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I. INTRODUCTION 

Since the considerable advances in the Artificial Intelligence (AI) field, researchers have intensively been 

conducting numerous studies utilizing AI methodologies. In this regard, Machine Learning (ML) has considered 

one widely used subfield of the AI area, whereby the ML algorithms construct intelligent models using known 

data examples, also called training datasets. One of the prominent ML experiments is a classification task of data 

examples by the trained models regardless of the application domain [1, 2]. Over the past two decades, the 

biomedical informatics field, which principally exploits AI techniques, including classification and prediction 

methods, dramatically emerged and became an indispensable research area [3]. On this basis, visual data elements 

(e.g., X-Ray images) and textual data representations (e.g., diagnosis reports) are reasonably relevant elements in 

constructing successful ML models. Considering these recent directions, we can summarize the leading biomedical 

research efforts as follows: 

● Automatic medical diagnosis [4-6], 

● Potential disease predictions [7-9], 

● In silico drug discovery and drug repositioning [10-13], 

● Precision medicine applications [14-16]. 
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 Biomedical imaging is the most effective medical screening procedure for medical specialists. Specifically, 
X-ray images are intensively used as a reference point for medical diagnostic purposes. However, 
understanding the underlying matters from the X-ray images requires significant radiological knowledge. In 
this study, a deep learning model, which employs the DenseNet121 neural network architecture as an encoder 
module and textual data (captions) items as word embedding layers, is trained to predict the corresponding 
title/caption information of the given X-ray images. The generated model is a typical sequence-to-sequence 
model used particularly for neural machine translation tasks. In the experiments, the Open-i database curated 
by Indiana University is used for the training and testing phases. The dataset consists of 7,470 X-ray images 
and 3,955 patient reports stored in XML format, composed by a domain expert. The textual reports contain 
four specific captions, including impressions, findings, comparisons, and indications. During the model 
development, the textual data under the impression captions was exploited in the training and testing steps. 
To measure the model’s performance, the Bilingual Evaluation Understudy Score (BLUE) was calculated and 
utilized as the primary performance evaluation metric. Based on the BLUE scores, the best performance score 
was achieved when four words (four grams) were predicted with the BLUE score of 0.38368 compared to 
other n-gram sets (where n: 1, 2, and 3). This research effort demonstrates the power of sequence-to-sequence 
models on the text generation task in medical image datasets for automatic diagnosing purposes. 
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As a subfield of medical diagnosis, biomedical imaging is one of the most investigated research efforts for disease 

diagnosis in healthcare [17, 18, 19]. Building a successful diagnosis model depends on various factors affecting 

the model’s accuracy, such as the quality of medical images, filtering operations, and tuning brightness and contrast 

features. X-Ray is a biomedical imaging method that is broadly operated in all healthcare institutions as well as 

medical emergency units [20]. Nowadays, having an X-Ray taken is widespread and more accessible for people. 

Usually, patients’ conditions are evaluated by chest X-Ray images unless their health problems are not a fracture 

or a crack in a body part. The reason is that it helps the healthcare specialist (called radiologists) see the internal 

organs and nearby structures. Evaluating biomedical images requires domain experts to write reports, interpret the 

imaging, and diagnose diseases. To gain this expertise, medical doctors must train with numerous biomedical 

images and handle many actual cases. Even if medical doctors obtain this expertise, it is impractical to appoint 

radiologists with the same level of knowledge in all healthcare institutions around the world. 

Recently, any potential data elements have become valuable; thus, biomedical imaging data and methods have 

also earned even more importance correspondingly [21]. Therefore, relevant research topics, such as classification, 

biomedical image segmentation, and abnormality detection, have been successfully examined lately. Also, these 

days, the captioning operation of image processing has been widely performed by researchers. Basically, this 

process can be defined as producing subtitles of the image by extracting discriminative contextual features from 

the image content. In this sense, Pavlopoulos et al. [22] demonstrated that this captioning process can also be 

applied to biomedical images successfully.  

In this research effort, the primary aim is to construct consistent captions for the given chest X-ray images. In the 

dataset having radiology reports and chest X-ray images, comparison, indication, findings, and impression data 

have been acquired using RegEx pattern matching approaches. Next, the chest image features have been extracted 

using the DenseNet121 architecture [23]. Using the obtained visual and textual context information, a combined 

ML model has been built and trained to test the model’s performance. The rest of the paper is organized as follows. 

Section 2 elaborates more on the recent related works. Section 3 describes the details of the dataset used in the 

proposed study, while Section 4.1 presents the designed deep learning model in more detail. Section 5 presents the 

results and evaluates them in a brief discussion. Finally, the overall conclusion is given in Section 6, and potential 

future directions are mentioned in Section 7. 

 

II. BACKGROUND & RELATED EFFORTS 

Generally, there are various in-use imaging modalities, such as X-ray, Computerized Tomography (CT) scan, 

Positron Emission Tomography (PET) scan, and Magnetic Resonance Imaging, for distinct purposes [24]. To this 

end, beyond medical use, X-Ray imaging is also used for objectives, such as security screening. Biomedical 

imaging plays a critical role in medical diagnostic processes due to supplying beneficial insights to medical 

specialists. One of the practical applications in the medical field is to classify the target entities utilizing X-Ray 

images [25, 26]. During the recent COVID-19 pandemic period, the value of biomedical imaging techniques to 

diagnose COVID-19 contamination by analyzing the chest X-Rays is well-understood globally [27-29]. Plus, non-

radiological image processing-based machine learning models are also intensively examined by many researchers 

[30, 31]. Another functional research direction in biomedical imaging is to predict the evaluation reports composed 
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by medical domain experts. Ayesha et al. (2021) [32] showed that medical image analysis and interpretation by 

combining image processing and natural language processing techniques can be successfully performed. In 

addition to captioning tasks, computational studies on medical imaging report generation have also been widely 

investigated by bioinformatics researchers [33]. Despite significant progress in automated medical image analysis, 

existing approaches to chest X-ray captioning often struggle to generate comprehensive and clinically relevant 

reports. These models typically focus on identifying individual findings rather than providing a holistic image 

interpretation. In order to address this limitation, our study proposes a novel sequence-to-sequence deep learning 

model that integrates DenseNet121 for image feature extraction, GloVe embeddings for textual representation, and 

an LSTM network for capturing long-range dependencies in the radiology report. By combining these powerful 

techniques, we aim to develop a model that can automatically generate accurate and comprehensive chest X-ray 

reports, potentially reducing the workload of radiologists and improving diagnostic efficiency. 

The principal contribution of the paper is that we proved the combination of both image and text contextual 

information works smoothly. In this regard, we built a sequence-to-sequence deep learning model with GloVe 

word pre-embeddings from the textual reports. 

 

III. DATASET DETAILS 

To build the model, we used the Indiana University Chest X-Ray dataset, which is publicly available and includes 

chest X-Ray images and reports in the XML format. Each image has been paired with four captions providing 

clear medical descriptions in the XML reports: Impressions, Findings, Comparison, and Indication as shown in 

Figure 1. 

 

Figure 1. An X-Ray image and report content example [34] 

 

In the dataset, there are 7,471 X-ray images in the “.png” file format (containing lateral and frontal views for each 

patient) and 3,955 textual patient reports formed in the “.XML” format. Naturally, some patients may have 

multiple, max of 5 X-ray images, and this frequency distribution is presented as a graph in Figure 2a. To understand 
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and visualize the textual content, we generated the word cloud based on the image reports, as demonstrated in 

Figure 2b. 

 

 

   (a)      (b) 
Figure 2. Distributions of both X-Ray images and the word cloud representation, (a) The frequency distribution of X-Ray images, (b) The 
word cloud of textual reports 
 

IV. METHODOLOGY 

This study aims to develop a deep-learning model capable of generating accurate and informative captions for 

chest X-ray images. To achieve this, we employ sequence-to-sequence architecture inspired by its success in neural 

machine translation. This architecture effectively captures the relationship between visual features extracted from 

the images and the corresponding textual descriptions. Technically, our model consists of three main components: 

an image encoder, a text encoder, and a decoder. The image encoder utilizes a pre-trained DenseNet121 network 

to extract relevant features from the X-ray images. The text encoder employs GloVe word embeddings to represent 

the textual information from the associated radiology reports. These encoded representations are fed into a Long 

Short-Term Memory (LSTM) network, which learns the long-range dependencies between the visual and textual 

information. Finally, a decoder, implemented using a greedy search algorithm, generates the output captions based 

on the learned representations. 

4.1 Data Pre-Processing 

The raw data obtained from the Indiana University Chest X-Ray dataset required careful pre-processing to ensure 
optimal model training. This involved several steps applied to both the textual and image data: 

 

Textual Data: 

● Extraction: Radiology reports, stored in XML format, were parsed to extract the relevant textual captions 

(impressions, findings, comparisons, and indications) using regular expression (RegEx) pattern matching. 

● Cleaning: Extracted text was cleaned by removing non-alphanumeric characters, punctuation marks, and 

extra whitespaces. This step aimed to standardize the text and reduce noise. 

● Contraction Expansion: Contracted word forms (e.g., "won't", "don't") were expanded to their full forms 

(e.g., "will not", "do not") to ensure consistency and improve tokenization. 
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● Deduplication: To mitigate overfitting, duplicate captions associated with more than two images were 

removed. This step prioritized unique and diverse data samples for training. 

 

Image Data: 

● Resizing: To accommodate the input requirements of the pre-trained DenseNet121 model, all images 

were resized to a uniform dimension of 512x512 pixels. This involved adjusting the height of the images 

while maintaining their aspect ratio. 

● Data Equalization: Given the uneven distribution of images per patient (Figure 2a), the dataset was 

balanced by replicating images for those with a single X-ray and selecting the first two images for those 

with more than two. This ensured equal representation and prevented bias during training. 

This comprehensive pre-processing ensured that both textual and image data were properly formatted, cleaned, 

and standardized for effective model training. It also addressed potential overfitting issues and ensured balanced 

data representation. 

 

4.2 Proposed Model Details 

The proposed deep learning model for chest X-ray captioning is designed as a sequence-to-sequence architecture, 

leveraging the power of both image and text processing techniques. This architecture, commonly used in neural 

machine translation, effectively learns the mapping between visual features and corresponding textual descriptions. 

The model comprises five core components: 

 

4.2.1 Image Encoder 

A pre-trained DenseNet121 architecture serves as the image encoder. DenseNet121 is a convolutional neural 

network (CNN) known for its dense connections between layers, allowing for efficient feature extraction and 

representation learning. This encoder takes the pre-processed X-ray images as input and outputs a 1024-

dimensional feature vector, capturing essential visual information. 

 
4.2.2 Text Encoder 

The text encoder processes the corresponding textual captions from the radiology reports. We utilize pre-trained 

GloVe word embeddings to represent each word in captions as a dense vector. GloVe captures semantic 

relationships between words based on their co-occurrence statistics in a large corpus. This allows the model to 

understand the meaning and context of the textual descriptions. The embedded captions are then fed into an LSTM 

network. 

 

4.2.3 LSTM Network 

LSTM networks are a type of recurrent neural network (RNN) particularly well-suited for sequential data like text. 

They effectively capture long-range dependencies within the input sequence. A standard LSTM cell structure is 

displayed in Figure 3. 
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Figure 3. An example of LSTM cell structure [35] 
 

Here, the cell state unit behaves as a memory area in the network and holds characteristic information about the 

data to be transmitted to other cells. In this manner, short-term information can be stored and transported 

throughout the network. The Forget Gate erases the unnecessary information from memory depending on the 

sigmoid function (activation function generating value within [0, 1]) result calculated with the information coming 

from the previous cell and the information in the current cell state. The Input Gate updates the data in the cell state 

unit according to the result of the sigmoid operation with the data elements from the previous and the current cell. 

Finally, the output gate determines which information will be transmitted to other cells. First, the sigmoid operation 

is executed with the previous and the current cell data. Then, the sigmoid function result and tanh function 

(activation function generating value within [-1, 1]) of the data in the cell state unit are multiplicated. According 

to this multiplication result, the crucial information is identified and forwarded as previous cell information. Thus, 

LSTM architecture shows much higher classification and prediction performance with this advanced gating 

structure simulating the memory functionality compared to a standard RNN model. For a more simplified 

definition, imagine reading a long sentence; we need to remember the earlier words to understand the meaning of 

the whole sentence. LSTMs work similarly, using a 'memory cell' to store important information from previous 

words in the caption. This ability helps the model capture the context and relationships between words, which is 

essential for generating accurate and meaningful chest X-ray descriptions. 

In our model, the LSTM network takes the GloVe embeddings as input and learns the relationships between the 

words in the captions. This enables the model to understand the grammatical structure and contextual information 

of the textual descriptions. 

 

4.2.4 Decoder 

The decoder is responsible for generating the output caption based on the learned representations from the image 

and text encoders. We employ a greedy search algorithm as the decoder. This algorithm iteratively selects the word 

with the highest probability at each time step, conditioned on the previously generated words and the encoded 

image and text features. The process continues until a complete caption is generated. 
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4.2.5 Model Integration 

The output from the DenseNet121 image encoder is concatenated with the output from the LSTM text encoder. 

This combined representation is then passed through a dense layer to further integrate visual and textual 

information. The final output of this dense layer is then fed to the decoder for caption generation. This model 

architecture effectively combines the strengths of CNNs for image feature extraction, GloVe embeddings for 

textual representation, and LSTM networks for sequence learning to generate informative captions for chest X-ray 

images. 

 

4.3 Model Architecture 

The architecture of our deep learning model is designed to effectively capture and integrate visual and textual 

information to generate accurate chest X-ray captions. As visualized in Figure 4, the model begins with two distinct 

input layers: one for the pre-processed X-ray images and another for the corresponding textual captions. The image 

input is fed into a pre-trained DenseNet121 architecture, serving as our image encoder. DenseNet121 extracts a 

rich set of visual features from the input images due to its dense connectivity pattern. Simultaneously, the textual 

captions are processed by the text encoder. This operation involves embedding each word in the captions using 

pre-trained GloVe word vectors, which capture semantic relationships between words. These embeddings are then 

sequentially fed into an LSTM network to learn the long-range dependencies and context within the caption 

information. The outputs from the DenseNet121 image encoder and the LSTM text encoder are concatenated by 

merging the visual and textual representations. This combined representation is further processed by a dense layer 

to learn higher-level features that integrate both modalities. Finally, a decoder, implemented using a greedy search 

algorithm, generates the output caption word by word. This algorithm iteratively selects the word with the highest 

probability, conditioned on the previously generated words and the encoded image and text features. 

 

 
Figure 4. Overall neural model architecture 
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4.3.1 Dense Neural Network 

In our model architecture, we incorporate a Dense Neural Network (DNN) layer to further process the combined 

visual and textual features extracted by the encoders. A DNN, also known as a fully connected layer, is 

characterized by its dense connections, where each neuron in the layer receives input from every neuron in the 

preceding layer. This dense connectivity allows the network to learn complex non-linear relationships between the 

features. In our study, the DNN takes the concatenated output from the image encoder (DenseNet121) and the text 

encoder (LSTM) as input. By applying a series of matrix-vector multiplications and activation functions, the DNN 

effectively integrates and transforms the visual and textual information into a higher-level representation. This 

refined representation is then passed to the decoder for caption generation. Incorporating the DNN layer enhances 

the model's capacity to learn intricate interactions between the image and text modalities, leading to more accurate 

and contextually relevant captions. 

 

4.3.2 Global Vectors for Word Representation (GloVe) 

To accurately represent the textual information in our model, we employ Global Vectors for Word Representation 

(GloVe), an open-source project developed at Stanford University [36]. GloVe is a distributed word representation 

technique that utilizes an unsupervised learning approach to learn meaningful vector representations for words. 

This approach maps words onto a vector space where the distance between words reflects their semantic similarity 

[37]. GloVe achieves this by leveraging global word-word co-occurrence statistics derived from a large text corpus. 

By analyzing how often words appear together in different contexts, the model learns to capture semantic 

relationships. Essentially, GloVe combines the strengths of global matrix factorization and local context window 

methods, operating as a log-bilinear regression model to learn word representations in an unsupervised manner 

[38]. While effective in capturing semantic relationships, including synonyms and related concepts, GloVe has 

limitations in distinguishing homographs, words with identical spelling but different meanings. This stems from 

the unsupervised nature of the learning process, which assigns a single vector to entities with the same 

morphological structure. Despite this limitation, GloVe provides valuable semantic representations for the textual 

captions in our chest X-ray analysis. 

 

4.3.3 Greedy Search Algorithm 

In our caption generation process, we use a Greedy Search Algorithm to create the final caption from our model's 

output. The algorithm works by choosing the word with the highest probability at each step of the process. Starting 

with an initial token, the algorithm predicts the next word based on the model's output and the previous word and 

continues this step-by-step process until an "end" token is reached or a maximum length is reached. While the 

algorithm may not always find the best possible solution, it strikes a good balance between efficiency and 

performance, making it suitable for our caption generation task. After generating the word sequence, we use the 

BLEU score as our primary metric to assess the quality of the captions. 
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4.4 Model Training Process 

To facilitate the training process, we utilized an Ubuntu server hosted on a virtual machine within Amazon Web 

Services (AWS). This cloud-based infrastructure provided the necessary computational resources, including 8 

vCPUs and 32 GB of RAM, to efficiently train our deep learning model. We employed a Jupyter Notebook 

environment for code development and execution. Within this environment, we installed the necessary Python 

packages, such as TensorFlow, Keras, and NLTK, to support model development and training. 

The pre-processed dataset, as described in Section 4.1, was uploaded to the AWS server and subsequently split 

into training and validation sets with an 80:20 ratio. This partitioning allowed us to assess the model's performance 

on unseen data during training, helping to prevent overfitting and ensure generalizability. The overall model 

architecture flow is illustrated in Figure 5. 

 

 

Figure 5. Proposed model architecture flow 

 

We trained the model for 10 epochs using the Adam optimizer, which is known for its efficiency and effectiveness 

in deep learning applications. The following hyperparameters were carefully selected based on preliminary 

experiments and best practices: 

● embedding_dim: 300 

● dense_dim: 512 

● lstm_units: 512 

● dropout_rate: 0.2 
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A dropout rate of 0.2 was applied to regularize the model and mitigate the risk of overfitting. Each training epoch 

took approximately 4 minutes to complete, resulting in a total training time of 40 minutes. Upon completion of the 

training process, the model achieved an accuracy of 70% on the validation set, demonstrating its ability to learn 

and generalize from the provided data. 

 

V. RESULTS AND DISCUSSIONS 

To evaluate the performance of our chest X-ray captioning model, we employed the Bilingual Evaluation 

Understudy (BLEU) score as our primary metric. BLEU is a widely used metric for evaluating the quality of 

machine-generated text, particularly in machine translation tasks. It measures the similarity between the generated 

text and a set of reference translations by comparing the presence and order of n-grams (sequences of n words) in 

both the generated and reference texts. In our effort, we used the Greedy Decoder Algorithm, as described in 

Section 4.2.5, to generate the captions from the model's output. This algorithm selects the word with the highest 

probability at each time step, which results in a complete caption. We then calculated the BLEU scores for different 

n-gram orders (n=1, 2, 3, and 4) to assess the model's performance at different levels of granularity. The results of 

our evaluation are presented in Table 1. 

 
Table 1. BLEU scores of n-gram models 

BLEU-1 BLEU-2 BLEU-3 BLEU-4 
0.306819 0.302596 0.339031 0.383689 

 
 

As shown in Table 1, the model achieved the highest BLEU score of 0.38368 for the 4-grams configuration, which 

indicates its ability to generate captions that are not only fluent but also capture longer-range dependencies in the 

radiology report, like human-written reports. This outcome suggests that the model could be used to assist 

radiologists by providing initial drafts of reports, potentially reducing their workload and improving reporting 

efficiency. However, the lower BLUE scores for 1-gram and 2-gram indicate that the model may struggle with 

capturing specific medical terms or local word choices. These conclusions highlight both the potential of our 

approach for automated chest X-ray reporting and the need for further refinement to improve the model's sensitivity 

to fine-grained details. Furthermore, it is worth noting that the BLEU scores gradually decrease as the n-gram 

order decreases, which suggests that the model' s performance is better at capturing local word sequences than 

longer-range dependencies. 

 

VI. CONCLUSIONS 

This study successfully demonstrated the feasibility of automatically generating descriptive captions for chest X-

ray images using a deep learning model. Our evaluation, using the BLEU score as the primary metric, demonstrated 

the effectiveness of our model in generating relevant captions for chest X-ray images. Our sequence-to-sequence 

architecture effectively combined image and text information to produce informative captions, achieving the 

highest BLEU score with 4-grams. This research contributes to the growing field of medical image analysis and 

has the potential to assist radiologists in their diagnostic workflow. By automating the captioning process, our 

model can improve efficiency, reduce workload, and potentially enhance the accuracy of interpretations. Although 
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the BLEU score is helpful in providing a quantitative measure of how well the model performs, there are several 

limitations. The algorithm used for decoding is a greedy search heuristic; while efficient, it will not necessarily 

find the best word sequence, which may affect BLEU again. Beyond this, BLEU mainly stresses n-gram overlap 

and fails to capture most semantic nuances and clinical accuracy in the generated captions. Trying more advanced 

decoding methods, such as beam search, will be interesting sub-studies in future work. Moreover, metrics that can 

better reflect the clinical relevance of the generated reports will be considered. 

 

VII. FUTURE DIRECTIONS 

In the context of future directions, we mentioned potential research direction below: 

● Incorporating Clinical Knowledge: Integrating clinical knowledge, such as disease ontologies or patient 

history, into the caption generation process could improve the accuracy and relevance of the generated 

reports. 

● Multi-Modal Analysis: Combining chest X-ray images with other data modalities, such as electronic 

health records or clinical notes, could enhance the model's ability to provide a comprehensive and 

personalized interpretation. 

● Explainable AI: Developing methods for explaining the model's predictions, for example, by highlighting 

the image regions that influenced the generated caption, would improve trust and transparency, 

facilitating clinical adoption. 

● Longitudinal Analysis: Analyzing temporal changes in chest X-ray images and generating captions that 

reflect disease progression or treatment response could provide valuable insights for patient management. 

 

ACKNOWLEDGMENT 

We gratefully acknowledge the insightful feedback and valuable suggestions provided by the paper reviewers. 

 

REFERENCES 

1. Lu D, Weng Q (2007) A survey of image classification methods and techniques for improving classification 
performance. International Journal of Remote Sensing 28(5):823-870. 

2. Bakal G, Talari P, Kakani EV, Kavuluru R (2018) Exploiting semantic patterns over biomedical knowledge 
graphs for predicting treatment and causative relations. Journal of Biomedical Informatics 82:189-199. 

3. Bernstam EV, Smith JW, Johnson TR (2010) What is biomedical informatics? Journal of Biomedical 
Informatics 43(1):104-110. 

4. Kampouraki A, Vassis D, Belsis P, Skourlas C (2013) e-Doctor: A web based support vector machine for 
automatic medical diagnosis. Procedia - Social and Behavioral Sciences 73:467-474. 

5. Ma F, Sun T, Liu L, Jing H (2020) Detection and diagnosis of chronic kidney disease using deep learning-
based heterogeneous modified artificial neural network. Future Generation Computer Systems 111:17-26. 

6. Shanthi T, Sabeenian RS, Anand R (2020) Automatic diagnosis of skin diseases using convolution neural 
network. Microprocessors and Microsystems 76, 103074. 

7. Islam MM, Haque MR, Iqbal H, Hasan MM, Hasan M, Kabir MN (2020) Breast cancer prediction: A 
comparative study using machine learning techniques. SN Computer Science 1:1-14. 

8. Xie S, Yu Z, Lv Z (2021) Multi-disease prediction based on deep learning: A survey. Computer Modeling 
in Engineering and Sciences 128(2): 489-522. 



 
 J. Innovative Eng. Nat. Sci. vol. 5, no.2, pp. 477-489, 2025.             Chest X-ray understanding with deep learning                   
 

488 
 

9. Thieme AH, Zheng Y, Machiraju G, Sadee C, Mittermaier M, Gertler M, et al (2023) A deep-learning 
algorithm to classify skin lesions from mpox virus infection. Nature Medicine 29(3):738-747. 

10. Bakal G, Kilicoglu H, Kavuluru R (2019) Non-negative matrix factorization for drug repositioning: 
Experiments with the repoDB dataset. In AMIA Annual Symposium Proceedings. American Medical 
Informatics Association, pp 238. 

11. Shaker B, Ahmad S, Lee J, Jung C, Na D (2021) In silico methods and tools for drug discovery. Computers 
in Biology and Medicine 137, 104851. 

12. Akkaya A, Bakal G (2023) A computational drug repositioning effort using patients’ reviews dataset. In 
2023 International Conference on Smart Applications, Communications and Networking (SmartNets). IEEE, 
pp 1–6. 

13. Park JH, Cho YR (2024) Computational drug repositioning with attention walking. Scientific Reports 
14(1):10072. 

14. Yang SR, Schultheis AM, Yu H, Mandelker D, Ladanyi M, Büttner R (2022) Precision medicine in non-
small cell lung cancer: Current applications and future directions. Seminars in Cancer Biology 84:184–198. 

15. MacEachern SJ, Forkert ND (2021) Machine learning for precision medicine. Genome 64(4):416–425. 
16. Johnson KB, Wei WQ, Weeraratne D, Frisse ME, Misulis K, Rhee K, et al (2021) Precision medicine, AI, 

and the future of personalized health care. Clinical and Translational Science 14(1):86–93. 
17. Chan HP, Hadjiiski LM, Samala RK (2020) Computer-aided diagnosis in the era of deep learning. Medical 

Physics 47(5):e218–e227. 
18. Guler Ayyildiz B, Karakis R, Terzioglu B, Ozdemir D (2024) Comparison of deep learning methods for the 

radiographic detection of patients with different periodontitis stages. Dentomaxillofacial Radiology 
53(1):32–42. 

19. Şahin E, Özdemir D, Temurtaş H (2024) Multi-objective optimization of ViT architecture for efficient brain 
tumor classification. Biomedical Signal Processing and Control 91:105938. 

20. Özdemir D, Arslan NN (2022) Analysis of deep transfer learning methods for early diagnosis of the Covid-
19 disease with Chest X-ray images. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 10(2):628–640. 

21. Arslan NN, Ozdemir D (2024) Analysis of CNN models in classifying Alzheimer's stages: Comparison and 
explainability examination of the proposed separable convolution-based neural network and transfer learning 
models. Signal, Image and Video Processing:1–15. 

22. Pavlopoulos J, Kougia V, Androutsopoulos I (2019) A survey on biomedical image captioning. In 
Proceedings of the Second Workshop on Shortcomings in Vision and Language. pp 26–36. 

23. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp 4700–4708. 

24. Kasban H, El-Bendary MAM, Salama DH (2015) A comparative study of medical imaging techniques. 
International Journal of Information Science and Intelligent System 4(2):37–58. 

25. Sharma A, Raju D, Ranjan S (2017) Detection of pneumonia clouds in chest X-ray using image processing 
approach. In 2017 Nirma University International Conference on Engineering (NUiCONE). IEEE, pp 1–4. 

26. Matsui T, Kamata T, Koseki S, Koyama K (2022) Development of automatic detection model for stem-end 
rots of ‘Hass’ avocado fruit using X-ray imaging and image processing. Postharvest Biology and Technology 
192:111996. 

27. Civit-Masot J, Luna-Perejón F, Domínguez Morales M, Civit A (2020) Deep learning system for COVID-
19 diagnosis aid using X-ray pulmonary images. Applied Sciences 10(13):4640. 

28. Tabik S, Gómez-Ríos A, Martín-Rodríguez JL, Sevillano-García I, Rey-Area M, Charte D, et al (2020) 
COVIDGR dataset and COVID-SDNet methodology for predicting COVID-19 based on chest X-ray images. 
IEEE Journal of Biomedical and Health Informatics 24(12):3595–3605. 

29. Jain R, Gupta M, Taneja S, Hemanth DJ (2021) Deep learning based detection and analysis of COVID-19 
on chest X-ray images. Applied Intelligence 51:1690–1700. 

30. Mishra R, Daescu O (2017) Deep learning for skin lesion segmentation. In 2017 IEEE International 
Conference on Bioinformatics and Biomedicine (BIBM). IEEE, pp 1189–1194. 

31. Harangi B (2018) Skin lesion classification with ensembles of deep convolutional neural networks. Journal 
of Biomedical Informatics 86:25–32. 

32. Ayesha H, Iqbal S, Tariq M, Abrar M, Sanaullah M, Abbas I, et al (2021) Automatic medical image 
interpretation: State of the art and future directions. Pattern Recognition 114:107856. 

33. Yin C, Qian B, Wei J, Li X, Zhang X, Li Y, Zheng Q (2019) Automatic generation of medical imaging 
diagnostic report with hierarchical recurrent neural network. In 2019 IEEE International Conference on Data 
Mining (ICDM). IEEE, pp 728–737. 

34. National Institutes of Health. Open-i: Biomedical image search engine. Chest X-ray Collection. Retrieved 
08.05.2025 from https://openi.nlm.nih.gov/gridquery?sub=x&it=xg&coll=cxr&m=1. 

35. Erkantarci B, Bakal G (2024) An empirical study of sentiment analysis utilizing machine learning and deep 
learning algorithms. Journal of Computational Social Science 7(1):241–257. 

https://openi.nlm.nih.gov/gridquery?sub=x&it=xg&coll=cxr&m=1


 
Chest X-ray understanding with deep learning               J. Innovative Eng. Nat. Sci. vol. 5, no.2, pp. 477-489, 2025. 
 

489 
 

36. Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In Proceedings 
of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). pp 1532–1543. 

37. Abad A, Ortega A, Teixeira A, Mateo CG, Hinarejos CDM, Perdigão F, et al (2016) Advances in Speech 
and Language Technologies for Iberian Languages: Third International Conference, IberSPEECH 2016, 
Lisbon, Portugal, November 23–25, 2016, Proceedings. Springer, Vol. 10077. 

38. Kalajdziski S, Ackovska N (2018) ICT Innovations 2018. Engineering and Life Sciences: 10th International 
Conference, ICT Innovations 2018, Ohrid, Macedonia, September 17–19, 2018, Proceedings. Springer, Vol. 
940. 

 


