http://www.newtheory.org

ISSN: 2149-1402

Received: 14.01.2016 Published: 24.07.2016 Year: 2016, Number: 14, Pages: 58-72 Original Article^{**}

FRAGMENTED POLYALPHABETIC CIPHER

Yunus Aydoğan <yunus.programmer@gmail.com> Naim Çağman <naim.cagman@gop.edu.tr> Irfan Şimşek^{*} <irfan.simsek@gop.edu.tr>

Department of Mathematics, Faculty of Arts and Sciences, Gaziosmanpaşa University60240 Tokat, Turkey

Abstract — In this study, we define a polyalphabetic cipher method that is called fragmented polyalphabetic (FP) cipher that is based on the fragmented Caesar (FC) cipher. In the FP-cipher, plaintext is encrypted by multiple encryption alphabets which are obtained by using the FC-cipher. We then construct a mathematical modeling and make a computer program of the method.

Keywords – Encryption, Decryption, Cipher, Polyalphabetic Cipher, Fragmented Polyalphabetic Cipher.

1 Introduction

One of the earliest well known cryptographic systems was used by Julius Caesar [5]. In Caesar cipher that is a simple substitution cipher and an example of monoalphabetic cipher, each letter in the plaintext is shifted by a letter a certain number of positions down the alphabet. The Caesar cipher can be decrypted in an easy way with the brute-force attack [4]. One of the first polyalphabetic ciphers called Vigenere cipher dates back to the 16th century. This cipher was named after Vigenere (1523-1596). The Vigenere cipher works by using different shift ciphers to encrypt different letters [3].

Aydoğan et al. [1] defined the fragmented Caesar (FC) cipher which is based on the basic logic of Caesar cipher. The FC-cipher has more possibility then the classical Caesar cipher because of the fragmented alphabet is used to cipher. They also construct a mathematical modeling and make a computer program of the FCcipher.

In this study, we define a polyalphabetic cipher that is called fragmented polyalphabetic (FP) cipher. The FP-cipher is based on the FC-cipher. The FP-cipher is

^{**} Edited by Oktay Muhtaroğlu (Area Editor)

^{*} Corresponding Author.

also generalized of the Vigenere cipher. In the FC-cipher, the alphabet is broken into small fragments and each letter is replaced by a letter some arbitrary number of positions down in each fragment. The FP-cipher uses different alphabets that are obtained by using the FC-cipher to encrypt different letters. We then construct a mathematical modeling and make a computer program of this cipher method.

The present paper is a condensation of part of the dissertation [2].

2 Preliminary

In this section, we give definitions and properties of the FC-cipher which are taken directly from [1].

2.1 Mathematical Model of FC-cipher

Throughout this paper, ASCII (American Standard Code for Information Interchange) is used, $I_n = \{1, 2, ..., n\}$ for all $n \in \mathbb{N}$ is an index set and U is a set of using characters which is ordered according to the ASCII.

Definition 1. Let |U| = n and $X = \{x_i : i \in I_n\}$ be an ordered set according to the index set I_n . Then,

$$\alpha: U \to X, \quad \alpha(i\text{-th element}) = x_i, i \in I_n,$$

is called **indexing function** of U. Here, x_i is called **indexed element** of *i*th element of U and the set X is called **indexed character set** of U.

Example 2. Let 1, 9, b, M, < and + be using characters. Then, the character set U is written as $U = \{+, 1, 9, <, M, b\}$ since

Therefore the indexed character set of U is obtained as $X = \{x_1, x_2, x_3, x_4, x_5, x_6\}$ since

Definition 3. Let X be an indexed character set and |X| = n. Then, for $a_p \in \mathbb{N}$, $p \in I_n$, a fragmentation algorithm is set up as follows:

Algorithm of Fragmentation:

Step 1: Choose a_1 such that $2 \le a_1 \le n_1 = n - 2$

Step 2: Let $n_2 = n_1 - a_1$. If $n_2 > 4$, choose a_2 such that $2 \le a_2 \le n_2 - 2$, if not $a_2 = n_2$ which means the process is terminated.

Step p: Let $n_p = n_{p-1} - a_{p-1}$. If $n_p > 4$, choose a_p such that $2 \le a_p \le n_p - 2$, if not $a_p = n_p$ which means the process is terminated.

[÷]

Here, p is called a **fragment number**, a_p is number of characters in a fragment and $P = (a_1, a_2, ..., a_p)$ is called **fragment key** of X.

We can briefly choose values a_p as follow, for $p \in I_n$ and $i \in I_p$,

$$\begin{cases} 2 \le a_1 \le n_1, & \text{if } p = 1, \ n_1 = n - 2\\ 2 \le a_p \le n_i - 2, & \text{if } p > 1, \ 4 < n_p, \ n_p = n_{p-1} - a_{p-1}\\ n_p = a_p, & \text{if } p > 1, \ n_p < 4, \ n_p = n_{p-1} - a_{p-1} \end{cases}$$

Example 4. Let X be an indexed character set and |X| = 13. If the fragmentation algorithm is working as follows,

Step 1: Choose $a_1 = 5$ such that $2 \le a_1 \le n_1 = 13 - 2 = 11$,

Step 2: Choose $a_2 = 6$ such that $2 \le a_2 \le 8 - 2$, because of $n_2 = 13 - 5 = 8$ and 8 > 4,

Step 3: Choose $a_3 = 2$ because of $n_3 = 8 - 6 = 2$ and 2 < 4. Then, we obtain that p = 3 and P = (5, 6, 2).

Definition 5. Let $X = \{x_1, x_2, ..., x_n\}$ be an indexed character set. For all $i \in I_n$ and $k \in I_{n-i}$, the set $W = \{x_i, x_{i+1}, ..., x_{i+k}\}$ is called as a **block subset** of X and denoted by $W \sqsubseteq X$.

Definition 6. Let X be an indexed character set, p be a number of fragment of X. If $X_i \sqsubseteq X$ has the following conditions, then family of set $\{X_i : i \in I_p\}$ is called an **ordered fragmentation** of X.

- 1. $|X_i| = a_i$,
- 2. $X_i \cap X_j = \emptyset$ for $i, j \in I_p, i \neq j$,
- 3. $X = \bigcup_{i \in I_p} X_i$,
- 4. $x_{max(X_i)+1} = x_{min(X_{i+1})}$ for $i \in I_p$, where $x_{min(X_i)}$ and $x_{max(X_i)}$ be the first and the last element of X_i , respectively.

Here, the X_i is called a **fragment** of X for $i \in I_p$.

Example 7. Let us consider Example 4 where $X = \{x_1, x_2, ..., x_{13}\}$ and P = (5, 6, 2). Then, for $a_1 = 5$, $a_2 = 6$ and $a_3 = 2$ the ordered fragmentation of X are respectively as follow,

$$X_1 = \{x_1, x_2, x_3, x_4, x_5\} X_2 = \{x_6, x_7, x_8, x_9, x_{10}, x_{11}\} X_3 = \{x_{12}, x_{13}\}$$

Therefor, the ordered fragmentation of X is obtained as $\{X_1, X_2, X_3\}$.

Definition 8. Let X_i be a fragment of X and a_i be the number of X_i for all $i \in I_p$. If $0 < r_i < a_i$, then $R = (r_1, r_2, ..., r_p)$ is called **rotation key** of X.

Here, the r_i is called a **number of rotation** of X_i for all $i \in I_p$.

Note that the key of this method has two part, one of them is a fragment key P and the other is a rotation key R.

Example 9. Let us consider Example 4, if we choose number of rotations $r_1 = 3$, $r_2 = 4$ and $r_3 = 1$ for X_1 , X_2 , X_3 , respectively. Then, the rotation key of X would be R = (3, 4, 1).

Definition 10. Let X be an indexed character set, $\{X_1, X_2, ..., X_p\}$ be an ordered fragmentation of X and $P = (a_1, a_2, ..., a_p)$ be a fragment key of X. Then, m_i is defined by

$$m_i = \begin{cases} 0, & i = 0\\ m_{i-1} + a_i, & i \in I_p \end{cases}$$

and called a **module** of X_i for all $i \in I_p$.

It is clear to see that $x_{m_i} = x_{max(X_i)}$ for $i \in I_p$.

Definition 11. Let X be an indexed character set and $\{X_1, X_2, ..., X_p\}$ be an ordered fragmentation of X. If m_i is a module of X_i for all $i \in I_p$ and $R = (r_1, r_2, ..., r_p)$ is a rotation key of X, then X_i-rotation function, denoted by β_i , is defined by

$$\beta_i : X_i \to X_i, \ \beta_i(x_t) = \begin{cases} x_{t+r_i}, & t+r_i \le m_i \\ x_{(t+r_i)(mod \ m_i)+m_{i-1}}, & t+r_i > m_i \end{cases}$$

where $t \in I_{a_i}$.

Definition 12. Let X be an indexed character set and $\{X_1, X_2, ..., X_p\}$ be an ordered fragmentation of X. If β_i is an X_i -rotation function for all $i \in I_p$, then the following function

$$\beta: X \to X, \ \beta(x) = \begin{cases} \beta_1(x), & x \in X_1 \\ \beta_2(x), & x \in X_2 \\ \vdots \\ \beta_p(x), & x \in X_p \end{cases}$$

is called a **rotation function** of X.

Definition 13. Let $\alpha : U \to X$ be an indexing function. Then for all $t \in I_n$, inverse of α is called a **characterization function** and defined by

 $\alpha^{-1}: X \to U, \quad \alpha^{-1}(x_t) = "t-\text{th element of U}"$

Definition 14. If $\alpha : U \to X$, $\alpha^{-1} : X \to U$ and $\beta : X \to X$ be indexing, characterization and rotation functions, respectively, then an **encryption function** on U is defined by

$$\gamma: U \to U, \quad \gamma(x) = \alpha^{-1}(\beta(\alpha(x)))$$

Definition 15. Let X be an indexed character set and $\{X_1, X_2, ..., X_p\}$ be an ordered fragmentation of X. If $R = (r_1, r_2, ..., r_p)$ is a rotation key of $X, \beta_i : X_i \to X_i$ is an X_i -rotation function and m_i is a module of X_i for all $i \in I_p$, then **inverse of rotation function** of X_i , denoted by β_i^{-1} , is defined by

$$\beta_i^{-1}: X_i \to X_i, \qquad \qquad t + m_i - (r_i + m_{i-1}) \le m_i \\ \beta_i^{-1}(x_t) = \begin{cases} x_{t+m_i - (r_i + m_{i-1})}, & t + m_i - (r_i + m_{i-1}) \le m_i \\ x_{(t+m_i - (r_i + m_{i-1}))(mod \, m_i) + m_{i-1}}, & t + m_i - (r_i + m_{i-1}) > m_i \end{cases} \text{ where } t \in I_{a_i}.$$

Definition 16. Let X be an indexed character set and $\{X_1, X_2, ..., X_p\}$ be an ordered fragmentation of X. If β_i^{-1} is an inverse of rotation function of X_i for all $i \in I_p$, then the following function

$$\beta^{-1}: X \to X, \ \beta^{-1}(x) = \begin{cases} \beta_1^{-1}(x), & x \in X_1 \\ \beta_2^{-1}(x), & x \in X_2 \\ \vdots \\ \beta_p^{-1}(x), & x \in X_p \end{cases}$$

is called a **inverse of rotation function** of X.

Definition 17. If $\alpha : U \to X$, $\alpha^{-1} : X \to U$, $\beta^{-1} : X \to X$ and $\gamma : U \to U$ be indexing, characterization, inverse of rotation and encryption functions, respectively, then a **decryption function** on U is defined by

$$\gamma^{-1}: U \to U, \quad \gamma^{-1}(x) = \alpha^{-1}(\beta^{-1}(\alpha(x)))$$

It is clear to see that $\gamma^{-1}(x) = \alpha^{-1}(\beta^{-1}((\alpha^{-1})^{-1}(x))) = \alpha^{-1}(\beta^{-1}(\alpha(x))).$

Definition 18. Let U be a character set, P be a fragment key, R be a rotation key and γ be an encryption function. The four tuple (U, P, R, γ) is called an **FC-cipher encryption** on U. The four tuple (U, P, R, γ^{-1}) is called an **FC-cipher decryption** on U.

2.2 FC-cipher Encryption Algorithm

In this subsection, we give the algorithm of FC-cipher.

Assume that U is a character set and X is an indexed character set. Then, an algorithm of the FC-cipher encryption is set up as follows:

Algorithm of FC-cipher Encryption:

Step 1: Find the fragment number p and the $P = (a_1, a_2, ..., a_p)$, Step 2: Choose the $R = (r_1, r_2, ..., r_p)$ according to the P, Step 3: Find the $\{X_i : i \in I_p\}$ and the module m_i for each X_i , Step 4: Find the $\beta_i(x_t)$ for $x_t \in X_i$ $t \in I_{a_i}$ and $i \in I_p$, Step 5: Find the $\alpha^{-1}(x_t)$ for $x_t \in X_i$, $t \in I_{a_i}$ and $i \in I_p$, Step 6: Find the $\gamma(x)$ for $x \in U$.

Example 19. Let

$$U = \{$$
ç, d, e, f, g, ğ, h, ı, a, b, c, m, n, i, j, k, l, u, ü, o, ö, p,r, s, ş, t, z, v, y $\}$

and

$$X = \{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}, \dots, x_{29}\}$$

Then,

Step 1: By using the algorithm of fragmentation, we can obtain the fragment number p = 4 and the P = (11, 6, 9, 3) where $a_1 = 11$, $a_2 = 6$, $a_3 = 9$ and $a_4 = 3$.

Step 2: For $a_1 = 11$, $a_2 = 6$, $a_3 = 9$ and $a_4 = 3$ the rotation key is obtained as R = (3, 4, 7, 2) since $0 < r_1 = 3 < a_1 = 11$, $0 < r_2 = 4 < a_2 = 6$, $0 < r_3 = 7 < a_3 = 9$, $0 < r_1 = 2 < a_4 = 3$.

Step 3: For a_i (i = 1, 2, 3, 4) the fragments of X, X_i , are obtained as,

for
$$a_1 = 11$$
, $X_1 = \{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}\}$
for $a_2 = 6$, $X_2 = \{x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}\}$
for $a_3 = 9$, $X_3 = \{x_{18}, x_{19}, x_{20}, x_{21}, x_{22}, x_{23}, x_{24}, x_{25}, x_{26}\}$
for $a_4 = 3$, $X_4 = \{x_{27}, x_{28}, x_{29}\}$

and value of m_i (i = 0, 1, 2, 3, 4) can also choose as,

for
$$i = 0$$
, $m_0 = 0$
for $i = 1$, $m_1 = (m_0 = 0) + (a_1 = 11) = 11$
for $i = 2$, $m_2 = (m_1 = 11) + (a_2 = 6) = 17$
for $i = 3$, $m_3 = (m_2 = 17) + (a_3 = 9) = 26$
for $i = 4$, $m_4 = (m_3 = 26) + (a_4 = 3) = 29$.

Step 4: For i = 1, 2, 3, 4 values of the X_i -rotation function β_i are obtained as follows. Here, we first obtain the values of β_1 as,

$$\begin{array}{ll} \beta_1(x_1)=x_4, & {\rm since}\ 1+r_1=1+3=4 \ {\rm because}\ {\rm of}\ 1+3<11\\ \beta_1(x_2)=x_5, & {\rm since}\ 2+r_1=1+3=5 \ {\rm because}\ {\rm of}\ 2+3<11\\ \beta_1(x_3)=x_6, & {\rm since}\ 3+r_1=1+3=6 \ {\rm because}\ {\rm of}\ 3+3<11\\ \beta_1(x_4)=x_7, & {\rm since}\ 4+r_1=1+3=7 \ {\rm because}\ {\rm of}\ 4+3<11\\ \beta_1(x_5)=x_8, & {\rm since}\ 5+r_1=1+3=8 \ {\rm because}\ {\rm of}\ 5+3<11\\ \beta_1(x_6)=x_9, & {\rm since}\ 6+r_1=1+3=9 \ {\rm because}\ {\rm of}\ 6+3<11\\ \beta_1(x_7)=x_{10}, & {\rm since}\ 7+r_1=1+3=10 \ {\rm because}\ {\rm of}\ 7+3<11\\ \beta_1(x_8)=x_{11}, & {\rm since}\ 8+r_1=1+3=11 \ {\rm because}\ {\rm of}\ 8+3=11\\ \beta_1(x_{9})=x_1, & {\rm since}\ (9+3)(mod\ 11)+0=1 \ {\rm because}\ {\rm of}\ 9+3>11\\ \beta_1(x_{10})=x_2, & {\rm since}\ (10+3)(mod\ 11)+0=3 \ {\rm because}\ {\rm of}\ 11+3>11 \end{array}$$

and for i = 2, 3, 4 the values of β_i are obtained similarly. Hence

and	d th	eref	ore	,													
$\begin{array}{c c} X & x_1 \\ \beta & \downarrow \\ X & x_4 \end{array}$	$\begin{array}{ccc} x_{2} \\ \downarrow \\ 1 \end{array}$	2 ·		$x_{11} \downarrow x_3$	$\begin{vmatrix} x_{12} \\ \downarrow \\ x_{16} \end{vmatrix}$	$\begin{array}{ccc} x_1 \\ \downarrow \\ x_1 \end{array}$	3 7	$x \downarrow x x$	17	$x_{18} \downarrow x_{25}$	$x_{19} \downarrow x_{26}$		$\begin{array}{c} x_{26} \\ \downarrow \\ x_{24} \end{array}$	$x_{27} \downarrow x_{29}$	$x_{28} \\ \downarrow \\ x_{27}$	$x_{29} \downarrow x_{28}$)
$X \mid x_4 \mid x_5 \mid \dots \mid x_3 \mid x_{16} \mid x_{17} \mid \dots \mid x_{15} \mid x_{25} \mid x_{26} \mid \dots \mid x_{24} \mid x_{29} \mid x_{27} \mid x_{28}$ Step 5: Values of the characterization function α^{-1} are obtained as following list:																	
$\begin{array}{c} X \\ \alpha^{-1} \\ U \end{array}$	$egin{array}{c} x_4 \ \downarrow \ ec{ec{v}} \ ec{v}} \ ec{ec{v}} \ ec{v}} \ ec{ec{v}} \ ec{ec{v}} \ ec{v}} \ ec{ec{v}} \ $	$egin{array}{c} x_5 \ \downarrow \ \mathrm{d} \end{array}$		$egin{array}{c} x_3 \ \downarrow \ \mathrm{c} \end{array}$	$\begin{vmatrix} x \\ \downarrow \\ m \end{vmatrix}$	$\begin{array}{ccc} 16 & x \\ & \downarrow \\ 1 & n \end{array}$	17 ·		$x_{15} \downarrow 1$	$\left \begin{array}{c} x_{25} \\ \downarrow \\ \mathrm{u} \end{array} \right $	$\substack{x_{26}\ \downarrow\ \ddot{\mathrm{u}}}$		$x_{24} \ \downarrow \ { m t}$	$\begin{vmatrix} x_{29} \\ \downarrow \\ \mathbf{z} \end{vmatrix}$	$x_{27} \downarrow v$	$x_2 \ \downarrow \ \mathrm{y}$	28
Ste	ep 6:	· Va	alue	es of	f th	e eno	erypt	ion	fur	nctio	$n \gamma$	are o	obtai	ned a	ns fol	low	ing list:
$\begin{array}{c c} U & \mathbf{a} \\ \gamma & \mathbf{\downarrow} \\ U & \mathbf{\varsigma} \end{array}$	b ↓ d	$\stackrel{\mathbf{c}}{\downarrow}_{\mathbf{e}}$	ç ↓ f	d ↓ g	e ↓ ğ	$\begin{array}{ccc} f & g \\ \downarrow & \downarrow \\ h & 1 \end{array}$	ğ ↓ a	h ↓ b	$\stackrel{1}{\downarrow}$ c	i ↓ m	j k $\downarrow \downarrow \downarrow$ n o	$\stackrel{l}{\downarrow}_{i}$	$\substack{\substack{ \\ j \\ j }}$	n ↓ k	$\stackrel{ m v}{\downarrow}_{ m z}$	$\begin{array}{c} \mathbf{y} \\ \downarrow \\ \mathbf{v} \end{array}$	$z \downarrow y$
In	this	exa	amp	ole v	we	show	ed tl	nat	the	e pla	intex	t "a	nkar	a" is	encr	ypt	ed as "çliçöç"

In this example we showed that the plaintext "ankara" is encrypted as "clicoc" according to the method which can be seen in Figure 1.

Figure 1: Encryption of "ankara" by FCEA

2.3 FC-cipher Decryption Algorithm

In this subsection, we give the algorithm of FC-cipher decryption method.

Assume that U is a character set and X is an indexed character set. Then, an algorithm of the FC-cipher decryption is set up as follows:

Algorithm of FC-cipher Decryption:

Step 1: Use the $\{X_i : i \in I_p\}$ and the module m_i for each X_i , Step 2: Find the $\beta_i^{-1}(x_t)$ for $x_t \in X_i$, $t \in I_{a_i}$ and $i \in I_p$, Step 3: Find the $\alpha^{-1}(x)$ for $x \in U$, Step 4: Find the $\gamma^{-1}(x)$ for $x \in U$.

Example 20. Let us consider the result of Example 19 where

 $U = \{$ ç, d, e, f, g, ğ,h, ı, a, b, c, m, n, i, j, k, l, u, ü, o, ö, p, r, s, ş, t, z, v, y $\}$

and

$$X = \{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}, \dots, x_{29}\}$$

Then,

Step 1 : In Example 19, for a_i (i = 1, 2, 3, 4) the fragments of X, X_i , and was obtained as

for
$$a_1 = 11$$
, $X_1 = \{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}\}$
for $a_2 = 6$, $X_2 = \{x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}\}$
for $a_3 = 9$, $X_3 = \{x_{18}, x_{19}, x_{20}, x_{21}, x_{22}, x_{23}, x_{24}, x_{25}, x_{26}\}$
for $a_4 = 3$, $X_4 = \{x_{27}, x_{28}, x_{29}\}$

and value of m_i (i = 0, 1, 2, 3, 4) was also choosen as,

for $i = 0$,	$m_0 = 0$
for $i = 1$,	$m_1 = (m_0 = 0) + (a_1 = 11) = 11$
for $i = 2$,	$m_2 = (m_1 = 11) + (a_2 = 6) = 17$
for $i = 3$,	$m_3 = (m_2 = 17) + (a_3 = 9) = 26$
for $i = 4$,	$m_4 = (m_3 = 26) + (a_4 = 3) = 29$

Step 2 : For i = 1, 2, 3, 4 values of the X_i -rotation function β_i^{-1} are obtained as follows. Here, we first obtain the values of β_1^{-1} as,

$\beta_1^{-1}(x_1) = x_9,$	since $1 + m_1 - r_1 = 1 + 11 - 3 = 9$ because of $1 + 11 - 3 < 11$
$\beta_1^{-1}(x_2) = x_{10},$	since $2 + m_1 - r_1 = 2 + 11 - 3 = 10$ because of $2 + 11 - 3 < 11$
$\beta_1^{-1}(x_3) = x_{11},$	since $3 + m_1 - r_1 = 3 + 11 - 3 = 11$ because of $3 + 11 - 3 = 11$
$\beta_1^{-1}(x_4) = x_1,$	since $(4+11-3)(mod 11) + 0 = 1$ because of $4+11-3 > 11$
$\beta_1^{-1}(x_5) = x_2,$	since $(5+11-3)(mod 11) + 0 = 2$ because of $5+11-3 > 11$
$\beta_1^{-1}(x_6) = x_3,$	since $(6+11-3)(mod 11) + 0 = 3$ because of $6+11-3 > 11$
$\beta_1^{-1}(x_7) = x_4,$	since $(7+11-3)(mod 11) + 0 = 4$ because of $7+11-3 > 11$
$\beta_1^{-1}(x_8) = x_5,$	since $(8+11-3)(mod11) + 0 = 5$ because of $8+11-3 > 11$
$\beta_1^{-1}(x_9) = x_6,$	since $(9+11-3)(mod 11) + 0 = 6$ because of $9+11-3 > 11$
$\beta_1^{-1}(x_{10}) = x_7,$	since $(10 + 11 - 3)(mod 11) + 0 = 7$ because of $10 + 11 - 3 > 11$
$\beta_1^{-1}(x_{11}) = x_8,$	since $(11 + 11 - 3)(mod 11) + 0 = 8$ because of $11 + 11 - 3 > 11$

and for i = 2, 3, 4 the values of β_i^{-1} are obtained similarly. Hence,

Step 3 : Values of the characterization function α^{-1} are obtained as following list:

In this example we showed that the ciphertext "cliçöç" is decrypted as "ankara".

3 Fragmented Polyalphabetic Cipher

In this section, we define a new cipher method which is called fragmented polyalphabetic cipher (FP-cipher) based on the FC-cipher. In the FP-cipher, the plaintext is encrypted by multiple encryption alphabets which are obtained by using the FCcipher.

From now on, we use $k \in \mathbb{N}$ as a number of encrypted alphabets that are obtained by using the FC-cipher.

3.1 Mathematical Model of FP-cipher

In this subsection, we first give a mathematical model of the FP-cipher. We then write an algorithm of the FP-cipher to make a computer program.

Definition 21. Let U be a character set and $\gamma_i : U \to U$ be an encryption function for all $i \in I_k$. If all of the characters in the plaintext are indexed as $y_1y_2...y_q$ for $q \in \mathbb{N}$, then a k-multiple encryption function on U is defined by

$$\delta_k : U \to U, \quad \delta_k(y_t) = \begin{cases} \gamma_i(y_t), & t \equiv i \pmod{k} \\ \gamma_k(y_t), & t \equiv 0 \pmod{k} \end{cases}$$

for all $t \in I_q$ and $i \in I_k$.

Definition 22. Let U be a character set and $\gamma_i^{-1}: U \to U$ be an encryption function for all $i \in I_k$. If all of the characters in the ciphertext are indexed as $s_1s_2...s_q$ for $q \in \mathbb{N}$, then a k-multiple decryption function on U is defined by

$$\delta_k^{-1}: U \to U, \quad \delta_k^{-1}(s_t) = \begin{cases} \gamma_i^{-1}(s_t), & t \equiv i \pmod{k} \\ \gamma_k^{-1}(s_t), & t \equiv 0 \pmod{k} \end{cases}$$

for all $t \in I_q$ and $i \in I_k$.

The Definitions 21 and 22 are demonstrated in Figure 2.

Definition 23. Let U be a character set and P_i be a fragment key, R_i be a rotation key for all $i \in I_k$. Then a k-multiple fragment key and k-multiple rotation key are defined as follow, respectively

$$P_k = (P_1, P_2, ..., P_k), \quad R_k = (R_1, R_2, ..., R_k).$$

Figure 2: FP-cipher

Definition 24. Let (U, P_i, R_i, γ_i) be an FC-cipher encryption and $(U, P_i, R_i, \gamma_i^{-1})$ be an FC-cipher decryption on U for all $i \in I_k$. Then, each five tuple

 $(U, k, P_k, R_k, \delta_k), \quad (U, k, P_k, R_k, \delta_k^{-1})$

is called an **FP-cipher encryption** and **FP-cipher decryption** on U, respectively.

3.2 FP-cipher Encryption Algorithm

In this subsection, we give an algorithm of the FP-cipher encryption method.

Assume that all of characters in a plaintext are be indexed as $y_1y_2...y_q$ and k be a number of encrypted alphabets that are obtained by using the FC-cipher. Then, an algorithm of the FP-cipher encryption is set up as follow:

Algorithm of FP-cipher Encryption

Step 1: Find the $P_k = (P_1, P_2, ..., P_k)$ and $R_k = (R_1, R_2, ..., R_k)$, Step 2: Find the values of γ_i for $i \in I_k$, Step 3: Find the values $\delta(y_t)$ for all $t \in I_q$.

Example 25. Let

 $U = \{a, b, c, c, d, e, f, g, \breve{g}, h, \imath, \breve{i}, \breve{j}, k, l, m, n, o, \breve{o}, p, r, s, \breve{s}, t, u, \breve{u}, v, y, z\}$

be a character set and "ankara" be a plaintext. Assume that this plaintext is indexed as $y_1y_2y_3y_4y_5y_6$ and encrypted by 3-FP-cipher encryption. Then,

Step 1 : The P_i and R_i can be obtained by using the FC-cipher as follow,

i	P_i	R_i
1	(11,6,10,2)	(4,2,5,1)
2	(10, 9, 5, 5)	(3,4,2,3)
3	(5, 6, 4, 10, 4)	(2,2,1,3,1)

Step 2: For i = 1, 2, 3, the values $\gamma_i(x)$ are obtained as follow,

х	a	b	с	ç	d	е	f	g	ğ	h	1	i	j	k	l
$\gamma_1(x)$	d	е	f	g	ğ	h	1	a	b	с	ç	m	n	i	j
$\gamma_2(x)$	ç	d	е	f	g	ğ	h	a	b	с	1	m	n	0	ö
$\gamma_3(x)$	с	ç	d	a	b	g	ğ	h	1	е	f	j	k	1	i

m	n	0	ö	р	r	\mathbf{S}	ş	\mathbf{t}	u	ü	\mathbf{V}	У	\mathbf{Z}	
k	1	ş	t	u	ü	V	0	ö	р	r	\mathbf{S}	\mathbf{Z}	у	
1	i	j	k	\mathbf{S}	ş	t	р	r	у	\mathbf{Z}	u	ü	V	
	n	70	a	G	+		m	n	0	17	17	7	ii	-

Step 3 : For all $t \in I_6$, the values $\delta(y_t)$ are obtained as follow,

for $i = 1$,	$\delta(y_1) = \gamma_1(a) = \mathbf{d}$	because of	$1 \equiv 1 (mod 3)$
for $i = 2$,	$\delta(y_2) = \gamma_2(n) = \mathbf{i}$	because of	$2 \equiv 2 \pmod{3}$
for $i = 3$,	$\delta(y_3) = \gamma_3(k) = 1$	because of	$3\equiv 0(mod3)$
for $i = 4$,	$\delta(y_4) = \gamma_1(a) = \mathbf{d}$	because of	$4 \equiv 1 (mod 3)$
for $i = 5$,	$\delta(y_5) = \gamma_2(r) = \S$	because of	$5 \equiv 2 (mod 3)$
for $i = 6$,	$\delta(y_6) = \gamma_3(a) = c$	because of	$6 \equiv 0 (mod 3)$

Therefore,

This example is demonstrated in Figure 3.

Figure 3: Encrypting the word of "ankara" by FP-cipher

3.3 FP-cipher Decryption Algorithm

In this subsection, we give an algorithm of the FP-cipher decryption method.

Assume that all of characters in a ciphertext are indexed as $s_1s_2...s_q$. Here, we have to use the same values of P_i and R_i are obtained in the encryption. Then, an algorithm of the FP-cipher decryption is set up as follow.

Algorithm of FP-cipher Decryption

Step 1: Find the values of γ_i^{-1} for $i \in I_k$, Step 2: Find the values $\delta^{-1}(s_t)$ for all $t \in I_q$.

Example 26. Let us consider Example 25 where "ankara" was encrypted as "dildşc". Now, the cipher text "dildşc" is decrypted. Here, we have to use same values of P_i and R_i in Example 25. Assume that this ciphertext is indexed as $s_1s_2s_3s_4s_5s_6$ and decrypted by 3-FP-cipher decryption. Then,

Step 1 : For i = 1, 2, 3, the values $\gamma_i^{-1}(x)$ are obtained as follow,

x	a	b	с	ç	d	е	f	g	ğ	h	1	i	j	k	1	m	n	0	ö
$\gamma_1^{-1}(x)$	d	е	f	g	ğ	h	1	a	b	с	ç	m	n	i	j	k	1	ş	t
$\gamma_2^{-1}(x)$	Ç	d	е	f	g	ğ	h	a	b	с	1	m	n	0	ö	1	i	j	k
$\gamma_3^{-1}(x)$	c	Ç	d	a	b	g	ğ	h	1	е	f	j	k	1	i	ö	р	r	\mathbf{S}
			γ_1^-	$^{1}(x)$	u	. ü	i v	7	0	ö	р	r	\mathbf{S}	\mathbf{Z}	У				
			γ_2^-	$^{1}(x)$	\mathbf{s}	Ş	t	5	р	r	у	\mathbf{Z}	u	ü	v				
			γ_3^-	$^{1}(x)$	ş	t	ι	1	m	n	0	V	у	\mathbf{Z}	ü				
				Х	p	r	. 5	3	ş	t	u	ü	V	у	Z				

Step 3: For all $t \in I_6$, the values $\delta^{-1}(s_t)$ are obtained as follow,

for $i = 1$,	$\delta^{-1}(s_1) = \gamma_{(1)}^{-1}(s_1) = \mathbf{a}$	because of	$1 \equiv 1 (mod 3)$
for $i = 2$,	$\delta^{-1}(s_2) = \gamma_{(2)}^{-1}(s_2) = \mathbf{n}$	because of	$2 \equiv 2 (mod 3)$
for $i = 3$,	$\delta^{-1}(s_3) = \gamma_{(3)}^{-1}(s_3) = \mathbf{k}$	because of	$3\equiv 0(mod3)$
for $i = 4$,	$\delta^{-1}(s_4) = \gamma_{(1)}^{-1}(s_4) = a$	because of	$4 \equiv 1 (mod 3)$
for $i = 5$,	$\delta^{-1}(s_5) = \gamma_{(2)}^{-1}(s_5) = \mathbf{r}$	because of	$5 \equiv 2 (mod 3)$
for $i = 6$,	$\delta^{-1}(s_6) = \gamma_{(3)}^{-1}(s_6) = \mathbf{a}$	because of	$6 \equiv 0 (mod 3)$

Therefore,

3.4 FP-cipher Program Codes

In this subsection, FP-cipher is programmed by using C# as follows:

```
private void btn_alfabe_olustur_Click(object sender, EventArgs e)
{
    //txtanahtar.Text = "";
    if (rdsifre.Checked)
```

```
{
    txtanahtar.Text = "";
    //anahtar oluşturma
    for (int i = 0; i < trczorluk.Value; i++)</pre>
    {
        System.Threading.Thread.Sleep(500);
        string anahtar = _anahtar(alf_metin().Length);
        txtanahtar.Text += anahtar.Substring(0,
                                      anahtar.Length - 1) + "*";
    }
}
//sanal matris oluşturma
DataTable matris = new DataTable();
for (int i = 0; i <alf_metin().Length; i++)</pre>
{
    matris.Columns.Add(alf_metin()[i]);
}
string[] key = txtanahtar.Text.Substring(0,
                         txtanahtar.Text.Length - 1).Split('*');
for (int i = 0; i < key.Length; i++)</pre>
{
    int alfabe_sayac = 1;
    string[] parca = key[i].Substring(0, key[i].Length).
                                           ToString().Split('-');
    string[][] U = new string[parca.Length][];//(Açık U)
    string[][] SU = new string[parca.Length][];//(Sifreli U)
    //alfabenin kümelere bölnmesi
    for (int j = 0; j < parca.Length; j++)</pre>
    {
        string[] parca_a = parca[j].ToString().Split(',');
        int P = int.Parse(parca_a[0]); //parça anahtarı
        U[j] = new string[alf_metin().Length+1];
        SU[j] = new string[alf_metin().Length+1];
        for (int x = 0; x < P; x++)
        {
            U[j][alfabe_sayac] = alf_metin()[alfabe_sayac-1];
            alfabe_sayac++;
        }
    }
    //alfabenin şifrelenmesi
    int m = 0;
    int indis = 1;
    for (int j = 0; j < U.Length; j++)
    {
        string[] parca_a = parca[j].ToString().Split(',');
        int P = int.Parse(parca_a[0]); //parça anahtarı
        int R = int.Parse(parca_a[1]); //öteleme anahtar1
```

```
m += P;
        for (int x = 0; x < P; x++)
        {
            int k = 0;
            if ((indis+R)<=m) //öteleme fonksiyonu
            {
                k = indis + R;
            }
            else if ((indis + R) > m)
            {
                k = ((indis + R) \% m) + (m-P);
            }
            SU[j][indis] = U[j][k];
            indis++;
        }
    }
    //matrise değerlerin eklenmsi
    matris.Rows.Add();
    int alsayac = 0;
    for (int j = 0; j < U.Length; j++)
    {
        string[] parca_a = parca[j].ToString().Split(',');
        int P = int.Parse(parca_a[0]); //parça anahtarı
        for (int x = 0; x < P; x++)
        {
            matris.Rows[i][alsayac] = SU[j][alsayac + 1];
            alsayac++;
        }
    }
    dataGridView1.DataSource = matris;
}
```

4 Conclusions

}

In this work, we defined the FP-cipher that is a generalization of the Vigenere cipher. The Vigenere cipher is a type of polyalphabetic cipher in which different shift ciphers are used to encryption. In the FP-cipher, plaintext is encrypted by multiple encryption alphabets which are obtained by using the FC-cipher. Therefore, the key space of FP-cipher cipher has more possibility then the Vigenere cipher. We then constructed a mathematical modeling and make a computer program of the method.

References

- Y. Aydoğan, N. Çağman, I. Şimşek, Fragmented Caesar Cipher, Journal of New Theory 14 (2016) 46-57.
- [2] Y. Aydoğan, Multi Fragmented Caesar Cipher Method and its Applications (in Turkish), MSc Thesis, Gaziosmanpasa University, Graduate School of Natural and Applied Science, 2014.
- [3] J. Hoffstein, J. Pipher and J. H. Silverman, An Introduction to Mathematical Cryptograph, Springer-Newyork, 2008.
- [4] C. Paar, J. Pelzl, Understanding Cryptograph, Springer-Verlag, 2010.
- [5] A. Sinkov, Elementary Cryptanalysis A Mathematical Approach, New Mathematical Library, No. 22, Mathematical Association of America, 1966.