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Abstract 

Synthetic images have gained significant popularity, producing high-quality visuals that are challenging to 

distinguish from real images. Computer-generated images have become increasingly realistic and 

misleading as artificial intelligence models advance. The easy dissemination of synthetic images online has 

raised concerns about their potential misuse. An automated detection system has become essential to 

safeguard personal privacy. Such a system is also critical for preventing manipulation, maintaining social 

order, and preserving the authenticity of images. This study compares lightweight and dense models for 

real-fake classification tasks. In the first phase, the performance of lightweight models on the dataset is 

analyzed, followed by an assessment of dense models in the second phase. When the best-performing 

lightweight model, EfficientNetV2B0, is combined in a hybrid with the top dense model, DenseNet201, an 

88% accuracy rate is observed. Moreover, a hybrid of the two most effective dense models, DenseNet121 

and DenseNet201, achieved an accuracy of 89% on the test dataset. Experimental results indicate that 

DenseNet networks excelling in finer details achieve preferable outcomes on synthetic data.  

 

Keywords: Artificial Intelligence, DeepFake, Fine-Tuned CNN, Real-Fake Distinction, Synthetic 

Images,  

1. Introduction 

 

People generally tend to trust their own eyes and ears 

when communicating. For this reason, audio and visual 

evidence have traditionally been regarded as reliable, 

despite a long history of forgeries such as photo 

tampering [1]. However, advancements in artificial 

intelligence (AI) have undermined this trust. The ability 

to generate synthetic data with great realism, often 

without detectable visual traces, poses a significant 

challenge to the authenticity of digital content. In recent 

years, synthetic image generation has seen rapid 

progress, making it increasingly difficult to distinguish 

between real and fake images [1, 2].  

Research in this area suggests that detection methods 

must also advance as generative models evolve. 

Preventing the misuse of synthetic images depends 

primarily on their accurate detection. Misusing of such 

images can create false narratives and misinformation, 

leading to manipulation and deception. The manipulation 

of visual evidence can greatly impact individual and 

societal decision-making. This makes detecting synthetic 

images crucial in fields like cybersecurity, digital 

forensics, and media verification. Preparing for and 

defending against the threats of synthetic data requires a 

detector that can classify images well [3, 4].   

Studies in this area initially focused on pixel-level 

analysis and then explored various analytical approaches. 

Later studies emphasized geometric anomalies, 

reflections, and the uniform distribution of light. The 

consistency of metadata has also been taken into account 

[5, 6, 7]. 

Several studies have focused on the analysis of intrinsic 

patterns and artifacts present in synthetic images. Zhang 

et al. [8] and Frank et al. [9] investigated the detection of 

fake images generated by GANs by analyzing their 

frequency spectrum in the Fourier domain. Many 

detection methods remain GAN-specific, with relatively 

fewer studies addressing more recent generative models, 

such as diffusion models. However, Corvi et al. [2] 

analyzed the fingerprints left by diffusion models, a 

newer and increasingly popular class of generative 

models. Their work emphasizes the difficulty in 

distinguishing synthetic images produced by diffusion 

models from authentic ones and highlights the 

fundamental differences. 

Another area of interest is the generalization of detection 

models across multiple datasets. Wang et al. [10] 
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observed that detection models performed well on a 

dataset generated using 11 different GAN-based image 

generation models. They emphasized that data 

augmentation improves performance but noted that there 

remains a need for model generalization across different 

generation techniques. Guarnera et al. [11] proposed a 

self-supervised learning-based method for distinguishing 

images generated by various GAN models (GDWCT, 

StarGAN, AttGAN, StyleGAN, StyleGAN2). Their 

approach involves analyzing features at different scales 

and employing the Expectation-Maximization (EM) 

algorithm to facilitate the detection process. This method 

allows for the effective differentiation of synthetic 

images by leveraging the inherent characteristics across 

different GAN architectures. In the context of diffusion 

models, Somepalli et al. [12] explored the relationship 

between dataset size and the similarity of diffusion 

models' output to training data. They demonstrated that 

larger training datasets enable the generation of higher-

quality images. 

 

The CNN-based transfer learning approach is widely 

used for detecting fake images. Malolan et al. [13] 

successfully distinguished between real and fake images 

with an accuracy of 94.33% using a CNN-based method 

on the FaceForensics dataset [14]. They also incorporated 

various explainable AI techniques, such as layer-wise 

relevance propagation (LRP) and local interpretable 

model-agnostic explanations (LIME), to enhance the 

interpretability of their model. Ranjan et al. [15] 

proposed a transfer learning-based CNN framework 

tested on three different datasets—DeepFakeDetection 

(DFD) [16], Celeb-DF [17], and the DeepFake Detection 

Challenge (DFDC) [18]. Additionally, they compiled a 

custom dataset for model evaluation, achieving 95.86% 

accuracy in distinguishing real and fake images. 

Nida et al. [19] achieved 92.09% accuracy in detecting 

real and fake images using CNN-based models on the 

Real and Fake Face Detection dataset [20], after 

performing image normalization and Error Level 

Analysis (ELA) to enhance feature extraction prior to 

training. 

 

Most studies on fake-vs.-real image detection has 

focused on facial images, while deepfake research 

involving other types of images (e.g., nature, vehicles, 

etc.) remains limited. Although considerable attention 

has been given to detecting GAN-generated images, 

particularly in ensuring robust detection across different 

types of synthetic data and applying existing deep-

learning models, there is comparatively less research on 

images produced by diffusion models. In our study, we 

focus on detecting images generated by generative 

models, such as diffusion models, and extend the scope 

beyond facial images to include various other types of 

imagery. we aim for a generalizable detector. 

 

 

 

Contributions of this Study: 

• Comprehensive Evaluation: We provide a 

performance comparison of various fine-tuned 

CNN architectures for synthetic image detection. 

• Superior Model Performance: Our experiments 

demonstrate that DenseNet models achieve the 

highest accuracy, outperforming other models. 

• Synthetic Image Detection: Unlike many existing 

studies that focus solely on GAN-generated 

images, we provide a more generalized framework 

capable of detecting synthetic images from a 

variety of sources, including those generated by 

diffusion models.  

• Analysis: We offer an analysis of each model's 

strengths and weaknesses in comparison to 

existing methods. 

 

The rest of this paper; Section 2 presents the dataset, 

techniques, and models used. Section 3 presents the 

analyses and results of the experiments. In the last 

section, general conclusions and implications are 

presented. 

 

2. Materials and Methods 

 

This section contains information about the techniques, 

methods, and data sets used in the classification of 

synthetic data and real data. 

 

2.1. Data Set 

 

The CIFAKE [21] dataset consists of two groups: real 

images and fake images. The real image set consists of 

the CIFAR-10[22] dataset. The CIFAR-10 dataset 

contains 60,000 RGB images of 10 classes (deer, ship, 

horse, frog, aircraft, automobile, bird, cat, dog and truck) 

in 32x32 size.  It contains 6,000 data from each of its 

classes.  

The set of fake images of the CIFAKE dataset is obtained 

by applying LDM to the images in the CIFAR-10 dataset. 

A set of 60,000 synthetic images equivalent to 60,000 

real datasets is obtained. The resolution of all images is 

32x32 px. In order to achieve differentiation, the 

researchers used different prompt variations for each 

class. 

In this study, evaluations were conducted using randomly 

generated subsets from the CIFAKE dataset. Among the 

created subsets, the best results were achieved with a 

training set containing 7,000 fake and 7,000 real images, 

and a test set with 1,058 fake and 1,058 real images. To 

ensure generalizability, datasets with varying 

distributions were utilized. 
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2.2. Pre-Trained Models 

 

In this section, MobileNet [23], DenseNet121[24], 

EfficientNetV2B0[25] are discussed and briefly 

introduced. 

 

MobileNet is widely used to create lightweight deep 

convolutional neural networks, providing an efficient 

architecture that does not require extensive 

computational resources. It is particularly prevalent in 

computer vision applications like object detection and 

classification. The architecture includes down-sampling 

with features derived from the previous layer and 

concludes with an average pooling layer. A SoftMax 

function is used in the final layer for classification 

purposes. MobileNet’s architecture relies on depthwise 

separable convolutions, incorporating batch 

normalization and ReLU activation functions. The entire 

MobileNet model consists of 28 layers [23,26]. 

 

To further reduce computational costs, MobileNet 

employs width and resolution multipliers. The width 

multiplier thins the model by a specified factor; selecting 

a smaller multiplier yields a faster, smaller model but 

may lead to some information loss. The resolution 

multiplier, on the other hand, adjusts the input image 

resolution. Choosing a smaller resolution provides a 

more compact and efficient model, though potentially at 

the cost of detail. It is therefore critical to select these 

multipliers carefully to balance computational efficiency 

with minimal information loss [23,26]. MobileNet has 

been improved and extended with newer versions, such 

as MobileNetV2[27] and MobileNetV3[28], aiming to 

enhance accuracy and speed. MobileNetV2 introduced 

inverted residuals to achieve an expansion-filtering-

squeezing mechanism [27]. In MobileNetV3, squeeze-

and-excitation layers were added to the initial block 

structure further enhance performance [28]. 

 

Densely Connected Convolutional Networks 

(DenseNet), unlike other architectures, contain dense 

blocks of layers. Each layer is directly connected to each 

subsequent layer in a feed-forward manner [24]. This 

architecture encourages the reuse of features when 

addressing the gradient fading problem and therefore 

reduces the number of parameters. As a result, DenseNet 

offers a powerful approach in scenarios where small 

differences are important [24, 29]. There are several 

versions of DenseNet used in object recognition 

applications, for example, DenseNet121, DenseNet160, 

and DenseNet201. Numbers in these versions represent 

the number of layers in the model. The general 

representation of the DenseNet121 architecture is shown 

in Figure 1. In DenseNet121, except for the first layer that 

receives the input image, each subsequent convolutional 

layer creates an output feature map by taking the output 

of the previous layer [24]. 

 

 

 
 

Figure 1. General Structure of DenseNet121 

Architecture 

 

EfficientNetV2B0 is an upgraded model of EfficientNet, 

proposed by Google Brain. It employs a mobile-

dimensional convolutional network based on training-

driven neural architecture search and scaling. This model 

outperforms previous models in terms of training speed, 

accuracy, and parameter efficiency. EfficientNetV2B0 

demonstrates that deep convolution is slow in the early 

layers but becomes more efficient in later stages [25, 30]. 

[25, 30]. The general structure of the EfficientNetV2B0 

architecture is shown in Figure 2. Architecture consists 

of a combination of MBConv block [31] to balance the 

expressive power and computational cost, and Fused-

MBConv [32] to further speed up the process. 

 

 
 

Figure 2. General Structure of EfficientNetV2B0 

Network [25] 

 

2.3. Evaluation Metrics 

 

The confusion matrix was used to evaluate performance. 

In this matrix, rows indicate real classes and columns 

indicate predicted classifications. To measure evaluation 

metrics, tp (true positive), tn (true negative), fp (false 

positive), fn (false negative) values are used. 

 

Precision: It is defined as the ratio of the data determined 

as positive among the predicted ones to the total number 

of positives. Calculation of the precision value is given 

in equation 1. 

 

Precision=tp/(tp+fn)                                               (2.3.1) 

 

 

Recall: It provides information about the number of data 

that are actually predicted as positive among the data that 

should be predicted as positive. Calculation of the 

sensitivity value is specified in equation 2. 

 

Recall=tp/(tp+fp)                                                   (2.3.2) 

 

F1-Score: It is calculated by the harmonic mean of 

precision and sensitivity calculations. It takes values 
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between 0 and 1, with 1 indicating that the best result has 

been achieved. Calculation of the F1 score value is given 

in equation 3. 

 

F1-Score=2*tp/(2tp+fp+fn)                                   (2.3.3) 

 

Accuracy: It is the ratio of correctly predicted data to all 

data. Calculation of Accuracy value is given in equation 

4. 

 

Accuracy=(tp+tn)/(tp+tn+fp+fn)                           (2.3.4) 

 

3. Results and Discussion 

 

In the initial approach, the input layers of various 

lightweight models, including MobileNetV2, 

MobileNetV3Small, MobileNetV3Large, and 

EfficientNetV2B0, were adjusted to the 32x32 image 

size. In the second stage, this adjustment was applied to 

dense models, namely DenseNet121, DenseNet169, and 

DenseNet201. These models were then trained with 

frozen parameters. Subsequently, additional layers were 

appended to the architecture, including a 

GlobalAveragePooling2D layer, a Dense layer with 1024 

units and ReLU activation, a Dropout layer with a rate of 

0.5, and a final Sigmoid layer. The Adam optimization 

algorithm was used to train the models with a learning 

rate of 1e-5 and an epoch count of 50. Experimental 

evaluations were then conducted using this 

configuration. 

 

In the literature, numerous studies on the classification of 

synthetic data have made significant contributions by 

evaluating different deep-learning models in this area. 

However, determining which models are more effective 

at distinguishing between real and fake data remains a 

challenging problem. This study compares the 

performance of lightweight and heavy models to analyze 

their impact on synthetic data classification. Lightweight 

models include EfficientNetV2B0, MobileNetV2, 

MobileNetV3Small, and MobileNetV3Large, while 

heavy models consist of DenseNet121, DenseNet169, 

and DenseNet201. The performance of these models was 

evaluated comparatively, with the results presented in 

Tables 1 and 2, model accuracy detailed through 

confusion matrices in Figures 3 and 4. In the matrices, 

the value "0" represents the "Fake" label, while "1" 

denotes the "Real" label. 

 

 

 

Table 1. Performance Results Evaluation of Lightweight Models in Deepfake Detection 

 

The experimental results reveal distinct performance 

patterns across the models tested. EfficientNetV2B0 

demonstrated the highest performance among the 

models, achieving a precision of 0.77, recall of 0.90, F1-

score of 0.83, and accuracy of 0.84. The model’s high 

recall, coupled with robust precision and accuracy, 

underscores its ability to accurately identify relevant 

instances while maintaining a low false-positive rate. 

This balanced performance makes EfficientNetV2B0 the 

most reliable lightweight model in this study for 

achieving both precise and comprehensive classification. 

 

Table 2. Performance Results Evaluation of Compact Models for Test Data 

 

The performance results for the DenseNet models 

indicate strong classification abilities across all three 

variations. Overall, all three DenseNet models 

demonstrate excellent classification capabilities, with 

DenseNet201 showing a slight edge, particularly for 

tasks prioritizing both precision and recall. 

 

 

 

 

 

Models Precision Recall F1-Score  

Accuracy 

MobileNetV2 0.30 0.73 0.42 0.59 

MobileNetV3Small 0.71 0.48 0.57 0.47 

MobileNetV3Large 0.72 0.82 0.77 0.78 

EfficientNetV2B0 0.77 0.90 0.83 0.84 

Models Precision Recall F1-Score 
 

Accuracy 

DenseNet121 0.84 0.91 0.87 0.88 

DenseNet169 0.83 0.89 0.86 0.86 

DenseNet201 0.85 0.90 0.88 0.88 
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a) EfficientNetV2B0 b) MobileNetV2 

 
 

c) MobileNetV3Large 

 

 
 

 

d) MobileNetV3Small 

 

Figure 3. Confusion matrix obtained from lightweight fine-tuned CNN Architecture  a)EfficientNetV2B0  

b) MobileNetV2  c) MobileNetV3Large  d) MobileNetV3Small 

 

  

 

   

a) DenseNet121   b) DenseNet169    c) DenseNet201 

 

Figure 4. Confusion matrix obtained from compact fine-tuned CNN Architecture  a) DenseNet121  

b) DenseNet169 c) DenseNet201  

 

The analysis of the confusion matrices for various 

models, including EfficientNetV2B0, MobileNetV2, 

MobileNetV3 (Small and Large), DenseNet121, 

DenseNet169, and DenseNet201, highlights differences 

in classification performance. DenseNet models, 

particularly DenseNet201 and DenseNet121, 

demonstrate a balanced performance with lower false 

negative and false positive rates, indicating strong 

accuracy and reliability. EfficientNetV2B0 shows high 

accuracy but a relatively high false positive rate, which 

may impact its sensitivity. MobileNet models, especially 

MobileNetV2 and MobileNetV3Small, display higher 

error rates and appear less suitable for this dataset due to 

lower classification accuracy. Overall, DenseNet201 

emerges as the optimal model for this task, achieving a 

robust balance between sensitivity and precision, making 

it a dependable choice for accurate classification. This 

study underlines the efficacy of DenseNet models, 

especially DenseNet201, as superior classifiers in terms 

of accuracy and balanced error rates.  

Overall, the DenseNet series models, particularly 

DenseNet201 and DenseNet121, stand out as models 

with the highest accuracy and balanced classification 

performance. While EfficientNetV2B0 also provides 

high accuracy, its relatively high false positive rate 

slightly limits its sensitivity. MobileNetV2 and 
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MobileNetV3Small demonstrate lower accuracy in 

comparison to other models, rendering them insufficient 

for the dataset. This analysis suggests that DenseNet201 

could be preferred as an accurate and reliable 

classification model due to its strong balance between 

precision and sensitivity. 

   
a) EfficientNetV2B0 + DenseNet201                                b) DenseNet121+ DenseNet201  

 

Figure 5. Deepfake detection results with DenseNet201 

 

The hybrid model combining EfficientNetV2B0 and 

DenseNet201 achieved notable results in distinguishing 

between synthetic and real images confusion matrix, as 

shown in Figure 5. The model correctly identified 981 

fake images (true positives) and 887 real images (true 

negatives), while misclassifying 77 fake images as real 

(false positives) and 171 real images as fake (false 

negatives). This performance yielded an overall accuracy 

of approximately 88%, indicating the model's strong 

capability in detecting both fake and real images. 

 

When the two most successful dense models, 

DenseNet121 and DenseNet201, were combined in a 

hybrid approach, the classification performance 

demonstrated further improvements, particularly in 

accurately identifying real images. The confusion matrix 

reveals that the hybrid model correctly identified 985 

synthetic (fake) images and 911 real images, resulting in 

73 false positives (fake images misclassified as real) and 

147 false negatives (real images misclassified as fake). 

This performance led to an overall accuracy of 

approximately 89%, highlighting the effectiveness of 

combining these dense networks. The results indicate that 

while both DenseNet121 and DenseNet201 individually 

excel at detecting fake images, their combined use 

enhances the model's ability to differentiate real images 

more accurately. This hybrid approach leverages the 

strengths of both models, providing a more robust and 

precise classification compared to their individual 

performances. The study demonstrates that integrating 

multiple dense architectures can effectively improve 

detection accuracy, particularly in challenging tasks that 

require high sensitivity to both synthetic and authentic 

visual patterns. 

The method of synthetic data generation is an important 

limiting factor. Studies in the literature have 

predominantly utilized synthetic data generated with 

GANs. Our study addresses this gap by employing 

synthetic data generated through diffusion models. 

Another constraint is that successful results can be 

achieved even with input images at a resolution as low as 

32x32. This new study, contributing to the limited body 

of research on diffusion models, compares lightweight 

and dense models to evaluate which is more effective in 

terms of overall performance. The findings provide 

valuable insights into the most suitable model types for 

different applications. The use of hybrid models on the 

newly developed CIFAKE dataset has proven to yield 

more effective results. 

 

4. Conclusion 

 

The hybrid use of dense networks contributed to 

achieving a more balanced and successful performance 

across both fake and real classes, significantly enhancing 

classification accuracy. The ensemble method, 

combining these models in a hybrid fashion, produced 

the most successful results on the given dataset, further 

demonstrating the effectiveness of integrating various 

model features in deep learning applications. This finding 

suggests that optimizing dense networks for specific 

classes can lead to higher performance in classification 

tasks, highlighting the potential of hybrid approaches for 

improved accuracy in such applications. It gives 

information about the performances of our study and 

lightweight-compact models. The results are promising 

in the field of classification. This may give an idea to 

scientists who will work in this field.  

 

As a future study, we aim to improve the performance of 

these models by utilising other distinguishing features of 

synthetic data.  At the same time, we aim to focus on a 

detector that can be generalised to the dataset produced 

by different diffusion models. Additionally, in image 

detection, learning long-range dependencies through 

Transformer models can significantly enhance the 
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accuracy of synthetic data detection. As a potential 

direction for future research, a hybrid approach that 

combines CNN and Transformer models could be 

explored to leverage the strengths of both architectures. 
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