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Breast cancer (BC) is one of the primary causes of mortality in women globally. Thus, early and exact 

identification is critical for effective treatment. This work investigates deep learning, more especially 

convolutional neural networks (CNNs), to classify BC from ultrasound images. We worked with a 

collection of breast ultrasound images from 600 patients. Our approach included extensive image 

preprocessing techniques, such as enhancement and overlay methods, before training various deep 

learning models with particular reference to VGG16, VGG19, ResNet50, DenseNet121, EfficientNetB0, 

and custom CNNs. Our proposed model achieved a remarkable classification accuracy of 97%, 

significantly outperforming established models like EfficientNetB0, MobileNet, and Inceptionv3. This 

research demonstrates the ability of advanced CNNs, when paired with good preprocessing, to 

significantly enhance BC classification from ultrasound images. We further used Grad-CAM to make 

the model interpretable so we may see which parts of the images the CNNs focus on when making 

decisions. 
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1. INTRODUCTION 

The most prevalent cancer among women globally is BC (T. Wu et al., 2019). For women, it ranks second 

most-often occurring cause of death (Luo et al., 2024). BC affects roughly 2.89 million women globally each 

year, including 24.2% of all female cancer cases and placing first (Kabir et al., 2021; Pacal, 2022). Early 

detection of the disease is essential since it aids in lowering the number of premature deaths (G. G. Wu et al., 

2019; Pourasad et al., 2021; Jabeen et al., 2022; Cruz-Ramos et al., 2023). Over 30 percent of all cancer 

fatalities are caused by BC, making it the deadliest cancer for women (Vigil et al., 2022). BC is identified with 

a variety of imaging methods, including mammography, ultrasound, scanning with magnetic resonance 

imaging (MRI), and electronic pathology images. Mammography is widely utilized for early detection. 

However, it has limits in sensitivity and specificity, particularly in thick breasts (Badawy et al., 2021). For 

breast ultrasound images, state-of-the-art CNN techniques like Single Shot Multibox Detector with YOLO, 

You Only Look Once have shown significant success in detecting breast lesions (Fujioka et al., 2020). MRI 

provides detailed images of the breast and is especially helpful in assessing high-risk patients and assessing 

tumor extent (Peng et al., 2023). Digital pathology pictures are the "golden standard" for recognizing cancer 

and are critical in cancer detection. Deep learning has demonstrated encouraging outcomes in increasing BC 

detection and categorization precision and efficiency. Deep learning has also been utilized to identify BC via 

ultrasound images, where data augmentation and transfer learning find application approaches have been 

applied to increase performance (G. G. W. et al., 2019). CNNs and deep learning techniques generally, have 

been used to assess medical images, which are mammography, ultrasound, MRI, and images from pathology 
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(Mahoro & Akhloufi, 2022). Deep learning has significantly improved diagnosis accuracy and treatment 

efficiency in a variety of medical areas (Çetin-Kaya & Kaya, 2024; Kaya & Cetin-Kaya, 2024). Deep learning 

algorithms can extract meaningful characteristics from imagery and make classifications based on them (Luo 

et al., 2024). For example, in mammogram-based screening and diagnosis, deep learning models have been 

used to classify mammograms into different categories, such as malignant, benign, or normal (Y. Zhang et al., 

2021). Transfer learning involves pre-training a structure on a big dataset and adjusting it for a specific job. It 

has also been employed to enhance the efficiency of deep learning algorithms in BC imaging (Luo et al., 2024). 

There are challenges, such as the need for interdisciplinary cooperation, standardized and open databases, and 

addressing deep learning models' poor generalization ability and interpretability (Han et al., 2017). In this 

article, we explore the transformative potential of deep learning in BC ultrasound imaging, characterized by a 

diversity of innovative solutions that extend far beyond classification, with the development of a novel strategy 

and solutions. Current imaging techniques, such as mammography, often fall short in sensitivity and 

specificity, especially in women with thick breast tissue. This study seeks to overcome these constraints by 

investigating sophisticated approaches such as deep learning, notably CNNs, to improve diagnostic precision 

and help radiologists in ultrasound imaging. Our research seeks to enhance BC diagnosis utilizing ultrasound 

pictures and powerful deep-learning algorithms. Our contributions are as follows: 

• Developed a custom CNN model achieving 97% classification accuracy for BC detection in 

ultrasound images, outperforming various state-of-the-art algorithms. 

• Applied advanced image processing techniques, including U-Net for segmentation and Grad-CAM 

for model interpretability, to improve diagnostic accuracy and transparency. 

The following describes the latter bits of this research. Section 2 addresses related works; Section 3 offers the 

dataset and approach of the investigation. Section 4 offers the findings of the research. Section 5 presents the 

findings of the study together with suggestions for next investigations. 

2. RELATED WORK 

The related work analysis in breast ultrasonography covers a broad spectrum of deep learning and transfer 

learning applications for classification, diagnosis, detection, and segmentation. Researchers have proposed 

novel deep neural network architectures and inventive approaches to enhance automated breast ultrasound 

systems' performance, specificity, and accuracy. Their combined efforts improve the possibility of an early 

diagnosis and better patient outcomes by advancing the detection and evaluation of BC. Table 1 summarizes 

previous research on the use of ultrasonography to diagnose BC. 

2.1. Classification 

In breast ultrasound classification, researchers have used deep-learning models to achieve remarkable 

accuracy, frequently outperforming traditional methods. These models demonstrate their ability 

to identify normal, benign, and malignant cases, providing invaluable assistance to radiologists and improving 

diagnostic accuracy. Classification-focused research contributes significantly to improving automated BC 

diagnosis and risk assessment. 

2.1.1. Deep Learning 

Several studies on BC have made significant contributions to diagnosis and classification by implementing 

deep learning techniques. Jabeen et al. (2022) introduced a probability-based optimum deep learning feature 

fusion method, achieving an impressive accuracy of 99.1% in BC classification. Their method utilized the 

Breast Ultrasound Images (BUSI) dataset, including 780 images categorized as normal, malignant, or benign. 

Zhuang et al. (2021) took a different approach, using image decomposition and fusion, including adaptive 

multi-model spatial feature fusion. This method yielded a remarkable accuracy of 95.48% and high precision 

on BUSI dataset. Momot et al. (2022) utilized deep neural networks, the EfficientNet B0, pre-trained using the 

data set from ImageNet, to automate ultrasound BC image classification. They reached an accuracy of 81.26%, 

highlighting the promise of deep learning in ultrasound diagnostics. Alrubaie et al. (2023) implemented CNN 

and transfer learning to achieve a high classification accuracy, with a 96% accuracy rate for one dataset and a 
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perfect 100% accuracy for another. This study involved datasets divided into Group A, comprising 780 images 

with three classes (benign, malignant, normal), and Group B, consisting of 9,016 images with benign and 

malignant BCs. A noise filter network (NF-Net) was used by Cao et al. (2020) to learn from noisy tagged 

ultrasound images to classify breast tumors. This approach attained classification accuracy of 73%. 

Furthermore, Kim et al. (2021) provided research regarding deep learning with little supervision for detecting 

ultrasounds of BC. Moon et al. (2020) focus on the diagnosis of BC. The researchers achieved high accuracy 

and AUC values using convolutional neural networks for ensemble learning. They used a private dataset 

containing 1687 tumors, with 953 benign and 734 malignant cases. Along with an open BUSI dataset with 697 

tumors, comprising 437 benign, 210 malignant, and 133 normal cases. The study presents a computer-aided 

diagnostic (CAD) system that utilizes CNN architectures for tumor diagnosis. Liu et al. (2022) performed BC 

diagnosis using artificial intelligence and deep learning techniques. The suggested grid-based deep 

characteristic generator model classified breast ultrasonic images with 97.18% accuracy across cancerous, 

benign, and normal classes. The performance measures include accuracy, recall, precision, F1-score, and 

geometric mean, exceeded 96 for all classes. The study used a BUSI dataset comprising images from 600 

female patients. The method involves grid-based deep feature generation, pre-developed CNN models, 

incremental feature selection, and a deep classifier to improve BC diagnosis accuracy.  

2.1.2. Transfer Learning for Breast Cancer Diagnosis 

G. G. Wu et al. (2019) focus on using machine learning, particularly transfer learning, for diagnosing triple-

negative BC with ultrasonography. The dataset consists of 140 surgically confirmed BC patients, incorporating 

both ultrasound and clinical data. Grayscale and color doppler features were utilized for classification. The 

research demonstrated that machine learning using quantified ultrasonic image characteristics, including color 

doppler information, effectively differentiates triple-negative BC cases. Moustafa et al. (2020) used color 

doppler ultrasound introduced to enhance BC detection using machine learning. The dataset contains 159 solid 

masses, with 95 benign and 64 malignant cases. The study illustrates that incorporating color doppler and 

grayscale features in the training dataset improves the receiver operating characteristic area, thus enhancing 

the BC prognosis. Qi et al. (2019) proposed an automated diagnosis method for deep neural networks to process 

breast ultrasound pictures. Their approach employs a cascade of two neural networks, Mt-Net and Sn-Net, for 

breast ultrasonography image diagnosis. Mt-Net classifies images for the presence of malignant tumors, while 

Sn-Net further classifies images for solid nodules. The study used a large-scale ultrasound image collection 

annotated by experts separated into training, validation, and testing sets. The proposed method demonstrated 

comparable performance to human sonographers and achieved high accuracy and specificity in BC diagnosis. 

Several studies have harnessed transfer learning techniques to improve BC diagnosis and classification in the 

context of ultrasound imaging. Y. Zhang et al. (2021) investigated the use of transfer learning to fine-tune a 

model for improved BC subtype prediction. The study showed that transfer learning significantly enhanced 

classification accuracy. 

Similarly, Pang et al. (2021) augmented breast ultrasound mass classification data using a semi-supervised 

Generative Adversarial Network(GAN)-based radiomics model. This approach resulted in an accuracy of 

90.41% and high sensitivity, demonstrating the potential of transfer learning in data augmentation. Coronado-

Gutiérrez et al. (2019) studied quantification ultrasound evaluation of images to diagnose Metastatic BC 

invasion. The suggested approach obtained an accuracy of 86.4% and a sensitivity of 84.9% using a dataset of 

105 patients submitted 118 lymphatic node ultrasound images selected from two hospitals. Cruz-Ramos et al. 

(2023) applied transfer learning on a pre-trained architecture to classify benign and malignant BCs in 

ultrasound and mammography pictures, resulting in 97.6% accuracy. These studies' results show that transfer 

learning methods improve the efficiency of BC diagnosing and classification techniques using ultrasound 

imaging. 

2.2. Detection using Deep Learning 

Several research has investigated the utilization of Deep learning algorithms for detecting BC in radiography 

and ultrasound imaging. Mahoro and Akhloufi (2022) evaluated therapy response using reference images from 
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the Evaluating Therapy Response Breast MRI dataset (1,500 DICOM format images) and the BUSI dataset 

(250 BMP type BC images). Marini et al. (2023) introduced a method called volume sweep imaging for BC 

detection. Masud et al. (2021) uses CNNs that have been previously trained to identify BC using ultrasound 

imaging. Their study demonstrated impressive results, with models like DenseNet201, Xception, and 

ResNet18 achieving 100% accuracy using various optimizers. This study used publically accessible breast 

ultrasound scans from Rodrigues; there are 250 ultrasound scans, including 100 normal and 150 cancerous 

instances. The study applied a transfer learning technique to pre-trained models and a K-fold cross-validation 

procedure for assessment. Li et al. (2022) presented the "BUSnet" Deep learning algorithm for breast tumors 

lesion detection in ultrasound images. Their dataset included 780 samples, with 133 normal, 487 benign, and 

210 malignant cases. The testing dataset was collected from a prior source. The method included unsupervised 

region proposal, bounding-box regression methods, and a post-processing strategy to improve detection 

accuracy. Z. Zhang et al. (2021) focused on employing a Deep learning algorithm used in automated breast 

ultrasonography to detect cancers. They achieved a sensitivity of 0.88 with a false positive rate of 0.19 per 

second (FP/S). The study employed a unique ABUS imaging dataset from Peking University People's Hospital, 

which included 170 ABUS tumor volumes obtained from 124 female patients. Their technique comprises 

employing the Bayesian YOLOv4 network and Monte Carlo dropout and making unique YOLOv4 tweaks for 

detecting ABUS tumors. 

2.3 Segmentation 

2.3.1. Deep Learning-Based Segmentation Studies 

Gómez-Flores and de Albuquerque Pereira (2020) focus on evaluating the performance of pre-trained CNNs 

at segmenting BCs in ultrasound pictures. They revealed that SegNet and DeepLabV3+ had the greatest 

segmentation results, while ResNet18 showed potential for CAD systems. The study included more than 3000 

breast ultrasound Images taken from seven separate ultrasound machine models. Ilesanmi et al. (2021) 

suggested a segmentation strategy producing high dice measures for malignant and normal breast ultrasound 

image. The study used two datasets: one with 264 photos (100 malignant, 164 benign) and another with 830 

images (487 malignant, 210 benign, and 133 normal). Their approach includes a preprocessing stage and a 

deep learning segmentation stage. Vakanski et al. (2020) incorporating attention blocks into deep-learning 

models for breast tumor segmentation resulted in models that outperformed the basic U-Net model. The dataset 

included 510 ultrasound images converted to grayscale 8-bit data and resampled into floating points using 

normalization. Xu et al. (2019) primarily focused on applying machine learning to segment breast ultrasound 

pictures, with quantitative measurements achieving more than 80% accuracy. The dataset utilized is not 

specified. However, their method categorizes BUSI into four tissue types: skin, fibroglandular, mass, and fatty 

tissue. Zhang et al. (2019) introduced a novel method, Boundary-aware Semi-Supervised Deep Learning 

(BASDL), for breast ultrasound lesion CAD. BASDL achieved a classification accuracy of around 

92.00±2.38% and was evaluated on two breast ultrasound datasets. Chiang et al. (2018) specifically targeted 

tumor detection in automated ultrasound image with a dataset that includes 230 pathology-proven lesions from 

187 individuals, 90 of which are benign and 140 of which are malignant. The proposed method involved 

preprocessing, segmentation, and feature extraction using a sliding window detector for localized analysis. Lei 

et al. (2018) obtained the highest segmentation performance by developing a technique for segmenting breast 

anatomy in full breast ultrasound images. The ConvEDNet is a deep convolutional encoder-decoder network 

with regularized boundaries. The limited dataset used manual annotation due to the associated cost. Gong et 

al. (2020) explore a bi-modal approach to BC diagnosis using A support vector machine with several views 

based on deep neural networks. The classification accuracy achieved was 86.36%, with an AUC of 0.9079. 

The dataset utilized in this study included a total of 264 pairings of breast ultrasound and ultrasound 

elastography images of 129 individuals with benign tumors and 135 people with malignant tumors. The 

suggested model is divided into two parts: Multi-Depth Neural Network and Fusion Deep Neural Networks. 

The multi-view technique improves diagnosis by combining information from both types of ultrasound images.  

2.3.2. Transfer Learning-Based Segmentation Studies 

Negi et al. (2020) proposed the WGAN-RDA-UNET technique, which uses Wasserstein GANs. It obtained an 
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overall accuracy of 0.98 and a PR-AUC of 0.95. The research used the PASCALVOC2012 dataset for training 

and the Berkeley Segmentation Database (BSDS 300 and BSDS500) for assessment.  

Table 1. Overview of deep learning-based ultrasound screening and diagnosis, DL: deep learning, TL: 

transfer learning, C=Classification, SE=Segmentation, DE=Detection 

Author  Methods Used Dataset Success rate  

Jabeen et al. (2022)  DL, C Modified DarkNet-53 deep model BUSI 780 images  99.1% accuracy  

Liu et al. (2022) DL, C Grid-based deep feature generation-based BUS 600 images 97.18% accuracy 

Zhuang et al. (2021) DL, C Fuzzy enhancement  BUS 1328 images 95.48% accuracy 

Momot et al. (2022) DL, C Efficient Net B1  ImageNet dataset 81.26% accuracy 

Alrubaie et al. (2023) DL, C 
CNN  

 Inception-v3  

A: BUSI 780 images  

B: BUS 9016  

96% accuracy for data A 
100% accuracy for data 

B 

Cao et al. (2020) DL, C Noise filter network (NF-Net)  BUS 73% accuracy 

Kim et al. (2021) DL, C Weakly-supervised Deep learning techniques  BUS 1000 images AUC values of 0.92-0.96  

Moon et al. (2020)  DL, C 
Dense Net  

VGG-16 and VGG-Like ResNet 

Private 1687 images 

BUSI: 697 images 

91.10% accuracy 

94.62% accuracy 

Moustafa, et al. (2020)  DL, C Color Doppler AdaBoost ensemble classifier 159 solid masses AUC of 0.986 

Qi et al. (2019) DL, C Automated BC diagnosis model BUS 8145  87.79% accuracy 

Y. Zhang et al. (2021) TL, C  (CLSTM) N/A 91% accuracy 

Cruz-Ramos et al. (2023) TL, C fusion and handcrafted features BUSI 780 images  
ACC of 97.6% PRE of 

98% 

Pang et al. (2021)  TL, C 
Semi-supervised GAN model – TGAN 

model 
BUS 1447  90.41% accuracy 

Coronado-Gutiérrez et al. 
(2019) 

TL, C QUS image analysis techniques BUS 217 images 86.4% accuracy  

Mahoro and Akhloufi (2022) DL, DE different screening methods for BC 
(RIDER) 1500  

BUS 250 images  

Dice coefficient: 0.82 

Similarity rate: 0.69 

Masud et al. (2021) DL, DE DenseNet201 - ResNet50 BUS 250 images 100 

Li et al. (2022) DL, DE BUSnet BUSI 780 images 100 accuracies 

Z. Zhang et al. (2021)  DL, DE Bayesian YOLOv4 BUSI 21,624 images  Sens: 0.88 FPs/S: 0.19 

Negi et al. (2020) TL, DE (WGAN) (RDAU-NET)  PASCALVOC2012  Accuracy 0.98 

Gómez-Flores and de 

Albuquerque Pereira (2020) 
DL, SE Multi models  BUS 3000 images  F1-score > 0.90  

Ilesanmi et al. (2021)  DL, SE End-to-end deep learning segmentation stage 
Dataset 1: 264 images 
Dataset 2: 830 images  

89.73% were cancerous 
and 89.62% were benign. 

Vakanski et al. (2020) DL, SE U-Net - U-Net-SA BUS 510 images  (DSC) 90.5%  

Xu et al. (2019) DL, SE  CNNs  Private dataset 80% accuracy 

Zhang et al. (2019) DL, SE  BASDL  UDIAT, UTWS 

92.00% accuracy for 

UDIAT 

83.9% accuracy for 
UTWS 

Chiang et al. (2018) DL, SE 3-D CNN - 2-D CNN 
Automated whole breast 

ultrasound images 
95% sensitivity 

Lei et al. (2018) DL, SE 
ConvEDNet - Adaptive Domain Transfer 
(ADT) 

Automated Whole Breast 
Ultrasound images 

86.8% intersection over 
union 

Gong et al. (2020) DL, SE Multi-view deep neural network BUS 264 images 86.36% accuracy 
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3. MATERIAL AND METHOD 

3.1. Dataset 

BUSI is used as part of the validation procedure in this study. The BUSI Dataset includes 780 breast ultrasound 

pictures categorized as benign, malignant, or normal. Images were taken from 600 female patients between the 

ages of 25 and 75. The images are 500 by 500 pixels on average and saved in PNG file format. Images were 

classified into three categories: there are 133 normal photos, 487 benign images, and 210 malignant images. 

The normal images reveal healthy breasts, whereas the benign images show benign masses and the malignant 

images indicate cancerous masses. The original images were preprocessed to reduce noise and improve image 

quality. This involved cropping the images to remove irrelevant information, scaling the images to a uniform 

size, and applying contrast enhancement. The data was collected in 2018 using LOGIQ E9 ultrasound systems. 

The images were captured using standard ultrasound protocols for breast imaging. The images were then 

manually labeled by expert radiologists (Al-Dhabyani et al., 2020). In addition, ground truth the appropriate 

B-mode images are supplied with binary mask images. Figure 1 shows the ground truth images. 

 

Figure 1. Examples of ultrasound images with ground truth 

3.2. Methodology 

3.2.1. Image Preprocessing and Segmentation 

The segmentation section of our workflow is shown in Figure 2. We use a U-Net architecture to precisely 

identify areas on breast ultrasonography images that are of interest, distinguishing between benign, malignant, 

and normal tissues. First, we load and preprocess the dataset. This involves resizing the images and their 

corresponding masks to a uniform 224x224 pixels and normalizing them to ensure consistency. This 

preparation step is crucial for feeding the data into our model effectively. For medical image segmentation, the 

U-Net model is especially well-suited. Its architecture comprises two main parts: decreasing and increasing 

paths. The contracting path (or encoder) captures detailed contextual information by progressively down 

sampling the images using convolutional layers and max-pooling operations. This step extracts high-level 

features while reducing the spatial dimensions of the images. At the deepest point, a bottleneck layer further 
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refines these features. The expanding path (or decoder) then restores the spatial resolution using up sampling 

layers. It utilizes skip connections to concatenate high-level features from the contracting path with the 

corresponding layers in the expanding path, effectively recovering spatial information that might have been 

lost during down sampling. This combination ensures that the output mask accurately highlights the regions 

of interest. After constructing the model, we compile it using the Adam optimizer and binary cross-entropy 

loss, with accuracy as the metric to evaluate performance. We divided the dataset into training and validation 

sets, with 80% for training and 20% for validation. This ensures the model can adequately generalize to new, 

previously unknown data. Training the U-Net model involves running multiple iterations (epochs) over the 

dataset, during which the model learns to segment the images accurately. Once training is complete, we save 

the model for future use. This allows us to efficiently and precisely segment breast lesions in new ultrasound 

images, which is critical for early and accurate diagnosis of BC. This automated segmentation process 

significantly enhances the potential for effective treatment and better patient outcomes.  

 

Figure 2. Visual results for classification and segmentation of breast ultrasound images 

Image enhancement techniques are crucial for medical image analysis as they help improve the visibility of 

key structures and features. In this context, the BUSI dataset is enhanced using various techniques to make the 

images more informative and useful for diagnosis. Fuzzy enhancement focuses on adjusting the contrast of an 

image. By enhancing contrast, subtle differences in tissue density and composition become more apparent, 

which is crucial for accurate diagnosis in medical imaging. Sharpness enhancement improves the clarity of 

edges within the image, which is particularly important in ultrasound images where the edges of lesions or 

tumors need to be well-defined. Adjusting the brightness of an image can help balance the image intensity, 

which is useful for highlighting regions of interest that may otherwise be obscured due to uneven lighting or 

intensity variations in the original image. Rescaling images to a uniform size ensures consistency in 

visualization and comparison, which is essential for processing large datasets and training machine learning 

models. As shown in Figure 3, the overlay process involves combining the original ultrasound image with the 

mask that highlights areas of interest, such as tumors or lesions. As shown in Figure 4, this combined image is 

then enhanced using the above techniques to provide a clearer and more informative visualization. 
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Figure 3. Ultrasound images of the left breast under different image enhancement techniques 
 

  

(a) Before image processing (b) After image processing. 

Figure 4. Enhanced and overlayed image before and after image processing 

3.2.2. Proposed Model 

We developed a custom CNN for breast image classification. As shown in Figure 5, our model captures key 

properties from images using a series of layers of convolution and pooling that preserve the spatial hierarchy. 

The model starts with a convolutional layer that has 32 filters, each measuring 3x3 pixels. This layer uses a 

stride of (1, 1) and the same padding to extract key characteristics from the input pictures. It is followed by a 

max-pooling layer with a kernel size of (2,2) and a stride of (2,2), which reduces spatial dimensions while 

enhancing translation invariance and model efficiency. Our network has additional convolutional layers with 

larger filter sizes (64, 128, 256, 256, and 512), followed by max-pooling layers. Except for the last 

convolutional layer, the output is decreased to 1*1 size to further reduce the sample size of the feature maps 

while improving abstraction. We use ReLU (Rectified Linear Unit) Functions for activation in these layers to 

help the network understand complex patterns in the input. The network's depth and structure allow it to 

captivate both local and global picture functions effectively. Following the convolutional layers, we used 

GlobalAveragePooling to fully connect the (dense) layer. The model has three dense layers: the first has 512 

neurons and employs ReLU activation in conjunction with L2 regularization (at a value of 0.01) to avoid 

overfitting. We also use a 0.5-rate dropout layer to deactivate neurons during training, randomly increasing 

generalization. The second layer has 1024 neurons and employs ReLU activation in conjunction with L2 
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regularization (with a value of 0.01). The last dense layer contains three neurons and employs a softmax 

activation function to generate probabilistic outputs for the three classes (benign, malignant, and normal). Our 

Results indicate that the suggested CNN model is highly effective. When we trained it on enriched overlayed 

datasets, the model had an F1-score of 0.97, with an accuracy of 0.97, precision of 0.98, and recall of 0.96. 

These metrics were much higher than those obtained while training with all layers without the enhanced 

overlayed datasets, which yielded an accuracy is 0.83, a precision is 0.80, a recall is 0.83, and an F1-score is 

0.81. These findings demonstrate the robustness of our algorithm in detecting subtle patterns in medical 

images, resulting in extremely accurate categorization. We experimented with various models, architectures, 

and hyperparameters to achieve an accuracy higher than 97%. However, only this specific model managed to 

exceed that benchmark on our dataset. 

 

Figure 5. Proposed model 

3.2.3. State-of-the-art Models 

We selected several state-of-the-art models for their effectiveness in enhancing image classification 

performance: VGG16, VGG19, DenseNet121, EfficientNetB0, MobileNet, InceptionV3, Xception, and 

ResNet50. VGG16 and VGG19, created by the University of Oxford's Visual Geometry Group, consist of 16 

and 19 layers, respectively, with convolutional and max-pooling layers stacked to capture complex features. 

DenseNet121 employs densely connected blocks, promoting feature reuse and efficient gradient flow. 

EfficientNetB0 uses compound scaling to optimize model depth, width, and resolution, achieving superior 

performance. MobileNet offers lightweight architecture suitable for mobile and embedded devices, utilizing 

depthwise separable convolutions to reduce complexity. InceptionV3 captures features at multiple scales with 

inception modules, while Xception replaces standard convolutions with depthwise separable convolutions for 

increased efficiency. ResNet50 solves the issue of vanishing gradients in deep neural networks by utilizing 

skip connections. During training and assessment, we fine-tuned the last four layers of each pre-trained model 

using an enhanced dataset. To improve generalization, we employed an Adam optimizer with a 0.0001 learning 

rate and a sparse categorical cross-entropy loss. We also employed data augmentation techniques including 

flipping, rotation, shifting, shear, and zooming. The training lasted 100 epochs with a batch size of 32, and it 

ended early after five epochs to avoid overfitting. Following training, we examined the models on a separate 
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test dataset, using measures such as accuracy, F1 score, precision, and recall to assess their classification skills. 

We implemented a custom top-layer architecture tailored for 3-class classification. This architecture builds on 

a base model, globalAveragePooling2D, which is used to minimize spatial dimensions, followed by dense 

layers with regularization for dropouts to avoid overfitting. The final output layer, consisting of three neurons 

with softmax activation, facilitates accurate multi-class classification. 

4. RESULTS AND DISCUSSION 

4.1. Proposed Model 

We found that, when image preprocessing methods were used, the accuracy reached 0.97. Our proposed model 

performed amazingly with these preprocessing methods regarding other essential metrics: F1-Score: 0.97, 

precision: 0.98, recall: 0.96. Figure 6 demonstrates accuracy and loss graphs of the proposed model after data 

preprocessing. When this model was trained without preprocessing, its performance dropped significantly; it 

still has respectable metrics. More concretely, the accuracy dropped to 83%, meaning the classification would 

be less accurate than if preprocessing were applied. The confusion matrix elaborated on the classification 

capabilities of this model, showing it to be proficient at distinguishing classes. Train validation accuracy and 

loss graphs represented its learning process during training and provided valuable insights into model 

convergence and generalization. Such findings strongly emphasize the quests of image preprocessing toward 

improving custom CNN performance but also point to further ways of optimization and research in this field. 

Regarding accuracy, recall, and F1-score, the proposed model outperformed all other classes. For class 0, the 

model achieved 97% accuracy, 98% recall, and an F1 score of 97%. For class 1, this results in a 95% accuracy, 

94% recall, and a 93% F1 score. Class 2 had 100% accuracy, 100% recall, and an F1 score of 100%. The 

confusion matrix also presented the model accuracy, showing minimal misclassification. Figure 7 depicts the 

confusion matrices obtained prior to and after image preprocessing. Overall, these results underscore the 

effectiveness of the proposed model in accurately classifying instances across multiple classes. Without data 

enhancement, there was a slight decline in the classification results. Figure 8 represents the accuracy and loss 

graphs of the proposed model data preprocessing. For class 0, the model recorded a precision of 85%, a recall 

of 91%, and an F1-score of 100%. For class 1, this gives a precision of 75%, a recall of 86%, and an F1-score 

of 80%. Class 2 had an accuracy of 68% and a recall of 56%, with an F1 score of 71%. Despite these variations, 

the confusion matrix showed the model's accuracy, with minimal misclassifications. These findings highlight 

the proposed model's effectiveness in accurately classifying instances across multiple classes while 

demonstrating the significant impact of data preprocessing on model performance.  

 

Figure 6. The accuracy and the loss of the proposed model after data preprocessing 
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Figure 7. The accuracy and the loss of the proposed model before data preprocessing 
 

  

(a) Before image processing (b) After image processing 

Figure 8. Confusion matrix of the proposed model before and after image preprocessing 

4.2. Transfer Learning 

In this study, we investigated the performance of fine-tuned models on a dataset augmented with enhanced 

overlayed images, considering various training scenarios. The performance metrics for each scenario are 

summarized in Tables 2, 3, 4, and 5. Table 2 presents the performance of models fine-tuned with the last four 

layers using the enhanced overlayed dataset. VGG19 and EfficientNetB0 demonstrated the highest accuracies 

of 0.99, with VGG19 achieving a precision of 0.98, a recall of 0.98, and an F1-score of 0.98. VGG16 and 

ResNet50 also performed exceptionally well, with accuracies of 0.98 and 0.96, respectively. This demonstrates 

the effectiveness of the enhanced dataset in improving model performance, achieving balanced and high scores 

across all metrics. 
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Table 2. Performance metrics of the models trained with the last four layers with enhancing and overlaying 

Model Accuracy Precision Recall F1-Score 

VGG16 0.98 0.99 0.98 0.98 

VGG19 0.99 0.98 0.98 0.98 

DenseNet121 0.88 0.91 0.87 0.89 

EfficientNetB0 0.97 0.99 0.97 0.98 

MobileNet 0.82 0.82 0.81 0.80 

Inceptionv3 0.63 0.59 0.55 0.56 

Xception 0.69 0.67 0.61 0.63 

ResNet50 0.96 0.96 0.96 0.96 

Table 3 shows the performance of models fine-tuned with the last four layers without enhancements. There 

was a noticeable drop in performance across all models. VGG16's accuracy decreased to 0.82, and 

Inceptionv3's accuracy fell to 0.60. EfficientNetB0 and VGG19, while still relatively higher performing with 

accuracies of 0.86 and 0.84, respectively, also exhibited declines in their precision, recall, and F1 scores. This 

indicates the negative impact of the absence of enhancements on model generalization and performance.  

Table 3. Performance metrics of the models trained with the last four layers without enhancing and 

overlaying 

Model Accuracy Precision Recall F1-Score 

VGG16 0.82 0.79 0.82 0.80 

VGG19 0.84 0.81 0.85 0.82 

DenseNet121 0.76 0.75 0.71 0.72 

EfficientNetB0 0.86 0.85 0.84 0.84 

MobileNet 0.74 0.69 0.72 0.70 

Inceptionv3 0.60 0.57 0.50 0.51 

Xception 0.66 0.61 0.58 0.59 

ResNet50 0.81 0.83 0.75 0.78 

Table 4 represents the results of models trained with all layers using the enhanced overlayed dataset. These 

models exhibited outstanding performance, with several achieving near-perfect metrics. EfficientNetB0 

reached an accuracy of 0.99, with precision, recall, and an F1-score of around 0.99. VGG19 and DenseNet121 

both attained an accuracy of 0.98. The proposed model also showed strong performance with an accuracy of 

0.97. These results underscore the benefits of using an enhanced dataset for training models across all layers. 

Table 4. Performance metrics of the models trained with all layers with enhancing and overlaying 

Model Accuracy Precision Recall F1-Score 

VGG16 0.96 0.98 0.95 0.96 

VGG19 0.98 0.99 0.98 0.98 

DenseNet121 0.98 0.99 0.98 0.98 

EfficientNetB0 0.99 0.99 0.98 0.99 

MobileNet 0.98 0.98 0.98 0.98 

Inceptionv3 0.98 0.99 0.98 0.98 

Xception 0.98 0.99 0.98 0.98 

ResNet50 0.91 0.91 0.93 0.92 

Proposed Model 0.97 0.97 0.97 0.97 
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Table 5 details the performance of models trained with all layers without enhancements. Although there was 

a general decrease in performance compared to their enhanced counterparts, models like DenseNet121 and 

EfficientNetB0 maintained relatively high accuracies of 0.87 and 0.86, respectively. However, models such as 

VGG16 and MobileNet exhibited more substantial drops, emphasizing the importance of dataset 

enhancements. The proposed model, without improvements, showed a moderate decrease in performance with 

an accuracy of 0.83. Our study demonstrates the critical role of dataset quality and preprocessing techniques 

in enhancing deep learning models' robustness and generalization capabilities. The enhanced overlayed dataset 

consistently led to significant improvements in model accuracy, precision, recall, and F1 score across various 

architectures. These findings confirm the value of data enhancement in machine learning tasks, highlighting 

its importance for achieving superior model performance. Figure 9 and Figure 10 represent the confusion 

matrices of the transfer learning models after and before data preprocessing. 

Table 5. Performance metrics of the models trained with all layers without enhancing and overlaying 

Model Accuracy Precision Recall F1-Score 

VGG16 0.76 0.75 0.73 0.71 

VGG19 0.77 0.74 0.77 0.75 

DenseNet121 0.87 0.89 0.83 0.85 

EfficientNetB0 0.86 0.85 0.84 0.85 

MobileNet 0.86 0.85 0.84 0.83 

Inceptionv3 0.82 0.80 0.80 0.80 

Xception 0.85 0.84 0.81 0.82 

ResNet50 0.85 0.84 0.79 0.81 

Proposed Model 0.83 0.87 0.77 0.80 

 

  

(a) VGG16 (b) VGG19 

  

(c) DensNet121 (d) EfficientNetB0 

Figure 9. Confusion matrix of transfer learning models after data preprocessing  
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(e) MobileNet (f) InceptionV3 

  

(g) Xception (h) ResNet50 

Figure 9. continued 
 

  

(a) VGG16 (b) VGG19 

  

(c) DensNet121 (d) EfficientNetB0 

Figure 10. Confusion matrix of transfer learning models before data preprocessing 
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(e) MobileNet (f) InceptionV3 

  

(g) Xception (h) ResNet50 

Figure 10. continued 

4.3. Comparison of the Models 

When comparing our study's findings with other transfer learning models, EfficientNetB0 performed 

exceptionally well, achieving an accuracy score of 0.99. This indicates its high confidence and precision in 

categorizing images across various datasets. VGG19, MobileNet, DenseNet121, InceptionV3, and Xception, 

all performed well with an accuracy of 0.98. VGG16 achieved an accuracy of 0.96. ResNet50, although slightly 

lower, still maintained strong performance with an accuracy of 0.91. The proposed model also demonstrated 

excellent performance, achieving an accuracy of 0.97. The proposed model achieved high precision, recall, 

and F1 scores with significantly fewer parameters than other architectures except EfficientNetB0 and 

Mobilenet. VGG16 with 14879299, VGG19 with 20188995, Densnet121 with 7333187, EfficientNetB0 with 

4410790, Mobilenet with 3524547, InceptionV3 with 22360611, Xception with 21419307, ResNet50 with 

24145539. With only 3097283 parameters, our model efficiently extracts relevant features and makes precise 

classifications without needing an excessive number of parameters. Figure 11 shows the comparison of transfer 

learning and our proposed model. This emphasizes not only its technical excellence but also its efficiency in 

using computational resources. Therefore, our proposed model emerges as a standout performer, offering a 

strong case for its adoption in image classification tasks where both efficiency and accuracy are crucial. 

4.4. Comparison with Similar Studies 

Several important insights emerge when comparing our study's outcomes with similar studies utilizing deep 

learning or transfer learning methodologies and comparable datasets for BC analysis. Liu et al. (2022) followed 

suit with a grid-based deep feature generation approach on the BUS dataset, yielding a commendable accuracy 

of 97.18%, showcasing the efficacy of this method in achieving high precision. Zhuang et al. (2021) employed 

fuzzy enhancement techniques on the BUS dataset, resulting in a notable accuracy of 95.48%, demonstrating 

the potential of such preprocessing methods in improving classification performance. Alrubaie et al. (2023) 

utilized the Inception-v3 CNN architecture on both BUSI and BUS datasets, achieving remarkable accuracies 

of 96% and 100%, respectively, underscoring the robustness of their approach across different datasets. Cruz-
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Ramos et al. (2023) integrated fusion and handcrafted features on the BUSI dataset, attaining an accuracy of 

97.6% and a precision of 98%, showing the effectiveness of feature engineering in enhancing classification 

outcomes. Pang et al. (2021) leveraged a semi-supervised GAN model on the BUS dataset, achieving a notable 

accuracy of 90.41%, highlighting the potential of generative models in augmenting classification tasks. Z. 

Zhang et al. (2021) employed Bayesian YOLOv4 on a large-scale BUSI dataset, achieving a sensitivity of 0.88 

and a low rate of false positives, demonstrating the efficacy of their approach in achieving accurate tumor 

detection. Compared to these studies, our approach, which utilized a custom CNN architecture tailored 

specifically for breast ultrasound analysis, achieved competitive accuracy. We achieved 97% accuracy, 

demonstrating the effectiveness of our methodology for accurately classifying breast ultrasound. Through this 

comparative analysis, we gain valuable insights into the diverse methods and their respective successes in BC 

analysis tasks. Table 6 shows the comparison of our model with related studies. 

 

Figure 11. Comparison chart of transfer learning and Custom CNN (proposed model) 
 

Table 6. Comparison table of Proposed Model with related studies 

Study Methods Used Dataset Success Rate 

Zhuang et al. (2021) Fuzzy enhancement BUS (1328 images) 95.48% 

Cruz-Ramos et al. (2023) Fusion and handcrafted features BUSI (780 images) 97.6% 

Pang et al. (2021) Semi-supervised GAN model BUS (1447 images) 90.41% 

Z. Zhang et al. (2021) Bayesian YOLOv4 BUSI (21,624 images) 
Sens: 0.88 

FPs/S: 0.19 

Alrubaie et al. (2023) Inception-v3 CNN 
A: BUSI (780 images) 

B: BUS (9016 images) 
96% 

Proposed Model CNN BUSI (780 images) 97% 

4.5. The Grad-CAM Visualizing  

The Grad-CAM (Gradient-weighted Class Activation Mapping) technique was utilized to understand the 

internal processes of a CNN model. At the same time, it made predictions on images from the test dataset. By 

analyzing the activations of the final convolutional layer of the CNN, Grad-CAM generates heatmaps that 

highlight the regions of the input image that are most influential in determining the model's output. In this 

analysis, specific layers of the CNN architecture were chosen to visualize the activation patterns corresponding 

to different classes. Figure 12 presents the Grad-CAM heatmap for a malignant case, the heatmap for a benign 

case, and the heatmap for a normal case. Each figure exhibits four distinct visualizations, providing a 

comprehensive understanding of the model's decision-making process. First, the original input image offers 
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context. Subsequently, the Grad-CAM heatmap is overlaid onto the input image, offering a visual 

representation of the areas within the image that strongly influenced the model's prediction. To further enhance 

interpretability, two additional visualizations were created: one with the Grad-CAM heatmap overlaid with 

transparency, providing a clearer view of the heatmap's distribution, and the other utilizing a transparent jet 

colormap, facilitating a more intuitive interpretation of the heatmap. These visualizations not only aid in 

understanding which image regions contribute most to the model's decision but also offer valuable insights 

into CNN's feature extraction and classification processes. By clarifying the model's attention mechanism, 

Grad-CAM enables researchers and practitioners to validate and interpret the model's predictions, enhancing 

deep learning models' transparency, trustworthiness, and interpretability in image analysis tasks. 

5. CONCLUSION 

In conclusion, this research demonstrated the enormous potential of deep learning models, especially CNNs, 

for the efficient classification of ultrasound images in the diagnosis of BC. The subject models were easily 

interpretable; besides, they showed better diagnostic performance when advanced image processing 

techniques-segmentation and enhancement-were applied to the images. Our proposed CNN model achieved 

an accuracy of 97%, compared with other state-of-the-art models such as EfficientNetB0, MobileNet, and 

InceptionV3. This emphasizes the need for models specially tailored with the ability to handle challenges that 

come with the uniqueness of medical imaging tasks. More importantly, the interpretability and transparency 

of our models were taken further with Grad-CAM use, making the decision-making process more 

comprehensible. This is critical in the clinical field. AI diagnostic tools should be not only precise but also 

interpretable for healthcare professionals and patients to build confidence in them. These results also suggest 

the importance of strong techniques for image preprocessing. Techniques such as image enhancement and 

overlay greatly improved model performance. This work should be extended in further studies to include more 

data modalities, such as 3D ultrasound or MRI images, and more complex CNN architectures that may result 

in even better classification outcomes. Moreover, such models' ability to generalize on larger datasets with 

more diverse data would be reassuring against their clinical use. The current study provided a sufficient 

backbone regarding the application of CNNs in the diagnosis of BC by using ultrasound images and gave 

important indications on how to design more efficient and trustworthy diagnostic tools that could potentially 

improve patient outcomes. 

  

(a) Grad-CAM heatmap for a malignant case (b) Grad-CAM heatmap for a benign case 

Figure 12. The Grad-CAM heatmap for a malignant case, the heatmap for a benign case, and the heatmap 

for a normal case 
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(c) Grad-CAM heatmap for a normal case 

Figure 12. continued 
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