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Abstract 

The main aim of this research is to obtain daily volatility predictions of 

cryptocurrencies by using the Deep Belief Network – Deep Neural 

Network (DBN-DNN) and Backpropagation Neural Network (BPNN) 

algorithms as well as the traditional Generalized Autoregressive 

Conditional Heteroskedasticity (GARCH) and one of its asymmetric 

variants, the Exponential GARCH models. The research data consists of 

daily price series of the most well-known two cryptocurrencies (Bitcoin 

and Ethereum) for the period of 4 July 2022 and 3 February 2024. 

Performance of the out-of-sample volatility forecasts of the models are 

compared by using three different metrics, that are Root Mean Squared 

Error (RMSE), R squared (R2) and Mean Absolute Error (MAE). 

According to the obtained performance measures estimated from the out-

of-sample period of 11 October 2023 and 3 February 2024, DBN-DNN 

and BPNN yielded the best RMSE and MAE values of Bitcoin, 

respectively. On the other hand, DBN-DNN obtained the best RMSE and 

R2 among the Ethereum volatility predictions. Overall, the findings of this 

research reveal a promising cryptocurrency volatility forecasting ability in 

favor of the applied deep neural networks, since they managed to obtain 

most of the best as well as the second-best performance metrics of both 

cryptocurrencies. 
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1. INTRODUCTION 

Modelling and forecasting volatility of financial time series is a long-standing and challenging 

research subject. Additional to the well-known financial assets, cryptocurrencies, that are digital 

currencies supported by the blockchain technology, gained a prominent attention by the researchers. The 

first cryptocurrency proposed by Nakamoto (2008) is Bitcoin. Following the invention of Bitcoin (BTC), 

numerous cryptocurrencies are developed and traded at markets reaching billion dollars of market 

capitalizations. However, modelling volatility of cryptocurrencies is a trivial task, especially when the 

high volatility and chaotic patters of the price series are considered (Lahmiri & Bekiros, 2018; Liu, 

2019; Pratas et al., 2023). 

In economics and finance literature, Autoregressive Conditional Heteroskedasticity (ARCH) 

(Engle, 1982) and Generalized Autoregressive Conditional Heteroskedasticity (GARCH) (Bollerslev, 

1986) processes are the most popular volatility modelling tools. After Engle (1982) and Bollerslev 

(1986), an increasing number of asymmetric variants of GARCH models are proposed (e.g. Exponential 

GARCH (Nelson, 1991), Threshold GARCH (Zakoian, 1994) and so on). Additional to the econometric 

methods, currently academic researchers and/or practicians are looking forward to use the technological 

development and utilize various machine and/or deep learning algorithms to predict the volatility of 

financial time series. Deep learning (DL) is a subclass of Machine Learning (ML) defining deeper 

Artificial Neural Network (ANN) structures that have many layers. As a tool capable of modelling 

complex and nonlinear dependencies, employing DL to predict cryptocurrency volatility is an important 

and a challenging research subject. Nevertheless, there are still a few papers employing DL algorithms 

to model and predict volatility of cryptocurrencies (see for example discussion of Wang et al. (2023) 

and García‑Medina and Aguayo‑Moreno (2024) about the research gap on the subject). Moreover, the 

ones focusing on volatility mainly employ only BTC or concentrated on the applications of Long Short-

Term Memory (LSTM) and/or Recurrent Neural Networks (RNN).  

In this paper, daily volatility of two cryptocurrencies (BTC and Ethereum (ETH)) is predicted 

by Backpropagation Neural Network (BPNN) as well as Deep Neural Networks (DNN) using weights 

trained by Deep Belief Networks (DBN) that are called DBN-DNN (Deng, 2014). Out-of-sample 

volatility predictions of BPNN and DBN-DNN with two different activation functions (either the 

sigmoid or the hyperbolic tangent activation function) are compared with the traditional volatility 

forecasting tools, GARCH and Exponential GARCH (EGARCH), using the commonly employed 

performance measures of Root Mean Squared Error (RMSE), R2 and Mean Absolute Error (MAE).  

While there are various applications of Deep Belief Networks for example in biomedical 

engineering (Abdel-Zaher & Eldeib, 2016), meteorology (Du et al., 2018) as well as in economics and 

finance (Chen et al., 2019; Karathanasopoulos, 2017; Li & Sun, 2023), any published research focusing 

on cryptocurrency volatility is not found. It is also important to note that some papers do not differentiate 

DBN from DBN-DNN and call the whole process of weight initialization of DNN using DBN as a DBN 



 

 

544 

network, see also the discussion of Deng (2014) on the subject. Moreover, research papers that use DBN 

or DBN-DNN, calibrate optimal parameters of the algorithms without a consistent parameter selection 

method, such as the time series cross-validation (ts-cv) approach (Hyndman & Athanasopoulos, 2018). 

As a result, the main contribution of this research paper relies on the uniqueness of its methodology to 

predict volatility of the two cryptocurrencies.  

The following sections of this paper give a brief review of the literature and explain the research 

methodology. The experimental design section consists of the description of the data, data pre-

processing, volatility predictions as well as the calibration of the algorithms. The last two sections report 

the empirical findings and conclude the paper with the final remarks. 

2. LITERATURE REVIEW  

Utilizing ML in various fields/tasks of finance is a fast-developing and a prominent research 

topic, see for example Nazareth and Ramana Reddy (2023)’s paper in which the authors give an 

extensive review on the financial applications of ML algorithms. However, applications of ML and/or 

DL to especially model and predict financial volatility of cryptocurrencies are still scarce. One of the 

early works on this subject is Shah and Zhang (2014)’s work in which the authors predicted the future 

Bitcoin price variation. On the other hand, Pichl and Kaizoji (2017) employed the Heterogeneous 

Autoregressive model for Realized Volatility (HARRVJ) RV with jumps and the Artificial Neural 

Networks (ANN) to predict realized volatility and price of bitcoin, respectively. The research results 

indicate the well ability of the applied models to capture the dynamics of Bitcoin price and realized 

volatility series.    

Peng et al. (2018) predicted daily and hourly volatility of three cryptocurrencies (Bitcoin, 

Ethereum, Dash) by employing the GARCH processes (EGARCH, GARCH and gjrGARCH) as well as 

Support Vector Regression (SVR) and combinations of GARCH and SVR models, which they called 

SVR-GARCH. According to the estimated performance metrics, the researchers argue that the applied 

SVR-GARCH models were able to outperform volatility forecasting performance of all the rest GARCH 

processes (EGARCH, GARCH and gjrGARCH using either Normal, Student’s t or Skewed Student’s t 

distributions). Moreover, Kristjanpoller and Minutolo (2018) predicted Bitcoin price volatility by using 

a combination of GARCH and ANN consisting of Principal Component Analysis (PCA) as a pre-

processing step. The researchers evaluated and compared performance of twelve hybrid models with the 

predictions of the best GARCH process (the one with the lowest MSE) for three different volatility 

windows (10-day, 22-day and 44-day volatility). According to the obtained empirical results, the authors 

argue in favor of the applied hybrid ANN models consisting of technical indicators as model inputs and 

a PCA pre-processing step. 

Jang and Lee (2018) applied Bayesian Neural Networks (BNN) and Support Vector Regression 

(SVR) to predict Bitcoin price and volatility by employing blockchain data (e.g. hush rate, trading 
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volume, average block size), exchange rates (GBP/USD, JPY/USD, EUR/USD, CNY/USD, CHF/USD) 

and macroeconomic variables (such as, Crude oil, gold, and VIX) as model features. Two performance 

measures that are RMSE and MAPE are used to compare volatility predictions of BNN, SVR and Linear 

Regression. According to the results of the research, the authors stress that BNN can be considered as a 

more reliable model for defining the log volatility of Bitcoin compared to the applied benchmark models. 

Miura et al. (2019) employed several machine learning algorithms (Ridge Regression, LSTM, ANN, 

GRU and SVM) to predict realized volatility (RV) of Bitcoin. RV prediction performance of the applied 

algorithms is evaluated by using the mean squared error (MSE) and root mean squared error (RMSE) 

metrics. Overall, the researchers argue that Ridge regression can be classified as the best and SVM as 

the worst performer in predicting RV of Bitcoin.  

Seo and Kim (2020) also employed a hybrid of ML (ANN, Higher Order Neural Network 

(HONN)) and GARCH models to predict realized volatility of Bitcoin. Prediction performance of the 

applied models is compared with the RMSE, MAE and MAPE measures as well as the Model 

Confidence Set test. The results of the research point out that volatility prediction accuracy of the HONN 

based hybrid models is better than the rest applied in the paper. Furthermore, Shen et al. (2021) 

compared out-of-sample Bitcoin volatility and Value at Risk (VaR) predictions of GARCH as well as 

EWMA models to the predictions of Recurrent Neural Networks (RNN). The researchers used RMSE 

and MAE performance metrics to compare the applied models’ volatility forecasts. On the other hand, 

they employed unconditional coverage (Kupiec, 1995) and conditional coverage (Christoffersen, 1998) 

tests to back test model specific VaR predictions. According to the estimated out-of-sample performance 

metrics, RNN is found to outperform GARCH and EWMA in terms of the MAE metric. However, 

GARCH and EWMA outperformed RNN in terms of the RMSE metric as well as the applied VaR back 

tests.  

Zahid et al. (2022) is also among the researchers applying a hybrid of GARCH models 

(EGARCH, GARCH and gjrGARCH) and deep learning (DL) algorithms (Long Short-Term Memory 

(LSTM), Bidirectional LSTM (BiLSTM) and Gated Recurrent Unit (GRU)) to forecast realized 

volatility of Bitcoin. The results of this research are also in favor of the constructed GARCH-DL hybrid 

models by reporting a better forecasting accuracy than the single GARCH models. D’Amato et al. (2022) 

employed a Jordan Neural Network (JNN) to predict daily as well as intraday volatility of three 

cryptocurrencies (Bitcoin, Ethereum and Ripple). The researchers compared volatility predictions of 

JNN to the Non-Linear Autoregressive Neural Network (NLANN) and SETAR models by using the 

MSE and MAPE performance measures. Overall, results of the research classify JNN as a better 

volatility predictor than the SETAR and NLANN both for daily and intraday observations.  

Wang et al. (2023) applied Random Forest (RF) and LSTM to predict volatility of four 

cryptocurrencies (Bitcoin, Ripple, Ethereum and Litecoin) for three different time horizons (daily, 

weekly, and monthly). The researchers used directional accuracy, RMSE, MAPE and NMSE metrics to 
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compare volatility prediction performance of the applied models. Research results of Wang et al. (2023) 

indicate an outperformance of the applied ML algorithms with especially additional determinants 

(internal and/or determinants from several cryptocurrencies) compared to the traditional GARCH. Pratas 

et al. (2023) employed several DL algorithms (LSTM, RNN and MLP) to forecast and compare return 

volatility of Bitcoin to the forecasts of the traditional ARCH and GARCH processes. As in many of the 

reviewed papers, the researchers used MAE and MAPE metrics to compare volatility prediction 

performance of the models. Moreover, the Diebold–Mariano test is also applied for the statistical 

significance of the predictions. According to the estimated performance metrics, the authors argue that 

the applied DL algorithms managed to produce superior volatility forecasts, especially in the short-term. 

Therefore, DL should be considered in predicting complex volatility dynamics of not only 

cryptocurrencies but also the other financial time series.  

On the other hand, Khan et al. (2023) applied three ML algorithms (NNETAR, GMDH-NN and 

CSS) to forecast volatility of Bitcoin, Tether, XRP and Ethereum considering the period of 14 April 

2017 to 30 October 2020. According to the estimated RMSE and MAE values, the authors were not able 

to rank a specific algorithm as the best volatility forecaster for all the four cryptocurrencies uniformly. 

While cubic smoothing spline (CSS) obtained the best error metrics of Bitcoin and XRP, NNETAR was 

the best performer of Ethereum’s volatility predictions and GMDH-NN was the winner in case of Tether. 

García‑Medina and Aguayo‑Moreno (2024) also employed deep learning algorithms (MLP, LSTM), the 

traditional GARCH models (EGARCH, gjrGARCH) and their hybrids (LSTM-EGARCH and LSTM-

gjrGARCH) to forecast volatility of ten cryptocurrencies. According to the empirical findings, the 

authors argue that since MLP was able to outperform the rest, simple learning models can be mostly 

sufficient to model and predict cryptocurrency volatility. 

Dudek et al. (2024) conducted extensive comparative research among twelve statistical and ML 

models for the task of predicting daily and weekly volatility of four cryptocurrencies, that are Bitcoin, 

Monero, Ethereum and Litecoin. The researchers used MSE, MAE as well as the model confidence set 

test to compare performance of the cryptocurrency specific volatility predictions of the models. 

Referring to the obtained empirical results, the researchers point out that performance of the models are 

not uniform across cryptocurrencies as well as the applied performance measures. Different models 

ranked as the best depending on the error metric and cryptocurrency. Moreover, the researchers argue 

that simple and linear ML models can produce volatility forecasts as well as their more complex 

counterparts. Table 1 presents a methodological review of the cryptocurrency volatility prediction 

literature employing various ML and/or DL algorithms. Additionally, one can also consult to Ozbayoglu 

et al. (2020) and Zhang et al. (2024)’s studies in which the researchers supplied a comprehensive 

literature review on various applications of ML and/or DL in cryptocurrencies. 
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Table 1. Methodological Review of the Literature 

Authors 
Predicted 

Variable(s) 
Methods Performance Metrics 

Pichl and Kaizoji 

(2017) 

Bitcoin (BTC) 

price and 

volatility 

Heterogeneous Autoregressive model for 

Realized Volatility, Artificial Neural 

Network (ANN) 

Comparison of the actual and 

predicted vales, metrics are not 

specified 

Vo and Xu (2017) 
BTC returns and 

volatility 

ARMA(1,2)-fGARCH(2,2)/TGARCH using 

the GHYP distribution, Support Vector 

Machine (SVM), Neural Networks (NN) 

Residual Sum of Squares, 

Normalized Residual Mean 

Square Error 

Guo et al. (2018) BTC volatility 

Temporal Mixture models, GARCH, 

Random Forests (RF), Extreme Gradient 

Boosting, Elastic-Net, LSTM 

Root Mean Squared Error 

(RMSE), Mean Absolute Error 

Jang and Lee (2018)  
BTC price and 

volatility 

Linear Regression, Bayesian Neural 

Networks (BNN), Support Vector 

Regression (SVR) 

RMSE, Mean Absolute 

Percentage Error (MAPE) 

Kristjanpoller and 

Minutolo (2018)  

BTC price 

volatility 

Hybrid of ANN-GARCH with PCA pre 

processing 

Mean Squared Error (MSE), the 

Model Confidence Set (MCS) 

Peng et al. (2018) 

Volatility of 

BTC, ETH, 

Dash 

EGARCH, GARCH, gjrGARCH, SVR and 

combinations of GARCH and SVR models 

RMSE, Mean Absolute Error 

(MAE), Diebold-Mariano test 

Miura et al. (2019)  BTC volatility 
Ridge Regression, LSTM, ANN, Gated 

Recurrent Unit (GRU), SVM 
MSE, RMSE 

Seo and Kim (2020)  BTC volatility 
Hybrid of ANN, Higher Order Neural 

Network and GARCH models 
RMSE, MAE, MAPE, MCS 

Shen et al. (2021)  BTC volatility 
EWMA, GARCH, Recurrent Neural 

Networks (RNN) 
RMSE, MAE 

D'Amato et al. 

(2022) 

Volatility of 

BTC, ETH, 

XRP 

Jordan Neural Network (JNN), Non-Linear 

Autoregressive Neural Network (NLANN) 
MSE, MAPE 

Zahid et al. (2022)  BTC volatility 
Hybrid of EGARCH, GARCH, gjrGARCH 

and LSTM, BiLSTM, GRU 

Heteroscedasticity adjusted 

MSE and Heteroscedasticity 

adjusted MAE  

Azizi et al. (2023) BTC volatility 

Differential equation + Artificial Neural 

Network (ANN), ARCH, GARCH, Deep 

Learning (DL) 

Relative error 

Khan et al. (2023)  

Volatility of 

BTC, Tether, 

XRP, ETH  

Neural Network Autoregressive (NNETAR), 

Group Method of Data Handling Neural 

Network, Cubic Smoothing Spline (CSS) 

RMSE, MAE 

Pratas et. al. (2023) BTC volatility 
ARCH, GARCH, Multilayer Perceptron 

(MLP), RNN, LSTM 

MAE, MAPE, Diebold-

Mariano test 

Wang et al. (2023) 

Volatility of 

BTC, Ripple, 

ETH, Litecoin 

RF, Long Short-Term Memory (LSTM) 

Directional accuracy, RMSE, 

MAPE, Normalized Mean 

Squared Error 

Abarghouie et al. 

(2024) 

Volatility of 

eight 

cryptocurrencies 

Long Short-Term Memory (LSTM) MSE, RMSE 

Dudek et al. (2024)  

Volatility of 

BTC, Monero, 

ETH, Litecoin 

Autoregressive Fractionally Integrated 

Moving Average (ARFIMA), GARCH, 

Ridge Regression, RF, MLP, SVR, LSTM 

MSE, MAE, MCS 

García‑Medina and 

Aguayo‑Moreno 

(2024) 

Volatility of ten 

cryptocurrencies 

EGARCH, gjrGARCH, MLP, LSTM, 

LSTM-EGARCH, and LSTM-gjrGARCH 

HAE, HSE, Diebold-Mariano 

test 
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3. RESEARCH METHODOLOGY 

3.1. ARMA(P,Q) 

The ARMA(P,Q) process modelling the conditional mean (𝜇𝑡) in Equation 1 can be defined as 

follows: 

𝑦𝑡 = 𝜇𝑡 + 𝜖𝑡                                                                                                                                                                        (1) 

𝜇𝑡 =  𝜑0 +  ∑ 𝜑𝑘𝑦𝑡−𝑘
𝑃
𝑘=1 + ∑ 𝜃𝑠𝜖𝑡−𝑠

𝑄
𝑠=1                                                                                                             (2) 

Where 𝑦𝑡 is the return of a cryptocurrency observed at time t. 𝜑𝑘 and 𝜃𝑠 are the cryptocurrency 

specific parameters of the conditional mean equation. 

3.2. GARCH(p,q) 

Following the Autoregressive Conditional Heteroskedasticity (ARCH) model of Engle (1982), 

the Generalized Autoregressive Conditional Heteroskedasticity (GARCH(p,q)) definition of Bollerslev 

(1986) can be written as: 

𝜖𝑡 = 𝜎𝑡𝑧𝑡                                                                                                                                                                               (3) 

𝜎𝑡
2 =  𝜔 +  ∑ 𝛽𝑙𝜎𝑡−𝑙

2𝑝
𝑙=1 + ∑ 𝛼𝑗𝜖𝑡−𝑗

2𝑞
𝑗=1                                                                                                                  (4) 

In Equations 1 to 4, 𝜖𝑡 defines the error term distributed according to distribution 𝒟 

(𝜖𝑡~𝒟(0, 𝜎𝑡
2)). 𝜎𝑡

2 is the conditional volatility satisfying 𝜔 > 0 and 𝛼, 𝛽 ≥ 0. The Exponential 

GARCH (EGARCH) model of Nelson (1991) can be defined as: 

𝑙𝑛(𝜎𝑡
2)  =  𝜔 +  ∑ 𝛽𝑙 𝑙𝑛(𝜎𝑡−𝑙

2 )  +  ∑ 𝑔𝑗(𝑧𝑡−𝑗)
𝑞
𝑗=1  

𝑝
𝑙=1                                                                                    (5) 

where 𝑔𝑗(z𝑡−𝑗) =  𝛼𝑗z𝑡−j  + 𝛾𝑗(|z𝑡−𝑗|  −  𝐸|z𝑡−𝑗|).  

3.3. Backpropagation Neural Networks 

Dating back to the 1940s, the development of Artificial Neural Networks (ANN) arises from the 

ideas of being able to model biological neural networks with computation and logic (Carbonell et al., 

1983). Since Rosenblatt (1962), who introduced the simplest neural networks (perceptron), various 

ANN network structures with several layers and different learning algorithms are developed. 

Back Propagation Neural Network (BPNN) is a feed-forward ANN trained by the error back-

propagation algorithm. In a typical ANN, network weights are randomly initialized and a feed-forward 

computation is followed: 

𝑦ℎ = 𝑓(∑ (𝑥𝑗 ∗ 𝜔𝑗ℎ) − 𝜗ℎ
𝑚
𝑗=1 )                                                                                                                                   (6) 

Where 𝑦ℎ and 𝑥𝑗 are the outputs of the hidden and input layers, respectively. 𝜗ℎ is the bias term 

and 𝑓(∙) is the activation function. In this research sigmoid as well as the hyperbolic tangent activation 
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functions are employed. The following Equation 7 defines the feed-forward output value (𝑜𝑜) of the 

output layer. 

𝑜𝑜 = 𝑓(∑ (𝑦ℎ ∗ 𝜔ℎ𝑜) − 𝜗𝑜
𝑛
ℎ=1 )                                                                                                                                 (7)  

Once the output of feed-forward ANN is computed, the backpropagation (BP) algorithm 

propagates the network error backwards from the output to the hidden layers modifying the layer weights 

to reduce the error. The algorithm employs the gradient descent method to minimize the network error 

(Li et al., 2012). Following BP, the updated network weights can be expressed as: 

𝜔′𝑗ℎ = 𝜔𝑗ℎ + ∆𝜔𝑗ℎ       ∧       ∆𝜔𝑗ℎ =  −𝜂 ∗ 𝜕ℒ 𝜕𝜔𝑗ℎ⁄                                                                                       (8) 

𝜔′ℎ𝑜 = 𝜔ℎ𝑜 + ∆𝜔ℎ𝑜       ∧       ∆𝜔ℎ𝑜 =  −𝜂 ∗ 𝜕ℒ 𝜕𝜔ℎ𝑜⁄                                                                                  (9) 

where 𝜂 is the learning rate and ℒ is the difference between the actual network output and the 

expected (desired) level of output. The training process of error back propagation is carried until the 

network error converges to an acceptable level. 

3.4. Deep Belief Network 

Deep Belief Network (DBN), proposed by Hinton et al. (2006), is a composite multi-layer neural 

network with directed and undirected layer connections. DBN can be defined as a “Bayesian 

probabilistic generative model” constructed by stacking several layers of simple models that are called 

Restricted Boltzmann Machines (RBM) (Deng, 2014). On the other hand, RBM is a Boltzmann Machine 

with a restriction of not having connections between the hidden units as well as within the same layer. 

Figure 1 shows an illustration of a typical RBM that has a visual (v) and a hidden layer (h). While visual 

layer consists of input data, the hidden layer represents the set of features that can define the data specific 

dependencies. 

Figure 1. An illustration of RBM (a) and DBN (b) 

 

Source: Author’s own illustration 
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A RBM can be trained using the Gibbs sampling and the Contrastive Divergence (CD) 

algorithm. Once a layer of RBM is trained, the output of the layer is used as an input to the next layer. 

This greedy layer-by-layer training process is called pretraining. The unsupervised pretraining process 

of each RBM proceeds sequentially until the last one of the DBN network is trained. Figure 1 also 

illustrates a DBN stacked by two RBM. Following the pretraining, weight updates of DBN can be 

written as: 

∆𝜔𝑖𝑗 = 𝜂 [(𝜈𝑖ℎ𝑗)
0

− (𝜈𝑖ℎ𝑗)
1

]                                                                                                               (10) 

where 𝜂, 𝜈 and ℎ are the learning rate, visual and hidden units, respectively. 𝜔𝑖𝑗 is the weight 

between visual unit i and hidden unit j. Furthermore, as mentioned in the previous section, the initial 

weights of a neural network are randomly generated. Instead, the updated weights of DBN can be 

utilized as the initial weights of a Deep Neural Network (DNN). DNN is a multi-layer ANN that has 

many hidden units as well as layers. If a DNN uses the weights of DBN to initialize its training, then the 

network is named as DBN-DNN (Deng, 2014). 

4. EXPERIMENTAL DESIGN 

4.1. Data 

This research employs daily closing price series of two cryptocurrencies (Bitcoin (BTC-USD) 

and Ethereum (ETH-USD)) for the period of 4 July 2022 and 3 February 2024. While BTC is currently 

(as of 1st of July 2024) trading on 11363 markets with a volume of 21.55 billion dollars, ETH is trading 

on 9108 markets with a volume of 10.73 billion dollars. The data consisting of 580 observations of both 

cryptocurrencies is downloaded from the open source of Yahoo Finance (www.finance.yahoo.com) 

website. Daily returns are estimated from: 

𝑟𝑡,𝑑 = ln(𝑃𝑡,𝑑/𝑃𝑡−1,𝑑)                                                                                                                                                  (11) 

Where 𝑃𝑡,𝑑 is the daily closing price of cryptocurrency 𝑑 ∈ {1,2}. Descriptive statistics of the 

data including the returns is given in Table 2.  

Table 2. Descriptive Statistics – Prices and Returns 

Data Mean Stand. Dev. Jarque-Bera (p val.) ADF LB(Q10) LM(Q10) 

BTC 26,816 7,589 62.83 (0.000) *** 0.655 0.000 *** 0.000 *** 

ETH 1,709 320 10.06 (0.007) *** 0.357 0.000 *** 0.000 *** 

BTCR 0.0014 0.0253 706.38 (0.000) *** 0.01 ** 0.904 0.000 *** 

ETHR 0.0013 0.0326 985.65 (0.000) *** 0.01 ** 0.134 0.000 *** 

Notes: *** and ** indicate significance at 1% and 5% levels, respectively. BTCR and ETHR refer to the return 

series of BTC and ETH, respectively. ADF is the Augmented Dickey-Fuller Test (Said & Dickey, 1984). Estimated 

p – values of ADF, LB (Ljung-Box (Ljung & Box, 1978)) and LM (Lagrange Multiplier test for autoregressive 

conditional heteroscedasticity (ARCH) of Engle (1982)) tests are reported. 
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As can be seen from Table 2, both price series violate the normal distribution assumption. 

Moreover, prices are non-stationary with the properties of serial auto-correlation and heteroskedasticity. 

Similarly, both return series are heteroskedastic as well as non-normally distributed. On the other hand, 

cryptocurrency returns do not have unit root and serial auto-correlation. Additionally, time series plots 

of the daily closing prices and the returns are given in Figure 2. 

Figure 2. Time Series Plots of the Cryptocurrencies 

 

Source: Author’s own illustration 

4.2. Data preparation 

The estimated cryptocurrency returns are divided into train and test samples. 80% of the data 

(464 observations) of each cryptocurrency is employed to train the algorithms, the rest unseen 20% (116 

out-of-sample observations) is left for the performance evaluation.  

The train data of each cryptocurrency is corrected for outliers by using the Inter Quartile Range 

(IQR) estimate as follows: 

𝐼𝑄𝑅𝑑 = 𝑄3,𝑑 − 𝑄1,𝑑                                                                                                                                                      (12) 

𝑟𝑡,𝑑
′ = {

𝑄1,𝑑 − 1.5 ∗ 𝐼𝑄𝑅𝑑       𝑖𝑓       𝑟𝑡,𝑑 < 𝑄1,𝑑 − 1.5 ∗ 𝐼𝑄𝑅𝑑

𝑄3,𝑑 + 1.5 ∗ 𝐼𝑄𝑅𝑑       𝑖𝑓       𝑟𝑡,𝑑 > 𝑄3,𝑑 + 1.5 ∗ 𝐼𝑄𝑅𝑑

𝑟𝑡,𝑑                                            𝑒𝑙𝑠𝑒                                     
                                                               (13) 

where 𝑄1,𝑑 and 𝑄3,𝑑 are the first and third quartiles of the returns of cryptocurrency 𝑑 ∈ {1,2}, 

respectively.  
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4.3. Volatility predictions 

Conditional volatility forecasts of the ARMA(P,Q)-GARCH(p,q) and EGARCH(1,1) processes 

are obtained by using one-day ahead rolling windows approach as follows:  

- Each estimation window consisting of 464 observations is corrected for outliers as explained 

in Equation 13 for a total of 116 windows. 

- EGARCH(1,1) with student-t innovations is fitted to each window. 

- The window specific (P,Q) and (p,q) orders of the ARMA-GARCH processes with either 

normal or student-t innovations are determined according to AIC criteria [𝑝, 𝑞 ∈

{0,1,2,3} 𝑎𝑛𝑑 𝑃, 𝑄 ∈ {0,1,2}]. 

- Residuals of the fitted ARMA(P,Q)-GARCH(p,q) and EGARCH(1,1) processes are 

controlled for the remaining auto-correlation and heteroskedasticity. The orders of 

conditional mean and/or volatility are increased by one in case of remaining auto-correlation 

and/or heteroskedasticity.  

- One-day ahead out-of-sample volatility forecasts are obtained. 

The remaining algorithm’s (BPNN and DBN-DNN) volatility predictions are obtained by using 

one of the commonly employed volatility proxies, daily squared returns. Figure 3 gives a clear overview 

of the methodology of this paper. 

Figure 3. Overview of the Prediction Framework 

 

Source: Author’s own illustration 

BPNN and DBN-DNN algorithms’ one-day ahead volatility (squared return) predictions are 

obtained by employing squared cryptocurrency returns’ own lagged values as well as volatility forecasts 

of the ARMA-GARCH and EGARCH as input variables (features). The steps are as follows: 

- Train data is corrected for outliers as explained in Equation 13. Test data is left untouched. 



Deep Neural Networks in Predicting Financial Volatility: 

An Application on Cryptocurrencies 

553 

- Train and test data are normalized by using only the train data normalization parameters to 

prevent leakage from the test data.   

- Period specific volatility predictions of the algorithms are obtained by: 

�̂�𝑡,𝑑
2 = 𝑓(𝑟𝑡−1,𝑑

2  , … , 𝑟𝑡−10,𝑑
2  ,  𝜎𝑡,𝑑,𝑘

2  ) + 𝜀𝑡                                                                        (14) 

where 𝑟𝑡−1,𝑑
2  is the one-day lagged squared returns of cryptocurrency 𝑑 ∈ {1,2}. Moreover, 

𝜎𝑡,𝑑,𝑘
2  is the day t volatility forecast of GARCH process k [𝑘 ∈ {𝐴𝑅𝑀𝐴 − 𝐺𝐴𝑅𝐶𝐻, 𝐸𝐺𝐴𝑅𝐶𝐻}].  

4.4. Model calibration and performance 

Parameters of the employed algorithms that are fine-tuned are summarized in Table 3. The 

optimal parameters are selected with a time series cross-validation (ts-cv) approach (Hyndman & 

Athanasopoulos, 2018) which keeps the order of the training data unchanged. Both BPNN and DBN-

DNN algorithms are trained with a fixed rolling-window and validation samples of 116 days (h = 116). 

Parameters that minimize mean of the RMSE of validation samples are selected for out-of-sample 

volatility forecasts. The sigmoid as well as hyperbolic tangent activation functions are used both by 

BPNN and DBN-DNN networks. R software (R Core Team, 2019) is employed to obtain volatility 

predictions of the algorithms. 

Table 3. Hyper-parameters of the Algorithms 

Crypto Model Act. Func. Learning Rate Hidden Layers Units of HL Epoch 

 

 

BTC 

BPNN Sigmoid 0.95 2 11/20 3 

BPNN H. tangent 0.95 2 12/20 37 

DBN-DNN Sigmoid 0.90 1 6 35 

DBN-DNN H. tangent 0.95 2 9/16 48 

 

 

ETH 

BPNN Sigmoid 0.95 2 8/19 3 

BPNN H. tangent 0.95 2 8/19 27 

DBN-DNN Sigmoid 0.95 2 17/20 3 

DBN-DNN H. tangent 0.90 2 13/19 29 

Notes: Hidden Layers refers to the number of hidden layers of the network. Units of HL indicates the number of 

units of each hidden layer. For example, the network design of BPNN (BTC), with the sigmoid activation function, 

has two hidden layers with 11 (Layer 1) and 20 (Layer 2) units. Moreover, DBN-DNN (BTC) with the sigmoid 

activation function, has one hidden layer consisting of 6 units. Epoch defines the iteration number of samples. 

Period specific performance of the out-of-sample volatility forecasts of the models are compared 

with the well-known metrics of: 

𝑅𝑀𝑆𝐸 = (∑ (𝑟𝑡,𝑑
2 − �̂�𝑡,𝑑

2 )
2𝑁

𝑡=1   𝑁⁄ )
1

2⁄
                                                                                                                 (15) 

𝑅2 = 1 − (∑ (𝑟𝑡,𝑑
2 − �̂�𝑡,𝑑

2 )
2

 𝑁
𝑡=1  ∑ (𝑟𝑡,𝑑

2 − �̅�𝑑
2)

2𝑁
𝑡=1⁄ )                                                                                      (16)  

𝑀𝐴𝐸 = ∑ |𝑟𝑡,𝑑
2 − �̂�𝑡,𝑑

2 |𝑁
𝑡=1   𝑁⁄                                                                                                                                     (17) 
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where 𝑟𝑡,𝑑
2  and �̅�𝑑

2 refer to the observed and mean of the observed out-of-sample squared returns 

of cryptocurrency d, respectively. �̂�𝑡,𝑑
2  is the volatility prediction of a model. N is the number of 

observations. 

5. EMPIRICAL RESULTS 

Once the algorithms are calibrated, cryptocurrency specific out-of-sample volatility predictions 

of the models are obtained. Table 4 and Table 5 report the estimated performance measures for BTC 

and ETH, respectively. 

Table 4. Performance Metrics - BTC 

Method RMSE R2 MAE 

ARMA-GARCH 0.0013604 0.0024790 0.0006900 

EGARCH 0.0013638 0.0134340 0.0006917 

BPNN* 0.0013329 0.0021690 0.0006493 

BPNN** 0.0013319 0.0118286 0.0006560 

DBN-DNN* 0.0013391 0.0053625 0.0006739 

DBN-DNN** 0.0013300 0.0000352 0.0006637 

Notes: The best and second-best metrics are shown in bold and italics, respectively. * and ** indicate the 

algorithms that use either the sigmoid (*) or the hyperbolic tangent (**) activation functions. 

According to Table 4, DBN-DNN with the hyperbolic tangent activation function yielded the best 

RMSE value of BTC. On the other hand, EGARCH obtained the best R2 and BPNN algorithm that use 

the sigmoid activation function yielded the smallest MAE metric of BTC. While different algorithms 

are ranked as the best depending on the performance metric, BPNN with the hyperbolic tangent 

activation function yielded the closest as well as the second-best values of all the three metrics of BTC. 

Table 5. Performance Metrics - ETH 

Method RMSE R2 MAE 

ARMA-GARCH 0.0017355 0.0020939 0.0007846 

EGARCH 0.0017237 0.0035364 0.0007888 

BPNN* 0.0017045 0.0032395 0.0008268 

BPNN** 0.0017053 0.0028780 0.0008226 

DBN-DNN* 0.0017039 0.0056355 0.0008258 

DBN-DNN** 0.0017346 0.0092906 0.0008629 

Notes: The best and second-best metrics are shown in bold and italics, respectively. * and ** indicate the 

algorithms that use either the sigmoid (*) or the hyperbolic tangent (**) activation functions. 
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When the ETH volatility predictions of the applied algorithms are compared with the same 

performance metrics, in this case, DBN-DNN that use the sigmoid activation function yielded the best 

and the second-best RMSE and R2 values, respectively. However, DBN-DNN with the hyperbolic 

tangent activation function had the best R2 of ETH. Moreover, ARMA-GARCH and EGARCH 

processes obtained the best and the second-best MAE. Compared to the metrics of BTC reported in 

Table 4, BPNN with the hyperbolic tangent activation function did not rank as the best or the second-

best in any of the performance measures of ETH. 

6. CONCLUSION 

In this research, one-day ahead volatility predictions of BPNN and DBN-DNN deep learning 

algorithms that use either the sigmoid or the hyperbolic tangent activation functions, are obtained for 

two different cryptocurrencies, Bitcoin and Ethereum. While it is easier to find research papers 

employing various deep learning algorithms to forecast price or price direction of a financial asset, the 

research focusing on predicting cryptocurrency volatility is still scarce. As mentioned by Zahid et al. 

(2022) only 13.8% of published papers, which conducted research on cryptocurrencies during 2013 and 

2019 used deep learning algorithms. Moreover, most of them (most of the 13.8%) that use deep learning 

algorithms are mainly focused on predicting price or price direction of cryptocurrencies.     

In this paper, out-of-sample volatility prediction performance of BPNN and DBN-DNN are 

measured by using several error metrics (RMSE, R2 and MAE) and compared to the most frequently 

applied volatility modelling tools in economics and finance literature, that are the (ARMA-)GARCH 

and EGARCH processes. From the estimated performance measures, DBN-DNN algorithm yielded the 

lowest RMSE values both for Bitcoin and Ethereum. While DBN-DNN still yielded the best as well as 

the second-best R2 of Ethereum, EGARCH was the winner in case of R2 of Bitcoin. Moreover, BPNN 

yielded the best value of MAE of Bitcoin and ARMA-GARCH had the best MAE of Ethereum. These 

results are in line with the works of Kristjanpoller and Minutolo (2018) as well as Zahid et al. (2022) 

who reported an enhanced performance when a combination of GARCH and deep learning algorithms 

are used to predict volatility of cryptocurrencies. Overall, this research indicates a promising volatility 

forecasting ability in favor of the applied deep neural networks, since they managed to obtain most of 

the best as well as the second-best performance metrics of both Bitcoin and Ethereum. 

Future research could assess volatility prediction performance of DBN-DNN and the other 

underexplored deep learning algorithms by using various conventional cryptocurrencies as well as the 

decentralized finance (DeFi) tokens that are emerged as a new asset class (Huang & Hsu, 2024). 

Moreover, it would also be interesting first to explore various drivers of cryptocurrency volatility 

including the DeFi tokens, and then to investigate the structure of the dependence between them. Finally, 

ML and/or DL algorithms yielding superior volatility predictions could be employed in portfolio risk 
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management and asset allocation context since accurate risk prediction is vital for both investors and 

regulators.  
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