by Facebook's 
artificial intelligence research laboratory. As a Python-

based library, PyTorch can perform instantaneous 
dynamic tensor operations with automatic 
differentiation and GPU support, while exhibiting a 
performance comparable to the fastest DL libraries [27]. 

 

 
Figure 3. RGB true color satellite images and ground 
truth masks of the Aksu region from the training dataset. 

 

Several experiments were conducted based on 
optimization methods, loss functions, decoders, and 
backbones.  We implemented Unet++ and DeepLabv3+ 
segmentation architectures, with ResNeXt50 and 
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Resnet50 backbones and Adam and RMSprop optimizers. 
Furthermore, the impacts of Dice-Focal and Focal loss 
configurations were also tested. The Adam optimizer 
combines the advantages of momentum and RMSprop. 
While RMSprop is memory-efficient and can yield more 
effective results with larger batches on platforms like 
Kaggle by continuously updating the learning rate at each 
step, a momentum-based optimizer typically requires 
more memory but provides more stable and faster 
learning [28]. 

The learning rate during training is a hyperparameter 
that determines how much the weights of the model will 
be changed in each training network. In this study, a 
learning rate of 10-5 was selected to prevent overfitting 
and ensure more regular and stable model training. 
Additionally, the softmax activation function, commonly 
used in multi-class segmentation tasks, was employed to 
obtain class probabilities for each pixel, ranging from 0 
to 1. This ensures that the sum of all probabilities equals 
1, allowing the image to be segmented into regions 
corresponding to different classes [29,30].  

The batch size defines the amount of data that can be 
processed within the GPU memory (VRAM). Larger batch 

sizes can accelerate training by allowing more data to be 
processed simultaneously. However, as the batch size 
increases, GPU memory usage also increases, which may 
lead to memory limitations. Therefore, the GPU's 
memory capacity must be considered when selecting an 
appropriate batch size. Additionally, excessively large 
batch sizes can negatively impact the stability of the 
model. This study was conducted on the Kaggle platform 
using a P100 GPU [31]. As a result, the batch size was set 
to 4 for each training session, as larger batch sizes would 
trigger memory warnings and potentially reduce training 
accuracy. 

During each epoch, the model processes all the 
training data once, learning from it and improving 
incrementally. As the number of epochs increases, the 
model sees the data more frequently, typically leading to 
better performance. For the P100 GPU with 16 GB of 
memory used in Kaggle platform, the optimal number of 
epochs for achieving high-accuracy results was 
determined to be 100, based on both the platform's time 
constraints and experimental findings. 

 
Figure 4. General flowchart of the study. 
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2.3.  Segmentation Architectures 

 

Various machine learning techniques have been 
evaluated in previous studies, with results indicating that 
Convolutional Neural Networks (CNNs) outperform non-
deep learning methods across multiple datasets [32-35]. 
To recognize features, CNNs use a segmentation 
approach to interpret them. A typical CNN architecture is 
shown in Figure 4. Semantic segmentation of digital 
images involves assigning a class label to each pixel in the 
image (e.g., road, grass, forest). The goal is to group pixels 
that belong to the same perceptual category, thereby 
providing contextual meaning to the pixels [36]. 
Standard CNNs consist of convolutional layers and 
pooling layers, followed by fully connected layers with 
classifiers, utilizing activation functions to introduce 
non-linearity [37].  

The DeepLab is a deep CNN model that is used to 
perform semantic labeling on a pixel-by-pixel basis. 
DeepLab addresses challenges such as reduced feature 
resolution, the presence of objects at multiple scales, and 
limited spatial accuracy [38]. The latest version of the 
DeepLab architecture used in this study, which is 
DeepLabv3+, has an advanced decoder architecture that 
allows for extensive refining of object boundaries via 
Atrous convolutions and the incorporation of a decoder 
module, all while keeping DeepLabv3+'s multi-scale 
contextual capabilities. The proposed DeepLabv3+ 
model builds on DeepLabv3 by using Atrous convolution, 
which can modify the density of encoded features as 
much as computational resources allow, and an efficient 
solver module that refines detailed object boundaries 
[39]. 

The second architecture evaluated in this study is 
Unet, which uses an encoder and decoder components. 
The encoder learns the image's features while lowering 
its size, whereas the decoder uses the learned features to 
produce a higher resolution output via up-sampling and 
linking, as well as the option to switch between links. 
UNet++ consists of several U-Net architectures of 
different depths, and their decoders are densely 
connected at the same resolution with redesigned jump 
links, enabling the gradual fusion of image features 
across the network horizontally and vertically [40]. 

 
2.4. Deep Learning Backbones in Segmentation 

Models 
 

Backbone is the name given to the layers that form 
the basic building block of the model in DL, especially in 
image processing applications. These layers are used to 
extract meaningful features from the input image. The 
backbone, usually consisting of convolutional neural 
networks, forms the first part of the model and produces 
rich feature maps for the following layers. Thus, the 
backbone serves as the core feature extraction 
mechanism of the model. As deeper networks start to 
converge, a degradation problem arises because 
accuracy levels reach saturation and then drop rapidly as 
network depth increases [41]. Overfitting is not 
associated with such degradation, and training error 

increases as more layers are added to an appropriately 
deepened model [42,43].  

A deep residual learning framework was developed 
to ensure that each of the stacked layers conforms to a 
residual mapping precisely. This approach avoids 
assuming that all these layers will immediately conform 
to the intended base mapping [41]. ResNeXt belongs to 
the ResNet (Residual Network) family, a type of deep 
neural network. Besides the ResNet architecture, 
ResNeXt also includes a dimension called cardinality. In 
addition to depth and breadth, the size of the 
transformation set, called cardinality, is considered a 
fundamental factor in the model [35]. ResNeXt50 
indicates a 50-layer ResNeXt model. ResNeXt50 is often 
used in tasks such as image segmentation, detection, and 
segmentation and serves as the backbone of the model. 
 
2.5.  Activation and Loss functions and optimizers 

 

Many factors influence the performance of DL 
architectures and analysis accuracy.  Epochs are the 
periods during which the neural network model 
processes all training data. The model can be trained 
gradually, a process known as training phases. Some 
functions help establish the model's output limitations 
and accuracy while also accelerating learning. These are 
known as activation functions. Common functions 
include Softmax, Relu, tanh, elu, sigmoid, and leaky Relu. 
The Softmax, Relu, and Elu functions are among the most 
popular and useful in providing accurate results. The 
Softmax function computes the likelihood of each class 
across all classes for a given pixel [37]. 

The loss function evaluates the performance of the 
model by measuring the difference between its 
predictions and the actual values. In model training, the 
loss is minimized. Dice loss tries to maximize the overlap 
between the predicted results of the segmentation model 
and the actual results. That is, Dice loss is used as a 
complement to the Dice score coefficient to improve the 
model performance and is usually expressed by Equation 
1 as the Dice score coefficient. The Dice score coefficient 
is a commonly used overlap measure to evaluate 
segmentation performance when gold standard or real 
data is available [44].  Focal loss allows the model to 
focus on difficult samples by emphasizing the minority 
class when there is a class imbalance. Focal loss can 
handle extreme foreground-background class 
imbalances [45]. Dice-Focal loss combines the 
advantages of both losses. In the Dice-Focal loss equation 
(1) the first term represents the Dice loss and the second 
term is the Focal loss weighted by a coefficient of 0.5, 
with the operator γ acting as a relaxation parameter that 
adjusts how important correctly or misclassified samples 
are. In the Dice loss function, pi and gi represent the 
matched pixel values of the predicted and actual values, 
respectively, while the at term in the Focal loss function 
is a weight-hyperparameter offset that scales the main 
term to solve the class imbalance problem [13,46,47]. 
Optimizers refer to algorithms that manage the model's 
learning process by determining how to update the 
model parameters. Models usually try to learn from data 
by minimizing a loss function. The optimizer determines 
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how to adjust weights and biases to reduce this loss. 
Optimizers thus have a critical role in ensuring that the 
model learns efficiently. 

(1) 
Adagrad optimizer uses customized learning rates for 

each parameter. This is useful for sparse data. The 
RMSprop optimizer prevents Adagrad from rapid weight 
reduction. It only takes into account the last few updates. 
Adagrad is an algorithm that customizes gradient-based 
optimization by applying different learning rates for rare 
and frequent parameters, making it suitable for sparse 
data [48]. Adadelta is an improved version of Adagrad 
and compensates for its weakness by keeping past 
gradients in a limited window to keep the learning rate 
constant [49]. Adaptive Moment Estimation, or Adam 
optimizer for short, provides adaptive learning rates by 
combining momentum and scaled gradients. It uses first 
and second-moment estimates. The Adam optimization 
algorithm provides faster and more effective 
optimization by using both the gradient direction with 
the momentum method and the decreasing averages of 
past gradients [50]. Different optimizers can be used for 
various purposes and considering factors such as 
memory, speed, and parameters.  

 
2.6. Evaluation metrics 

 

LULC maps are evaluated using different metrics 
such as, overall accuracy, average accuracy, error matrix, 
weighted accuracy, recall, precision, F-1 score, and kappa 
statistics [51]. F-1 score represents the harmonic mean 
of the precision and recall scores, which measure the 
accuracy and recall of the classifier. Having unbalanced 
precision and recall scores will result in a low F-1 score 
while having balanced precision and recall scores will 
ensure a higher F-1 score [13]. The numbers of true 
positives (TP), true negatives (TN), false positives (FP), 
and false negatives (FN) are used to calculate the values 
of these metrics [52]. Figure 5 shows the calculations for 
recall and precision.  

Congalton and Green state that, analyzing the 
reasons for the differences in the confusion matrix may 
be one of the most important steps when creating a LULC 
map with RS data [53]. Confusion matrices show the rate 
of agreement of the classes obtained as a result of the 
experiment with reality and the rate of confusion with 
other classes [55]. IoU is a common metric that compares 
the similarity between two shapes in a scale-
independent manner by converting their shape 
properties such as width, height, and position into a 
normalized measure [54].  

 
Figure 5. Illustration of True positive, False positive, 

False negative and True negative metrics calculation. 
 

3. Results  
 

In DL-based LULC mapping of the Aksu region, the 
main aim was to keep the value of the loss function as low 
as possible during the training of the model to provide 
predictions that are as close to real-world data as 
possible. In addition, evaluation with metrics were 
employed to analyze and enhance the model's 
performance. Dice was assessed independently in terms 
of Focal loss using both metrics and visual interpretation. 
Among several setups, the eight best-performing 
experiments were presented in this paper that are:  

 
(c) DeepLabv3+ Resnet50 Adam,  
(d) DeepLabv3+ Resnet50 RMSprop,  
(e) DeepLabv3+ ResNeXt50_32x4d Adam,  
(f) DeepLabv3+ ResNeXt50_32x4d RMSprop,  
(g) Unet++ Resnet50 Adam,  
(h) Unet++ Resnet50 RMSprop,  
(i) Unet++ ResNeXt50_32x4d Adam,  

  (k) Unet++ ResNeXt50_32x4d RMSprop 
 

3.1. Statistical Evaluation 
 

Table 1 displays the F-1 score values for each class, 
while Figure 6 depicts a graphical representation of these 
data for experiments with Dice-Focal loss. As a result, the 
values with the greatest F-1 score for Dice-Focal 
correspond to forest and inland water resources, as well 
as agricultural areas. At the same time, the lowest and 
most imperceptible class is road and rail. As shown in 
Table 2 and Figure 7, the accuracy values of the models 
indicate that experiments using the Deeblabv3+ 
architecture produced better results in terms of IoU, F-1 
score, precision, and accuracy metrics. According to the 
results, although the experiments using the Adam 
optimizer give better results compared to RMSprop, it is 
seen that RMSprop gives high-accuracy results with the 
Deeplabv3+ architecture. Hence, the best experiment is 
the one with RMSprop.  

It can be seen that Unet++ outperforms Deeplabv3+ 
in terms of Dice-Focal loss. However, the best 
experimental result was achieved with Deeplabv3+ 
architecture, ResNeXt 50 backbone, and RMSProp when 
evaluated with Dice-Focal loss based on 0.84 IoU and 
0.91 F-1 Score. When assessing the results on the test 
dataset, it is evaluated that some classes are close to the 
real ground mask with high accuracy. In contrast, some 
classes with particularly similar spectral reflectance are 
mixed. In addition, classes with a lower amount of 

𝐿 =  
2Σ𝑖

𝑁𝑝𝑖𝑔𝑖
Σ𝑖
𝑁𝑝𝑖

2 + Σ𝑖
𝑁𝑔𝑖

2 
+ ( −𝑎𝑡(1 − 𝑝𝑡)𝛾 𝑙𝑜𝑔𝑙𝑜𝑔(𝑝𝑡)) ×  0.5 
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training data provided low accuracy despite weighting 
with the scikit-learn function in some experiments. The 
heterogeneous agricultural areas class was the most 
difficult class to distinguish among the classes due to 
mixing with the discontinuous urban texture and the 
road and railway class. 

When the experiments with Focal loss are evaluated 
in terms of accuracy metrics (Table 3 and Figure 8), the 
experiments with the Unet++ architecture yielded higher 
performance in terms of IoU, F-1 Score, precision, and 
accuracy. According to comparative evaluation, it is seen 
that the ResNeXt 50 backbone with Unet++ architecture 
gives higher accuracy results independent of the 
optimizer. In terms of Focal loss, all experiments are 

close to each other. The best-performing experiment was 
the setup consisting of Unet++ architecture, ResNeXt 50 
backbone, and Adam optimizer with 0.85 IoU and 0.92 F-
1 Score for Focal loss.  

In addition, similar to the Dice-Focal loss 
experiments, the heterogeneous agricultural areas class 
was the most difficult class to distinguish among the 
classes by mixing with the discontinuous urban texture 
and the road and railroad classes. Accordingly, the values 
with the highest F-1 Score for Focal loss are again for 
forest and inland water resources and agriculture-
related areas. At the same time, the lowest and 
imperceptible classes are road and railroad. 

Table 1. Class-wise F-1 Score values of different experiments with Focal Loss 
 

Experiment / Class No Data Forest 
Mine-Dump 

Construction 
Sites 

Road 
and Rail 

Discontinuous 
Urban Fabric 

Arable 
Land 

Heterogonous 
Agricultural 

Areas 

Permanent 
Crops 

Inland 
Waters 

(c)DeepLabv3+ 
Resnet50 Adam 

0.9820 0.9318 0.8115 0.4752 0.7172 0.8602 0.8689 0.7746 0.9654 

(d)DeepLabv3+ 
Resnet50 RMSprop 

0.9825 0.9330 0.8516 0.3451 0.7543 0.8751 0.8592 0.7789 0.9746 

(e)DeepLabv3+ 
ResNeXt50_32x4d 
Adam 

0.9823 0.9312 0.7725 0.4239 0.8248 0.8582 0.8569 0.7807 0.9720 

(f)DeepLabv3+ 
ResNeXt50_32x4d 
RMSprop 

0.9827 0.9395 0.8291 0.4896 0.7749 0.8499 0.8852 0.8253 0.9685 

(g)unet++ 
Resnet50 Adam 

0.9865 0.9310 0.7883 0.5941 0.8281 0.8227 0.8520 0.7753 0.9631 

(h )Unet++ 
Resnet50 RMSprop 

0.9821 0.9280 0.8165 0.5814 0.7107 0.8061 0.8374 0.7750 0.9541 

(i)Unet++ 
ResNeXt50_32x4d 
Adam 

0.9853 0.9358 0.7057 0.5727 0.7302 0.8522 0.8836 0.8125 0.9629 

(k)Unet++ 
ResNeXt50_32x4d 
RMSprop 

0.9858 0.9203 0.8229 0.4897 0.7573 0.6824 0.7864 0.5820 0.9728 

 

 
 

Figure 6. Graph visualization of the final class-based F-1 scores for each experiment.  
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Table 2. Metric Evaluations of Tested Models of Dice-Focal Loss Experiments. 
 

Experiment / Evaluation Metric Dice-Focal Loss IOU Score F-1 Score Precision Recall 

(c)DeepLabv3+ Resnet50 Adam 0.5682 0.8290 0.9037 0.9040 0.9034 

(d)DeepLabv3+ Resnet50 RMSprop 0.5682 0.8289 0.9036 0.9042 0.9029 

(e)DeepLabv3+ ResNeXt50_32x4d Adam 0.5685 0.8233 0.9000 0.9001 0.9000 

(f)DeepLabv3+ ResNeXt50_32x4d RMSprop 0.5673 0.8411 0.9112 0.9112 0.9112 

(g)Unet++ Resnet50 Adam 0.4989 0.7981 0.8849 0.8843 0.8854 

(h )Unet++ Resnet50 RMSprop 0.5125 0.7785 0.8715 0.8711 0.8720 

(i)Unet++ ResNeXt50_32x4d Adam 0.4969 0.8214 0.9001 0.9001 0.9000 

(k)Unet++ ResNeXt50_32x4d RMSprop 0.5039 0.7139 0.8292 0.8292 0.8292 

 
 

Figure 7. Graphical visualization of the evaluation metric scores of the tested models for Dice-Focal loss experiments.
 

 
Table 3. Metric Evaluations of Tested Models of Focal Loss Experiments 

 

Experiment / Evaluation Metric Focal Loss IOU Score F-1 Score Precision Recall 

(c)DeepLabv3+ Resnet50 Adam 0.1649 0.7935 0.8808 0.8819 0.8797 

(d)DeepLabv3+ Resnet50 RMSprop 0.1634 0.8265 0.9023 0.9034 0.9011 

(e)DeepLabv3+ ResNeXt50_32x4d Adam 0.1634 0.8261 0.9027 0.9041 0.9013 

(f)DeepLabv3+ ResNeXt50_32x4d RMSprop 0.1640 0.8105 0.8931 0.8942 0.8921 

(g)Unet++ Resnet50 Adam 0.1649 0.7952 0.8810 0.8822 0.8798 

(h )Unet++ Resnet50 RMSprop 0.1643 0.8073 0.8893 0.8914 0.8871 

(i)Unet++ ResNeXt50_32x4d Adam 0.1624 0.8524 0.9176 0.9177 0.9175 

(k)Unet++ ResNeXt50_32x4d RMSprop 0.1627 0.8442 0.9126 0.9124 0.9128 
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Figure 8. Graphical visualization of the evaluation metric scores of the tested models for Focal Loss Experiments. 
 

3.2. Visual Evaluation 
 
When Dice-Focal loss and Focal loss are visually 

compared, it is seen in Figure 9 and Figure 10 that the 
high one-to-one match rate is higher, especially in 
forests, inland waters, and agricultural areas. 
DeepLabv3+ architecture, ResNeXt 50 backbone, and 
RMSProp for Dice-Focal loss; Unet++ architecture, 
ResNeXt 50 backbone, and Adam optimizer experiments 
for Focal loss visually confirmed their higher metrics 
performance and enabled the creation of LULC maps 
closest to the real ground mask. The road and rail class 
and permanent crops class are the most challenging 
classes to segment, especially for the road and rail class, 
where located between or under the trees. 

In the class-based segmentation evaluation 
conducted in the experiments, the forest class accounted 
for 44.1% of the training dataset. Since the training was 
performed using red, green, blue, and near-infrared 
(NIR) bands, the detection of the forest class was 
relatively easier for the models. This is due to its 
significantly higher reflectance in the green, red, and 
especially near-infrared bands compared to other 
classes. Additionally, the forest class did not exhibit 
significant spectral mixing with other classes, resulting in 
high F-1 Score. Regarding inland water resources, 
despite having a low representation of 0.9% in the 
training dataset, it was classified with minimal error, 
achieving a very high F-1 Score. Inland water class, unlike 
other classes, has a high blue reflectance in the visible 

region and is easier to distinguish based on OBIA than 
other classes. Although mine-dump and construction 
sites have a training data set rate of 0.7%, their 
segmentation in the analysis has been successfully 
carried out, as can be seen from the high F-1 Score. In the 
class-based segmentation evaluation conducted in the 
experiments, the mine-dump and construction class is a 
distinct land cover type that is relatively easy to 
distinguish from other classes due to its unique spectral 
reflection characteristics. It exhibits specific reflectance 
properties across the red, green, blue, and near-infrared 
(NIR) bands, making it more identifiable for the models. 

The classes most prone to misclassification are found 
in agricultural areas, where factors such as crop type, 
harvesting stages, and soil characteristics influence 
segmentation accuracy. In the training dataset, 
heterogeneous agricultural lands accounted for 26.5%, 
arable agricultural lands for 8.9%, and permanent 
agricultural lands for 5.0%, making up a total of 40.4%. 

Among these, permanent and arable agricultural 
lands were more accurately segmented with minimal 
mixing into other classes. However, heterogeneous 
agricultural areas, despite having a larger number of 
training samples, showed spectral similarities with 
discontinuous urban texture, as well as road and railway 
classes, leading to some misclassification. Overall, the 
models performed well in segmenting agricultural 
classes, but segmentation of discontinuous urban texture 
(1% of the training dataset) and road and railway classes 
(0.5%) did not reach the desired accuracy levels.



International Journal of Engineering and Geosciences, 2025, 10(3), 380-397 
 

390 
 

 
 

Figure 9. Predicted masks on test data in Dice-Focal loss experiments. 
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Figure 10. Predicted masks on test data in focal loss experiments. 
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4. Discussion 
 

When the LULC maps are evaluated, Unet++ 
architecture with ResNeXt 50 backbone, Adam optimizer 
and Focal loss produced the most accurate results with 
an IoU score of 0.85 and F-1 Score of 0.92. While the 
experiment of DeepLabv3+ architecture with ResNeXt 50 
backbone, RMSProp and Dice-Focal loss is the second 
most accurate method with an IoU score of 0.84 and F-1 
score of 0.91. This shows that the ResNeXt 50 backbone 
achieves general success in feature extraction, but also 
shows that different architectures can achieve better 
compatibility with different optimizers. 

As seen in the third row of Figures 9 and 10 and the 
second row of Figure 11, there are instances where the 
Very High-Resolution (VHR) WorldView-3 (WV-3) image 
and the ground truth masks do not perfectly align 
spatially. This discrepancy suggests that the ground truth 
masks do not always accurately represent the actual 
landscape. 

For example, in one case, a visible road in the satellite 
image is labeled as forest in the ground truth mask. 
Conversely, as seen more clearly in the satellite image, 
the roads in this region are irregular, branched, and 
interrupted, making them difficult to detect due to forest 
coverage. However, in the ground truth mask, these 
roads appear as if they were detected under ideal 
conditions (as shown in the second row of Figures 9 and 
10 and the first row of Figure 11). 

Overall, while the segmentation results generally show 
a high degree of consistency and harmony, road 
detection presents a different challenge that should be 
considered separately from model performance 
evaluation. Similar issues led to lower F1 scores for 
irregular and difficult-to-segment classes such as 
heterogeneous agricultural areas, roads and railways, 
and urban textures interrupted by roads and railways. 
These inconsistencies caused deviations between the 
results and the actual landscape. 

Despite these challenges, it can be concluded that LULC 
maps generated by DL methods provide a more accurate 
representation of image-based land cover patterns, even 
if they do not perfectly align with ground truth 
representations. 

This study benefits from the Kaggle platform for 
optimal performance, cost, and resource efficiency in 
producing LULC maps. GPUs with higher can produce 
higher accuracy LULC maps by providing an option to 
increase epoch number, batch size, and learning rate. The 
goal is to improve accuracy, effectiveness, time, cost, and 
resource efficiency by employing DL-based models for 
continuous analysis and observation. 

When we compared DeepLabV3+ and Unet++ 
architectures for LULC Map production, Unet++ 
produced more accurate results with Dice-Focal loss. 
DeepLabV3+, which utilizes Atrous convolution to 
transfer basic information directly to the decoder, may 
initially lead to the loss of some fundamental features. 
However, it effectively distinguishes objects of varying 
scales, aligning well with the core principles of Object-
Based Image Analysis (OBIA). In contrast, UNet++ 
leverages a skip connection structure to enhance the 
accurate transfer of low-level features to the decoder. As 

an OBIA-driven architecture, it has demonstrated strong 
performance in generating LULC maps, contributing to 
improved segmentation accuracy. 

 
 

 
Figure 11: a) satellite image, b) ground truth mask, 

c) the DeeplabV3+ architecture with ResNeXt 50 
backbone and RMSProp optimizer, which gives the best 
result for Dice-Focal loss, and d) the Unet++ architecture 
with ResNeXt 50 backbone and Adam optimizer, which 
gives the best result for Focal loss.  

 
ResNet50 is a ResNet model with 50 layers and 

approximately 23 million parameters. In this study, the 
ResNet50 backbone was chosen over ResNet101 and 
ResNet152 due to its lighter architecture, making it more 
efficient. This decision was influenced by both the 
constraints of the Kaggle platform and the model's 
computational effectiveness. Looking at ResNeXt 50, it 
shares the computational load through group 
convolutions and feature extraction in parallel and is a 
backbone with 22 million parameters, which also helps 
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in high-accuracy segmentation. In this study, ResNeXt 50 
backbone gave more effective and higher accuracy 
results based on different accuracy metrics. This showed 
that feature extraction with group convolution is more 
effective in creating LULC maps.  

When comparing Adam and RMSprop optimizers, 
Adam proves to be a more comprehensive and effective 
choice. While Adam utilizes exponential moving averages 
of both momentum and RMSprop, the RMSprop 
optimizer only considers the exponential average of 
gradient squares. Experimental results indicate that 
models trained with Adam achieved higher accuracy in 
key metrics [56,57]. In this context, an experiment 
utilizing the UNet++ architecture, ResNeXt50 backbone, 
and Adam optimizer emerged as the most efficient 
approach for generating a fast, accurate, and optimized 
LULC map. This suggests that leveraging group 
convolutions for feature extraction and employing more 
advanced optimizers such as Adam—alongside modern 
backbone architectures—can enhance segmentation 
performance. Additionally, the encoder-decoder 
structure of UNet++, which enables more precise 
transmission of fundamental features to the decoder, 
highlights the importance of feature extraction in LULC 
mapping. This also explains why UNet++ yielded lower 
Dice-Focal loss values compared to DeepLabV3+. 

A key advantage of the UNet++ + ResNeXt50 + Adam 
configuration is its ability to successfully segment LULC 
across all classes, including artificial non-agricultural 
vegetation areas. 

According to Boonpook et al., DL-based semantic 
segmentation algorithms have proven to be highly 
effective in detecting and extracting LULC features from 
images of different spatial resolutions. For example, a 
study using the LoopNet architecture demonstrated 
significant segmentation accuracy on medium resolution 
Landsat 8 imagery, achieving an overall accuracy of 
89.84% and a mean intersect of union (mIoU) of 71.69% 
[58]. Similar to the findings in this study, using advanced 
architectures such as U-Net++ and DeepLabV3+ for 
semantic segmentation outperformed pixel-based 
machine learning methods such as Random Forest and 
Support Vector Machine, especially in capturing clear 
boundaries and shapes of LULC classes. Kemker et al. 
used VHR UAV imagery to identify 18 distinct classes, 
primarily at the object level [62]. In comparison, their 
results with an overall accuracy 59.8% was lower than 
our research. This is a significant finding that supports 
the idea that the segmentation task gets harder as the 
complexity and number of terrain classes increase, even 
though the related study contains highly detailed UAV 
images. According to Du et al., the accuracy of semantic 
labeling for VHR images can be significantly increased by 
combining the OBIA approach with DeepLabv3+. The 
integration helps alleviate the problem of DeepLabv3+'s 
inability to handle the spectral heterogeneity of objects, 
which frequently results in small objects being 
misclassified. Furthermore, DeepLabv3+ has trouble 
preserving precise boundary information for ground 
objects; however, this issue can be resolved when OBIA 
is used in conjunction with it [59]. 

In DeepLabv3+ wide-area land cover classification, 
traditional CNN models such as pixel-based CNNs have 
difficulty extracting fine spatial details and accurate 
boundaries for smaller classes. This problem stems from 
the fact that CNNs typically extract deep spatially 
relevant features based on fixed input patch sizes that do 
not effectively account for the varying scales and 
geometries of objects in heterogeneous landscapes. 
According to Martins et al., Object-based Convolutional 
Neural Networks (OCNN), which integrate object 
segmentation with CNN classification, can address these 
issues by adjusting the input size and feature extraction 
process according to object-specific features. Studies 
have shown that multi-scale CNN architectures, such as 
those implemented in multi-OCNN frameworks, 
outperform single CNN models by improving the 
accuracy of object classification and preserving spatial 
details, especially for small or complex objects [60]. 
Zhang et al. identified five distinct LULC classes and one 
additional class using the Atrous spatial pyramid pooling 
(ASPP)-UNet model. They used Beijing city's WorldView-
2 (WV-2) and WV-3 images to train and evaluate their 
suggested model. They achieved an overall accuracy of 
84.0% for six classes of WV-3 test images [37]. Since 
Sertel et al.'s study, to which the dataset used in this 
study belongs, and also Zhang et al.'s study used similar 
VHR images, the class-wise accuracy in common classes 
was also examined. While Sertel et al. obtained F-1 Scores 
of 0.612 and 0.983 for the Aksu test dataset, Zhang et al. 
obtained F-1 Scores of 0.906 and 0.755 for the water and 
road classes, respectively. The F-1 Scores of the related 
Aksu dataset are supported by this study [13,37]. 

Using Sentinel-2, WV-2, and Pleiades-1B satellite 
imagery, Bengana et al. employed six distinct LULC 
classes within the classes identified in this study, as well 
as a generalized CORINE Land Cover nomenclature as 
ground truth. They combined various urban density 
classes, such as classes related to industry and mining, 
into a single class called urban for the purposes of their 
study. Additionally, they unified all agricultural classes—
including permanent crops, arable land, and diverse 
regions—under a single agricultural class. They obtained 
an average IoU value of 0.5559 for six classes with WV-2 
imagery, while we obtained an average IoU value of 
0.8524 for eight LULC classes in this study [61].  

According to Sertel et al. [13], the DeepLabV3+ 
architecture combined with the ResNeXt50 backbone 
achieved the highest accuracy in generating LULC maps. 
While the related study used 12 CORINE classes, this 
study focuses on 8 CORINE classes instead. Additionally, 
the learning rate in this study is set to 10⁻⁵ instead of 
10⁻⁴. Beyond the previous study, this research also 
incorporates Focal loss and evaluates performance using 
both the RMSprop and Adam optimizers. The results 
confirm the findings of the related study, as DeepLabV3+ 
with Dice-Focal loss, ResNeXt50 backbone, and RMSprop 
optimizer achieved high accuracy. Furthermore, the 
UNet++ architecture with Focal loss and Adam optimizer 
also produced highly accurate LULC maps when paired 
with ResNeXt50 and the Adam optimizer. These findings 
highlight the impact of the number of classes on LULC 
map accuracy when using ResNeXt50 and the Adam 
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optimizer, underscoring the importance of dataset 
composition. Additionally, it was observed that the 
effectiveness of loss functions varies across different 
architectures, further emphasizing the influence of 
model design on segmentation performance. 

 
5. Conclusion  
 

LULC mapping from VHR satellite images is an 
effective method in terms of accuracy, time, cost, and 
resources. However, performing the segmentation of 
individual VHR satellite images, evaluating their 
accuracy, and producing maps based on this is a 
comprehensive work that requires extensive time and 
human resources. In this context, CNN-based 
segmentation is of great importance, especially to 
automatically generate LULC maps and identify long-
term time-dependent changes in different geographical 
regions.  

This study focused on the segmentation of the Aksu 
region, where the primary land cover types in the image 
dataset consist of 44.1% forest and 40.4% agricultural 
land. This study region and other regions with similar 
landscape characteristics reveal the importance of LULC 
maps, especially to better model and determine fires, 
natural disasters, and urbanization activities, which 
threaten forests and agricultural areas.  

In this study, the impact of class distributions on 
segmentation accuracy was examined, along with the 
effects of loss functions, backbones, batch size, learning 
rate, and iteration size. According to the findings, in Focal 
loss experiments, the UNet++ architecture, ResNeXt50 
backbone, and RMSprop optimizer produced the most 
accurate and high-performing LULC maps. This was 
achieved with a learning rate of 10⁻⁵, a batch size of 4, 
and training over 100 epochs, yielding superior results in 
IoU, precision, recall, and Dice-Focal loss metrics. 

The results further demonstrate that, regardless of 
the ground truth labels, errors in segmentation caused by 
human factors can be mitigated in LULC mapping 
through the proposed methods. 

These findings emphasize the potential of DL-based 
segmentation approaches in improving the accuracy and 
reliability of LULC segmentation. Future research could 
explore the integration of multi-temporal satellite 
imagery and additional spectral bands, enabling more 
robust monitoring of landscape changes over time. 
Furthermore, adapting these models to different 
geographic regions and environmental conditions could 
enhance their generalizability, providing a scalable and 
automated solution for large-scale LULC mapping. 
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