http://www.newtheory.org ISSN: 2149-1402 New Theory

Received: 14.01.2016 Year: 2016, Number: 14, Pages: 58-72 Published: 24.07.2016 *Original Article***

FRAGMENTED POLYALPHABETIC CIPHER

Yunus Aydoğan <yunus.programmer@gmail.com> Naim Çağman Irfan Simşek^{*} \langle naim.cagman@gop.edu.tr $>$ $\langle \text{irfan}.\text{simplek@gap.edu.tr}\rangle$

Department of Mathematics, Faculty of Arts and Sciences, Gaziosmanpasa University 60240 Tokat, Turkey

Abstract − In this study, we define a polyalphabetic cipher method that is called fragmented polyalphabetic (FP) cipher that is based on the fragmented Caesar (FC) cipher. In the FP-cipher, plaintext is encrypted by multiple encryption alphabets which are obtained by using the FC-cipher. We then construct a mathematical modeling and make a computer program of the method.

Keywords − Encryption, Decryption, Cipher, Polyalphabetic Cipher, Fragmented Polyalphabetic Cipher.

1 Introduction

One of the earliest well known cryptographic systems was used by Julius Caesar [5]. In Caesar cipher that is a simple substitution cipher and an example of monoalphabetic cipher, each letter in the plaintext is shifted by a letter a certain number of positions down the alphabet. The Caesar cipher can be decrypted in an easy way with the brute-force attack [4]. One of the first polyalphabetic ciphers called Vigenere cipher dates back to the 16th century. This cipher was named after Vigenere (1523-1596). The Vigenere cipher works by using different shift ciphers to encrypt different letters [3].

Aydoğan et al. $[1]$ defined the fragmented Caesar (FC) cipher which is based on the basic logic of Caesar cipher. The FC-cipher has more possibility then the classical Caesar cipher because of the fragmented alphabet is used to cipher. They also construct a mathematical modeling and make a computer program of the FCcipher.

In this study, we define a polyalphabetic cipher that is called fragmented polyalphabetic (FP) cipher. The FP-cipher is based on the FC-cipher. The FP-cipher is

 $*$ ^{*}Edited by Oktay Muhtaroğlu (Area Editor)

^{*}Corresponding Author.

also generalized of the Vigenere cipher. In the FC-cipher, the alphabet is broken into small fragments and each letter is replaced by a letter some arbitrary number of positions down in each fragment. The FP-cipher uses different alphabets that are obtained by using the FC-cipher to encrypt different letters. We then construct a mathematical modeling and make a computer program of this cipher method.

The present paper is a condensation of part of the dissertation [2].

2 Preliminary

In this section, we give definitions and properties of the FC-cipher which are taken directly from [1].

2.1 Mathematical Model of FC-cipher

Throughout this paper, ASCII (American Standard Code for Information Interchange) is used, $I_n = \{1, 2, ..., n\}$ for all $n \in \mathbb{N}$ is an index set and U is a set of using characters which is ordered according to the ASCII.

Definition 1. Let $|U| = n$ and $X = \{x_i : i \in I_n\}$ be an ordered set according to the index set I_n . Then,

$$
\alpha: U \to X, \quad \alpha(i\text{-th element}) = x_i, i \in I_n,
$$

is called indexing function of U . Here, x_i is called indexed element of i th element of U and the set X is called **indexed character set** of U .

Example 2. Let 1, 9, b, M , \lt and $+$ be using characters. Then, the character set U is written as $U = \{+, 1, 9, \lt, M, b\}$ since

x + 1 9 < M b ASCII 43 49 57 60 77 98

Therefore the indexed character set of U is obtained as $X = \{x_1, x_2, x_3, x_4, x_5, x_6\}$ since

x + 1 9 < M b α(x) x¹ x² x³ x⁴ x⁵ x⁶

Definition 3. Let X be an indexed character set and $|X| = n$. Then, for $a_p \in \mathbb{N}$, $p \in I_n$, a fragmentation algorithm is set up as follows:

Algorithm of Fragmentation:

Step 1: Choose a_1 such that $2 \le a_1 \le n_1 = n-2$

Step 2: Let $n_2 = n_1 - a_1$. If $n_2 > 4$, choose a_2 such that $2 \le a_2 \le n_2 - 2$, if not $a_2 = n_2$ which means the process is terminated. .

Step p: Let $n_p = n_{p-1} - a_{p-1}$. If $n_p > 4$, choose a_p such that $2 \le a_p \le n_p - 2$, if not $a_p = n_p$ which means the process is terminated.

[.] .

Here, p is called a **fragment number**, a_p is number of characters in a fragment and $P = (a_1, a_2, ..., a_n)$ is called **fragment key** of X.

We can briefly choose values a_p as follow, for $p \in I_n$ and $i \in I_p$,

$$
\begin{cases}\n2 \le a_1 \le n_1, & \text{if } p = 1, n_1 = n - 2 \\
2 \le a_p \le n_i - 2, & \text{if } p > 1, 4 < n_p, n_p = n_{p-1} - a_{p-1} \\
n_p = a_p, & \text{if } p > 1, n_p < 4, n_p = n_{p-1} - a_{p-1}\n\end{cases}
$$

Example 4. Let X be an indexed character set and $|X| = 13$. If the fragmentation algorithm is working as follows,

Step 1: Choose $a_1 = 5$ such that $2 \le a_1 \le n_1 = 13 - 2 = 11$, Step 2: Choose $a_2 = 6$ such that $2 \le a_2 \le 8 - 2$, because of $n_2 = 13 - 5 = 8$ and $8 > 4$,

Step 3: Choose $a_3 = 2$ because of $n_3 = 8 - 6 = 2$ and $2 < 4$. Then, we obtain that $p = 3$ and $P = (5, 6, 2)$.

Definition 5. Let $X = \{x_1, x_2, ..., x_n\}$ be an indexed character set. For all $i \in I_n$ and $k \in I_{n-i}$, the set $W = \{x_i, x_{i+1}, ..., x_{i+k}\}\$ is called as a **block subset** of X and denoted by $W \sqsubset X$.

Definition 6. Let X be an indexed character set, p be a number of fragment of X. If $X_i \subseteq X$ has the following conditions, then family of set $\{X_i : i \in I_p\}$ is called an ordered fragmentation of X.

- 1. $|X_i| = a_i$,
- 2. $X_i \cap X_j = \emptyset$ for $i, j \in I_p, i \neq j$,
- 3. $X =$ S $\sum_{i\in I_p} X_i,$
- 4. $x_{max(X_i)+1} = x_{min(X_{i+1})}$ for $i \in I_p$, where $x_{min(X_i)}$ and $x_{max(X_i)}$ be the first and the last element of X_i , respectively.

Here, the X_i is called a **fragment** of X for $i \in I_p$.

Example 7. Let us consider Example 4 where $X = \{x_1, x_2, ..., x_{13}\}$ and $P = (5, 6, 2)$. Then, for $a_1 = 5$, $a_2 = 6$ and $a_3 = 2$ the ordered fragmentation of X are respectively as follow,

$$
X_1 = \{x_1, x_2, x_3, x_4, x_5\}
$$

\n
$$
X_2 = \{x_6, x_7, x_8, x_9, x_{10}, x_{11}\}
$$

\n
$$
X_3 = \{x_{12}, x_{13}\}
$$

Therefor, the ordered fragmentation of X is obtained as $\{X_1, X_2, X_3\}$.

Definition 8. Let X_i be a fragment of X and a_i be the number of X_i for all $i \in I_p$. If $0 < r_i < a_i$, then $R = (r_1, r_2, ..., r_p)$ is called **rotation key** of X.

Here, the r_i is called a **number of rotation** of X_i for all $i \in I_p$.

Note that the key of this method has two part, one of them is a fragment key P and the other is a rotation key R.

Example 9. Let us consider Example 4, if we choose number of rotations $r_1 = 3$, $r_2 = 4$ and $r_3 = 1$ for X_1, X_2, X_3 , respectively. Then, the rotation key of X would be $R = (3, 4, 1)$.

Definition 10. Let X be an indexed character set, $\{X_1, X_2, ..., X_p\}$ be an ordered fragmentation of X and $P = (a_1, a_2, ..., a_p)$ be a fragment key of X. Then, m_i is defined by ½

$$
m_i = \begin{cases} 0, & i = 0\\ m_{i-1} + a_i, & i \in I_p \end{cases}
$$

and called a **module** of X_i for all $i \in I_p$.

It is clear to see that $x_{m_i} = x_{max(X_i)}$ for $i \in I_p$.

Definition 11. Let X be an indexed character set and $\{X_1, X_2, ..., X_p\}$ be an ordered fragmentation of X. If m_i is a module of X_i for all $i \in I_p$ and $R = (r_1, r_2, ..., r_p)$ is a rotation key of X, then X_i -rotation function, denoted by β_i , is defined by

$$
\beta_i: X_i \to X_i, \ \beta_i(x_t) = \begin{cases} x_{t+r_i}, & t+r_i \leq m_i \\ x_{(t+r_i)(\text{mod } m_i)+m_{i-1}}, & t+r_i > m_i \end{cases}
$$

where $t \in I_{a_i}$.

Definition 12. Let X be an indexed character set and $\{X_1, X_2, ..., X_p\}$ be an ordered fragmentation of X. If β_i is an X_i -rotation function for all $i \in I_p$, then the following function \overline{a}

$$
\beta: X \to X, \ \beta(x) = \begin{cases} \beta_1(x), & x \in X_1 \\ \beta_2(x), & x \in X_2 \\ \vdots \\ \beta_p(x), & x \in X_p \end{cases}
$$

is called a **rotation function** of X .

Definition 13. Let $\alpha: U \to X$ be an indexing function. Then for all $t \in I_n$, inverse of α is called a **characterization function** and defined by

 $\alpha^{-1}: X \to U$, $\alpha^{-1}(x_t) = "t$ -th element of U"

Definition 14. If $\alpha: U \to X$, $\alpha^{-1}: X \to U$ and $\beta: X \to X$ be indexing, characterization and rotation functions, respectively, then an encryption function on U is defined by

$$
\gamma: U \to U, \quad \gamma(x) = \alpha^{-1}(\beta(\alpha(x)))
$$

Definition 15. Let X be an indexed character set and $\{X_1, X_2, ..., X_p\}$ be an ordered fragmentation of X. If $R = (r_1, r_2, ..., r_p)$ is a rotation key of $X, \beta_i : X_i \to X_i$ is an X_i -rotation function and m_i is a module of X_i for all $i \in I_p$, then **inverse of** rotation function of X_i , denoted by β_i^{-1} i_i^{-1} , is defined by

$$
\beta_i^{-1} : X_i \to X_i,
$$
\n
$$
\beta_i^{-1}(x_t) = \begin{cases}\n x_{t+m_i - (r_i + m_{i-1})}, & t + m_i - (r_i + m_{i-1}) \le m_i \\
 x_{(t+m_i - (r_i + m_{i-1})) (mod m_i) + m_{i-1}}, & t + m_i - (r_i + m_{i-1}) > m_i\n\end{cases}
$$
\nwhere $t \in I_{a_i}$.

Definition 16. Let X be an indexed character set and $\{X_1, X_2, ..., X_p\}$ be an ordered fragmentation of X. If β_i^{-1} i^{-1} is an inverse of rotation function of X_i for all $i \in I_p$, then the following function

$$
\beta^{-1}: X \to X, \ \beta^{-1}(x) = \begin{cases} \beta_1^{-1}(x), & x \in X_1 \\ \beta_2^{-1}(x), & x \in X_2 \\ \vdots \\ \beta_p^{-1}(x), & x \in X_p \end{cases}
$$

is called a inverse of rotation function of X .

Definition 17. If $\alpha: U \to X$, $\alpha^{-1}: X \to U$, $\beta^{-1}: X \to X$ and $\gamma: U \to U$ be indexing, characterization, inverse of rotation and encryption functions, respectively, then a **decryption function** on U is defined by

$$
\gamma^{-1}: U \to U, \quad \gamma^{-1}(x) = \alpha^{-1}(\beta^{-1}(\alpha(x)))
$$

It is clear to see that $\gamma^{-1}(x) = \alpha^{-1}(\beta^{-1}((\alpha^{-1})^{-1}(x))) = \alpha^{-1}(\beta^{-1}(\alpha(x))).$

Definition 18. Let U be a character set, P be a fragment key, R be a rotation key and γ be an encryption function. The four tuple (U, P, R, γ) is called an **FC-cipher** encryption on U. The four tuple (U, P, R, γ^{-1}) is called an FC-cipher decryption on U .

2.2 FC-cipher Encryption Algorithm

In this subsection, we give the algorithm of FC-cipher.

Assume that U is a character set and X is an indexed character set. Then, an algorithm of the FC-cipher encryption is set up as follows:

Algorithm of FC-cipher Encryption:

Step 1: Find the fragment number p and the $P = (a_1, a_2, ..., a_p)$, Step 2: Choose the $R = (r_1, r_2, ..., r_p)$ according to the P, Step 3: Find the $\{X_i : i \in I_p\}$ and the module m_i for each X_i , Step 4: Find the $\beta_i(x_t)$ for $x_t \in X_i$ $t \in I_{a_i}$ and $i \in I_p$, Step 5: Find the $\alpha^{-1}(x_t)$ for $x_t \in X_i$, $t \in I_{a_i}$ and $i \in I_p$, Step 6: Find the $\gamma(x)$ for $x \in U$.

Example 19. Let

$$
U = \{ \emptyset, d, e, f, g, \breve{g}, h, \eta, a, b, c, m, n, i, j, k, l, u, \ddot{u}, o, \ddot{o}, p, r, s, s, t, z, v, y \}
$$

and

$$
X = \{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}, ..., x_{29}\}
$$

Then,

Step 1: By using the algorithm of fragmentation, we can obtain the fragment number $p = 4$ and the $P = (11, 6, 9, 3)$ where $a_1 = 11$, $a_2 = 6$, $a_3 = 9$ and $a_4 = 3$.

Step 2: For $a_1 = 11$, $a_2 = 6$, $a_3 = 9$ and $a_4 = 3$ the rotation key is obtained as $R = (3, 4, 7, 2)$ since $0 < r_1 = 3 < a_1 = 11$, $0 < r_2 = 4 < a_2 = 6$, $0 < r_3 = 7 <$ $a_3 = 9$, $0 < r_1 = 2 < a_4 = 3$.

Step 3: For a_i $(i = 1, 2, 3, 4)$ the fragments of X, X_i , are obtained as,

for
$$
a_1 = 11
$$
, $X_1 = \{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}\}$
for $a_2 = 6$, $X_2 = \{x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}\}$
for $a_3 = 9$, $X_3 = \{x_{18}, x_{19}, x_{20}, x_{21}, x_{22}, x_{23}, x_{24}, x_{25}, x_{26}\}$
for $a_4 = 3$, $X_4 = \{x_{27}, x_{28}, x_{29}\}$

and value of m_i $(i = 0, 1, 2, 3, 4)$ can also choose as,

for
$$
i = 0
$$
, $m_0 = 0$
\nfor $i = 1$, $m_1 = (m_0 = 0) + (a_1 = 11) = 11$
\nfor $i = 2$, $m_2 = (m_1 = 11) + (a_2 = 6) = 17$
\nfor $i = 3$, $m_3 = (m_2 = 17) + (a_3 = 9) = 26$
\nfor $i = 4$, $m_4 = (m_3 = 26) + (a_4 = 3) = 29$.

Step 4: For $i = 1, 2, 3, 4$ values of the X_i -rotation function β_i are obtained as follows. Here, we first obtain the values of β_1 as,

$$
\beta_1(x_1) = x_4, \quad \text{since } 1 + r_1 = 1 + 3 = 4 \text{ because of } 1 + 3 < 11
$$
\n
$$
\beta_1(x_2) = x_5, \quad \text{since } 2 + r_1 = 1 + 3 = 5 \text{ because of } 2 + 3 < 11
$$
\n
$$
\beta_1(x_3) = x_6, \quad \text{since } 3 + r_1 = 1 + 3 = 6 \text{ because of } 3 + 3 < 11
$$
\n
$$
\beta_1(x_4) = x_7, \quad \text{since } 4 + r_1 = 1 + 3 = 7 \text{ because of } 4 + 3 < 11
$$
\n
$$
\beta_1(x_5) = x_8, \quad \text{since } 5 + r_1 = 1 + 3 = 8 \text{ because of } 5 + 3 < 11
$$
\n
$$
\beta_1(x_6) = x_9, \quad \text{since } 6 + r_1 = 1 + 3 = 9 \text{ because of } 6 + 3 < 11
$$
\n
$$
\beta_1(x_7) = x_{10}, \quad \text{since } 7 + r_1 = 1 + 3 = 10 \text{ because of } 7 + 3 < 11
$$
\n
$$
\beta_1(x_8) = x_{11}, \quad \text{since } 8 + r_1 = 1 + 3 = 11 \text{ because of } 8 + 3 = 11
$$
\n
$$
\beta_1(x_9) = x_1, \quad \text{since } (9 + 3)(\text{mod } 11) + 0 = 1 \text{ because of } 9 + 3 > 11
$$
\n
$$
\beta_1(x_{10}) = x_2, \quad \text{since } (10 + 3)(\text{mod } 11) + 0 = 2 \text{ because of } 10 + 3 > 11
$$
\n
$$
\beta_1(x_{11}) = x_3, \quad \text{since } (11 + 3)(\text{mod } 11) + 0 = 3 \text{ because of } 11 + 3 > 11
$$

and for $i = 2, 3, 4$ the values of β_i are obtained similarly. Hence

X¹ x¹ x² x³ x⁴ x⁵ x⁶ x⁷ x⁸ x⁹ x¹⁰ x¹¹ β¹ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ X¹ x⁴ x⁵ x⁶ x⁷ x⁸ x⁹ x¹⁰ x¹¹ x¹ x² x³ X² x¹² x¹³ x¹⁴ x¹⁵ x¹⁶ x¹⁷ β² ↓ ↓ ↓ ↓ ↓ ↓ X² x¹⁶ x¹⁷ x¹² x¹³ x¹⁴ x¹⁵ X³ x¹⁸ x¹⁹ x²⁰ x²¹ x²² x²³ x²⁴ x²⁵ x²⁶ β³ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ X³ x²⁵ x²⁶ x¹⁸ x¹⁹ x²⁰ x²¹ x²² x²³ x²⁴ X⁴ x²⁷ x²⁸ x²⁹ β⁴ ↓ ↓ ↓ X⁴ x²⁹ x²⁷ x²⁸

Figure 1: Encryption of "ankara" by FCEA

2.3 FC-cipher Decryption Algorithm

In this subsection, we give the algorithm of FC-cipher decryption method.

Assume that U is a character set and X is an indexed character set. Then, an algorithm of the FC-cipher decryption is set up as follows:

Algorithm of FC-cipher Decryption:

Step 1: Use the $\{X_i : i \in I_p\}$ and the module m_i for each X_i , *Step 2:* Find the β_i^{-1} $i_i^{-1}(x_t)$ for $x_t \in X_i$, $t \in I_{a_i}$ and $i \in I_p$, Step 3: Find the $\alpha^{-1}(x)$ for $x \in U$, Step 4: Find the $\gamma^{-1}(x)$ for $x \in U$.

Example 20. Let us consider the result of Example 19 where

 $U = \{ \emptyset, d, e, f, g, \breve{g}, h, \iota, a, b, c, m, n, i, j, k, l, u, \breve{u}, o, \breve{o}, p, r, s, s, t, z, v, y \}$

and

$$
X = \{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}, ..., x_{29}\}
$$

Then,

Step 1: In Example 19, for a_i $(i = 1, 2, 3, 4)$ the fragments of X, X_i , and was obtained as

for
$$
a_1 = 11
$$
, $X_1 = \{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}\}$
for $a_2 = 6$, $X_2 = \{x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}\}$
for $a_3 = 9$, $X_3 = \{x_{18}, x_{19}, x_{20}, x_{21}, x_{22}, x_{23}, x_{24}, x_{25}, x_{26}\}$
for $a_4 = 3$, $X_4 = \{x_{27}, x_{28}, x_{29}\}$

and value of m_i $(i = 0, 1, 2, 3, 4)$ was also choosen as,

Step 2: For $i = 1, 2, 3, 4$ values of the X_i -rotation function β_i^{-1} i^{-1} are obtained as follows. Here, we first obtain the values of β_1^{-1} as,

and for $i = 2, 3, 4$ the values of β_i^{-1} i_i^{-1} are obtained similarly. Hence,

X¹ x¹ x² x³ x⁴ x⁵ x⁶ x⁷ x⁸ x⁹ x¹⁰ x¹¹ β −1 ¹ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ X¹ x⁹ x¹⁰ x¹¹ x¹ x² x³ x⁴ x⁵ x⁶ x⁷ x⁸ X² x¹² x¹³ x¹⁴ x¹⁵ x¹⁶ x¹⁷ β −1 ² ↓ ↓ ↓ ↓ ↓ ↓ X² x¹⁴ x¹⁵ x¹⁶ x¹⁷ x¹² x¹³ X³ x¹⁸ x¹⁹ x²⁰ x²¹ x²² x²³ x²⁴ x²⁵ x²⁶ β −1 ³ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ X³ x²⁰ x²¹ x²² x²³ x²⁴ x²⁵ x²⁶ x¹⁸ x¹⁹ X⁴ x²⁷ x²⁸ x²⁹ β −1 ⁴ ↓ ↓ ↓ X⁴ x²⁹ x²⁷ x²⁸ and therefore,

 $X \begin{array}{|l|} x_1 & x_2 & ... & x_{11} \end{array}$ x_{12} x_{13} ... x_{17} x_{18} x_{19} ... x_{26} x_{27} x_{28} x_{29} β−¹ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ $X \begin{array}{|l|} x_9 \quad x_{10} \quad ... \quad x_8 \quad x_{14} \quad x_{15} \quad ... \quad x_{13} \quad x_{20} \quad x_{21} \quad ... \quad x_{19} \quad x_{29} \quad x_{27} \quad x_{28} \end{array}$

Step 3: Values of the characterization function α^{-1} are obtained as following list:

 $X \mid x_9 \quad x_{10} \quad ... \quad x_8 \mid x_{14} \quad x_{15} \quad ... \quad x_{13} \mid x_{20} \quad x_{21} \quad ... \quad x_{19} \mid x_{29} \quad x_{27} \quad x_{28}$ α−¹ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ U ab ... 1 i j ... n o ö ... ü v y z Step 4: Values of the decryption function γ^{-1} are obtained as following list: $U \mid \emptyset$ def g \emptyset h ı a b c m n o i j k ... z v y γ−¹ ↓ U abc çdef gğhı i jklmn... v y z

In this example we showed that the ciphertext "clic^oc" is decrypted as "ankara".

3 Fragmented Polyalphabetic Cipher

In this section, we define a new cipher method which is called fragmented polyalphabetic cipher (FP-cipher) based on the FC-cipher. In the FP-cipher, the plaintext is encrypted by multiple encryption alphabets which are obtained by using the FCcipher.

From now on, we use $k \in \mathbb{N}$ as a number of encrypted alphabets that are obtained by using the FC-cipher.

3.1 Mathematical Model of FP-cipher

In this subsection, we first give a mathematical model of the FP-cipher. We then write an algorithm of the FP-cipher to make a computer program.

Definition 21. Let U be a character set and $\gamma_i: U \to U$ be an encryption function for all $i \in I_k$. If all of the characters in the plaintext are indexed as $y_1y_2...y_q$ for $q \in \mathbb{N}$, then a k-multiple encryption function on U is defined by

$$
\delta_k: U \to U, \quad \delta_k(y_t) = \begin{cases} \gamma_i(y_t), & t \equiv i (mod k) \\ \gamma_k(y_t), & t \equiv 0 (mod k) \end{cases}
$$

for all $t \in I_q$ and $i \in I_k$.

Definition 22. Let U be a character set and γ_i^{-1} $i_i^{-1}: U \to U$ be an encryption function for all $i \in I_k$. If all of the characters in the ciphertext are indexed as $s_1s_2...s_q$ for $q \in \mathbb{N}$, then a k-multiple decryption function on U is defined by

$$
\delta_k^{-1}: U \to U, \quad \delta_k^{-1}(s_t) = \begin{cases} \gamma_i^{-1}(s_t), & t \equiv i (mod \, k) \\ \gamma_k^{-1}(s_t), & t \equiv 0 (mod \, k) \end{cases}
$$

for all $t \in I_q$ and $i \in I_k$.

The Definitions 21 and 22 are demonstrated in Figure 2.

Definition 23. Let U be a character set and P_i be a fragment key, R_i be a rotation key for all $i \in I_k$. Then a k-multiple fragment key and k-multiple rotation key are defined as follow, respectively

$$
P_k = (P_1, P_2, ..., P_k), \quad R_k = (R_1, R_2, ..., R_k).
$$

Figure 2: FP-cipher

Definition 24. Let (U, P_i, R_i, γ_i) be an FC-cipher encryption and $(U, P_i, R_i, \gamma_i^{-1})$ be an FC-cipher decryption on U for all $i \in I_k$. Then, each five tuple

 $(U, k, P_k, R_k, \delta_k), \quad (U, k, P_k, R_k, \delta_k^{-1})$

is called an **FP-cipher encryption** and **FP-cipher decryption** on U , respectively.

3.2 FP-cipher Encryption Algorithm

In this subsection, we give an algorithm of the FP-cipher encryption method.

Assume that all of characters in a plaintext are be indexed as $y_1y_2...y_q$ and k be a number of encrypted alphabets that are obtained by using the FC-cipher. Then, an algorithm of the FP-cipher encryption is set up as follow:

Algorithm of FP-cipher Encryption

Step 1 : Find the $P_k = (P_1, P_2, ..., P_k)$ and $R_k = (R_1, R_2, ..., R_k)$, *Step 2*: Find the values of γ_i for $i \in I_k$, Step 3: Find the values $\delta(y_t)$ for all $t \in I_q$.

Example 25. Let

 $U = \{a, b, c, \varsigma, d, e, f, g, \breve{g}, h, i, j, k, l, m, n, o, \ddot{o}, p, r, s, s, t, u, \ddot{u}, v, y, z\}$

be a character set and "ankara" be a plaintext. Assume that this plaintext is indexed as $y_1y_2y_3y_4y_5y_6$ and encrypted by 3-FP-cipher encryption. Then,

Step 1 : The P_i and R_i can be obtained by using the FC-cipher as follow,

Step 2: For $i = 1, 2, 3$, the values $\gamma_i(x)$ are obtained as follow,

				m n o \ddot{o} p r s s t u \ddot{u} v y z			
				k l s t u ü v o ö p r s z y			
				1 i j k s ş t p r y z u ü v			
				öprs ştumnovyzü			

Step 3: For all $t \in I_6$, the values $\delta(y_t)$ are obtained as follow,

Therefore,

$$
\begin{array}{c|cccc}\ny_t & a & n & k & a & r & a \\
\hline\n\delta(y_t) & d & i & 1 & d & s & c\n\end{array}
$$

This example is demonstrated in Figure 3.

Figure 3: Encrypting the word of "ankara" by FP-cipher

3.3 FP-cipher Decryption Algorithm

In this subsection, we give an algorithm of the FP-cipher decryption method.

Assume that all of characters in a ciphertext are indexed as $s_1s_2...s_q$. Here, we have to use the same values of P_i and R_i are obtained in the encryption. Then, an algorithm of the FP-cipher decryption is set up as follow.

Algorithm of FP-cipher Decryption

Step 1 : Find the values of γ_i^{-1} i_i^{-1} for $i \in I_k$, Step 2: Find the values $\delta^{-1}(s_t)$ for all $t \in I_q$.

Example 26. Let us consider Example 25 where "ankara" was encrypted as "dildsc". Now, the cipher text "dildsc" is decrypted. Here, we have to use same values of P_i and R_i in Example 25. Assume that this ciphertext is indexed as $s_1s_2s_3s_4s_5s_6$ and decrypted by 3-FP-cipher decryption. Then,

Step 1: For $i = 1, 2, 3$, the values γ_i^{-1} $i_i^{-1}(x)$ are obtained as follow,

										$x \mid a$ b c ç d e f g ğ h ı i j k l m n o ö		
$\gamma_1^{-1}(x)$ def g ğ h ı a b c ç m n i j k l ş t												
$\gamma_2^{-1}(x)$ c d e f g ğ h a b c l m n o ö ı i j k												
$\overline{\gamma_3^{-1}(x)\mid}$ cç dabgğhı efjkliöprs												
						$\gamma_1^{-1}(x)$ u ü v o ö p r s z y						
			$\gamma_2^{-1}(x)$			sştpryzuüv						
						$\gamma_3^{-1}(x)$ s t u m n o v y z ü						
				\mathbf{X}		pr s ş t u ü v y z						

Step 3: For all $t \in I_6$, the values $\delta^{-1}(s_t)$ are obtained as follow,

Therefore,

$$
\begin{array}{c|cccccc} s_t & d & i & 1 & d & s & c \\ \hline \delta^{-1}(s_t) & a & n & k & a & r & a \end{array}
$$

3.4 FP-cipher Program Codes

In this subsection, FP-cipher is programmed by using $C#$ as follows:

```
private void btn_alfabe_olustur_Click(object sender, EventArgs e)
{
   //txtanahtar.Text = "";
   if (rdsifre.Checked)
```

```
{
    txtanahtar.Text = "";
    //anahtar oluşturma
    for (int i = 0; i \lt trczorluk.Value; i++)
    {
        System.Threading.Thread.Sleep(500);
        string anahtar = _ anahtar(alf_metin().Length);
        txtanahtar.Text += anahtar.Substring(0,
                                      anahtar.Length - 1) + "*";
    }
}
//sanal matris oluşturma
DataTable matris = new DataTable();
for (int i = 0; i \leq \text{alf_matrix}(). Length; i++){
    matris.Columns.Add(alf_metin()[i]);
}
string[] key = txtanahtar.Text.Substring(0,
                         txtanahtar.Text.Length - 1).Split('*');
for (int i = 0; i < key.length; i++){
    int alfabe_sayac = 1;
    string[] parca = key[i].Substring(0, key[i].Length).
                                           ToString().Split('-');
    string[][] U = new string[parca.Length][];//(Açık U)
    string[] [] SU = new string [parca.Length][];//(Sifreli U)
    //alfabenin kümelere bölnmesi
    for (int j = 0; j < parca. Length; j++){
        string[] parca_a = parca[j].ToString().Split(',');
        int P = int.Parse(parca_a[0]); //parca anahtariU[j] = new string[alf_metin().Length+1];
        SU[j] = new string[alf_metin().Length+1];
        for (int x = 0; x < P; x^{++})
        {
            U[j][alfabe_sayac] = alf_metin()[alfabe_sayac-1];
            alfabe_sayac++;
        }
    }
    //alfabenin şifrelenmesi
    int m = 0;
    int indis = 1;
    for (int j = 0; j < U. Length; j^{++})
    {
        string[] parca_a = parca[j].ToString().Split(',');
        int P = int.Parse(parca_a[0]); //parça anahtarı
        int R = int.Parse(parca_a[1]); //öteleme anahtarı
```

```
m += P;
        for (int x = 0; x < P; x^{++})
        {
            int k = 0;
            if ((indis+R)<=m) //öteleme fonksiyonu
            {
                k = indis + R;}
            else if ((indis + R) > m){
                k = ((indis + R) % m) + (m-P);}
            SU[j][indis] = U[j][k];
            indis++;
        }
    }
    //matrise değerlerin eklenmsi
    matris.Rows.Add();
    int alsayac = 0;
    for (int j = 0; j < U. Length; j++){
        string[] parca_a = parca[j].ToString().Split(',');
        int P = int.Parse(parca_a[0]); //parça anahtarı
        for (int x = 0; x < P; x++)
        {
            matris.Rows[i][alsayac] = SU[i][alsayac + 1];
            alsayac++;
        }
    }
    dataGridView1.DataSource = matris;
}
```
4 Conclusions

}

In this work, we defined the FP-cipher that is a generalization of the Vigenere cipher. The Vigenere cipher is a type of polyalphabetic cipher in which different shift ciphers are used to encryption. In the FP-cipher, plaintext is encrypted by multiple encryption alphabets which are obtained by using the FC-cipher. Therefore, the key space of FP-cipher cipher has more possibility then the Vigenere cipher. We then constructed a mathematical modeling and make a computer program of the method.

References

- [1] Y. Aydoğan, N. Çağman, I. Şimşek, Fragmented Caesar Cipher, Journal of New Theory 14 (2016) 46-57.
- [2] Y. Aydoğan, Multi Fragmented Caesar Cipher Method and its Applications (in Turkish), MSc Thesis, Gaziosmanpasa University, Graduate School of Natural and Applied Science, 2014.
- [3] J. Hoffstein, J. Pipher and J. H. Silverman, An Introduction to Mathematical Cryptograph, Springer-Newyork, 2008.
- [4] C. Paar, J. Pelzl, Understanding Cryptograph, Springer-Verlag, 2010.
- [5] A. Sinkov, Elementary Cryptanalysis A Mathematical Approach, New Mathematical Library, No. 22, Mathematical Association of America, 1966.