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ABSTRACT 

 
Wireless sensor networks can monitor the environment to detect anomalies and reduce the risk of 
maritime traffic. Energy is necessary for low-power conditions where wireless sensor networks are 
used. Ensuring the lifespan of energy constraints and providing continuous environmental 
observation, data collecting, and communication requires management. Battery replacement and 
energy consumption issues can be resolved with path planning and energy-efficient autonomous 
underwater vehicle charging for sensor nodes. The nearest neighbour technique is used in this study 
to solve the energy-aware path planning problem of an autonomous underwater vehicle. Path planning 
simulations show that the nearest neighbour strategy converges faster and produces a better result 
than the genetic algorithm. We develop robust and energy-efficient path-planning algorithms that 
efficiently acquire sensor data while consuming less energy, allowing the monitoring system to 
respond to anomalies more rapidly. Increased sensor connectivity lowers energy usage and increases 
network longevity. This study also considers the situation when it is recommended to avoid taking 
direct travel paths between particular node pairs for a variety of reasons. This recommendation is 
considered in this study. We present a strategy based on a modified Nearest Neighbour-based 
Approach from the Nearest Neighbour method to address this more challenging scenario. The direct 
pathways between such nodes are constrained within the context of this technique. The modified 
version of Nearest Neighbor-based approach performs well even in that particular situation.  
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ÖZET 
 
Kablosuz sensör ağları, anormallikleri tespit etmek ve deniz trafiği riskini azaltmak için çevreyi 
izleyebilir. Kablosuz sensör ağlarının kullanıldığı düşük güç koşulları için enerji gereklidir. Enerji 
kısıtlamalarının ömrünün sağlanması ve sürekli çevresel gözlem, veri toplama ve iletişim sağlanması 
yönetim gerektirir. Pil değişimi ve enerji tüketimi sorunları, sensör düğümleri için yol planlaması ve 
enerji açısından verimli otonom su altı araç şarjı ile çözülebilir. Bu çalışmada, otonom bir su altı 
aracının enerji farkında yol planlama problemini çözmek için en yakın komşu tekniği kullanılmıştır. 
Yol planlama simülasyonları, en yakın komşu stratejisinin daha hızlı birleştiğini ve genetik 
algoritmadan daha iyi sonuç ürettiğini göstermektedir. Daha az enerji tüketirken sensör verilerini 
verimli bir şekilde toplayan ve izleme sisteminin anormalliklere daha hızlı yanıt vermesini sağlayan 
sağlam ve enerji açısından verimli yol planlama algoritmaları geliştiriyoruz. Artan sensör bağlantısı 
enerji kullanımını düşürür ve ağ ömrünü artırır. Bu çalışma ayrıca çeşitli nedenlerle belirli düğüm 
çiftleri arasında doğrudan seyahat yolları kullanmaktan kaçınılmasının önerildiği durumu da ele 
almaktadır. Bu öneri bu çalışmada dikkate alınmıştır. Bu daha zorlu senaryoyu ele almak için En 
Yakın Komşu yönteminden değiştirilmiş En Yakın Komşu tabanlı Yaklaşıma dayalı bir strateji 
sunuyoruz. Bu tür düğümler arasındaki doğrudan yollar bu tekniğin bağlamında kısıtlanmıştır. En 
Yakın Komşu tabanlı yaklaşımın değiştirilmiş versiyonu, o belirli durumda bile iyi performans 
gösterir. 
 
Anahtar sözcükler: Otonom su altı aracı; yapay zeka; çevresel izleme; enerji bilinçli yol planlama;  
                                  kablosuz sensör ağları; su altı iletişimi 
 
1. INTRODUCTION 
 
1.1. Motivation 
Wireless sensor networks (WSN) are becoming 
increasingly important for resource exploration, 
navigation, and data collection due to their rapid 
expansion (Felemban et al., 2015). Intelligent 
Ocean Undersea Technology, or IoT, has been 
proposed recently (Qiu et al., 2020) and has a lot 
of potential uses. Many submerged sensor nodes 
transmit climate data to a data hub. Battery 
replacement for battery-operated nodes in 
extreme maritime circumstances necessitates 
costly and intricate technologies. Given limited 
energy capacity and short lifespan of underwater 
wireless sensor network (UWSN), energy 
efficiency must be increased to enhance UWSN 
performance and reliability. As a result of their 
short lifespan and limited energy source, 
UWSNs depend on increased energy economy 
for proper operation (Akyildiz et al., 2005). 
The suggested metaheuristic-based path planning 
technique for WSN accelerates sensor data 
collecting while saving energy, enabling faster 
monitoring system reaction to ship disaster 
hazards. By getting closer to the sensors, you can 
communicate with them and use less energy. 

WSN will therefore last longer, monitoring the 
environment to detect anomalies and prevent 
accidents.  
Numerous studies have been conducted on this 
issue. Wireless sensor networks (WSNs) use a lot 
of energy to transmit data. Energy consumption 
and transmission are reduced by optimising and 
compressing sensory data (Li et al., 2020). 
Furthermore, by strategically placing and routing 
nodes, UWSN energy efficiency can be raised. 
By streamlining the deployment and routing 
procedures, energy consumption can be 
decreased and network lifetime can be extended. 
This is because there may be variations in the 
energy usage and distance between data sensor 
nodes (Cheng et al., 2014). 
Even with these techniques, replacing the battery 
when it runs low is still important. Energy 
transfer technology can be used to charge 
underwater sensors so they can be used for long-
term monitoring and data transmission without 
the need for new batteries (Khan et al., 2018). 
Through addressing high water pressure and 
short circuits, the team (Pendergast et al., 2011) 
produced a rechargeable lithium-ion battery 
module that may be used underwater. Due to 
limitations on the distance over which energy can 
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be transferred, autonomous underwater vehicles 
require help planning their routes and charging. 
An autonomous underwater vehicle, or AUV, is 
a self-propelled submersible that can do 
moderate activities without the need for human 
help (Blidberg et al., 2001). Underwater 
research, environmental monitoring, and marine 
safety have all made extensive use of AUVs 
because to their affordability and security in 
seabed inquiry, search, identification, and rescue 
(Ghafoor et al., 2019). The AUV's constrained 
charging space and power carrying capabilities 
make data loss from subsequent nodes 
troublesome. Therefore, it is difficult to 
guarantee that the AUV would be advantageous 
for broader detection zones, especially in 
maritime conditions.  
 
1.2. Main Contributions 
The main contribution can be briefed as follows: 

• This paper offers a comparative 
examination of AI-based techniques for 
three-dimensional path planning for 
autonomous underwater vehicles (AUV). 
The main focus of the presentation is the 
challenges that arise when collecting data 
in wireless sensor networks.  

• The Nearest Neighbour (NN)-based 
Approach is recommended as a workable 
solution for the three-dimensional path 
planning problem. This technique 
considers the current computer 
limitations during the procedure.  

• We introduce a modified Nearest 
Neighbour-based Approach, which 
modifies the Nearest Neighbour 
algorithm to avoid obstacles in the three-
dimensional path planning issue. The 
travelling restrictions between certain 
sensor pairs are considered whenever this 
technique is used. 

• Our approach provides not only an 
energy-efficient but also computationally 
efficient and fast solution. 

 
1.3. Organization 
The remainder of the paper will follow this 
format. A succinct synopsis of pertinent studies 
from the literature is given in Part 2. In Section 

3, the issue is outlined and a system model is 
supplied. A few methods for solving the 3D path 
planning problem are shown in Section 4. In 
Section 5, we propose a novel solution to the 
problem with some limitations between some of 
the sensor pairs. We evaluate effectiveness of the 
proposed strategies in Section 6. Section 7 
concludes the work. Section 8 gives future work. 
 
2. RELATED LITERATURE 
 
This section considers the necessary literature to 
address path planning in WSN.  
Energy-efficient communication techniques 
must be created as alternatives because of battery 
limitations. Lee et al. looked at network 
topology-based energy-efficient WSN MAC 
techniques. As in the works (Le et al., 2011, 
Zenia et al., 2016) investigate secure and energy-
conserving WSN MAC and routing techniques. 
(Khan et al., 2019) presents a packet-sending 
strategy that aims to improve channel quality and 
decrease redundancy. The hybrid-coding-aware 
routing technique created by a work (Su et al., 
2023) has applications for underwater acoustic 
sensor networks (UASNs). This method reduces 
gearbox overhead and increases reliability.  
Clustering improves resource management, 
energy efficiency, longevity, and data 
aggregation in wireless sensor networks (Kumar 
et al., 2018). To reduce unnecessary transfers 
inside the network, a cluster head (CH) 
disseminates information throughout each cluster 
(Xie et al., 2013). Energy and bandwidth 
reductions are attainable at challenging fields 
with restricted communication resources (Yadav 
et al., 2019). 
Using a clustering-based communication 
protocol, the work (Sun et al., 2022) reduced the 
energy usage of sensor nodes. The topology 
management system developed by Jin et al. 
guarantees reliable connectivity while 
simultaneously improving coverage and 
longevity (Fan et al., 2023). Liu et al. (2019) 
developed a virtual force-based distributed node 
deployment technique to expand WSN network 
coverage. In Wei et al. (2020), a network 
topology control model that prolongs network 
lifetime qualities such resilience, energy 
consumption balance, and topology is presented. 
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It improves data transmission while doing so.  
AUVs charge and collect data concurrently with 
the UAV. AUVs equipped with sensors can 
collect data on marine life, geology, and water 
quality. AGV assisted communication was tested 
in (Zhu et al., 2023), where the AUV was 
employed as a mobile node to gather energy-
saving data. For data gathering and K-means path 
planning, AUVs were proposed in (Yan et al., 
2023), and (Shen et al., 2020). AUVs are used for 
two purposes: data collection and multi-hop 
detection (Gjanci et al., 2017, Yan et al., 2018). 
AUVs may network and communicate 
underwater. AUVs or central stations can receive 
data from mobile or fixed sensors. The activities 
can be managed in real time. Kan et al. (2018) 
field-deployable three-phase wireless charging 
system offers quick and easy AUV charging. 
According to Ramos et al. (2018), using dynamic 
system theory for AUV navigation at depths of 
0–100 m resulted in a faster battery life. 
Building battery-charging, autonomous docking 
AUVs allow for continuous operation without 
requiring human intervention. The dock charges 
the batteries in the AUVs and the sensor nodes. 
Their efficiency and independence increase in 
the absence of retrieval and recharging.  
The efficiency of the AUV path design is 
increased. Cheng et al. apply kinematic and 
dynamical models to plan AUV routes, avoid 
obstacles, and evaluate energy usage for energy 
savings and network longevity (Cheng et al., 
2021). The work (Kumar et al., 2021) have 
presented a hybrid underwater AUV exploration 
strategy that drastically reduces its range. Using 
data collecting points, the exploring region is 
subdivided in (Golen et al., 2010). Prepared 
paths save AUV energy during data collection. 
Rechargeable method increases network life 
(Yhi et al., 2022). 
 
3. SYSTEM MODEL AND PROBLEM 

DEFINITION 
 
Our research focusses on the energy-aware path 
planning problem for an AUV's sensor visit. We 
define this challenge and provide an illustrative 
case.  We examine the UWSN system model 
first. The energy-aware path planning problem is 
then defined more precisely. 

3.1. System Model 
In this network system, every sensor node sends 
data to the cluster head node using a wireless 
network. Magnetic resonance coupling AUVs 
charge each sensor node before returning to a 
charge station (CS) for resting and data 
gathering. 
The maintenance of energy consumption balance 
in sensors is a critical consideration for Wireless 
Sensor Networks (WSNs). autonomous 
underwater vehicle (AUV) collect data from 
several studies (Pop et al., 2024, Davendra, 2010, 
Johnson et al., 1997) to examine and address 
discrepancies in energy usage. The AUV 
methodically visits each sensor node according 
to a pre-established plan to ensure an equitable 
distribution of energy usage. 
 
3.2. Problem Definition 
The difficulty of optimising energy consumption 
in path planning using AUV is classified as the 
travelling salesman problem (TSP) (Pop et al., 
2024, Davendra, 2010, Johnson et al., 1997).  
The TSP is commonly solved using classical 
search algorithms and evolutionary algorithms, 
which are the primary approaches used in this 
procedure. The artificial potential field 
technique, greedy algorithm, and quick progress 
algorithm are all examples of algorithms that fall 
within the previously mentioned category. The 
latter group includes techniques such as genetic 
algorithm and nearest neighbour algorithm, 
which are derived from biological algorithms. 
 
4. PROPOSED ENERGY-AWARE PATH 

PLANNING (EAPP) APPROACHES 
 
This section focuses on the challenge of energy-
conscious path planning for an AUV. The 
primary area of concern is the separation between 
each pair of sensor nodes. The TSP is widely 
recognised as the most prominent NP-hard 
optimisation problem (Davendra, 2010, Johnson 
et al., 1997). The TSP aims to construct an 
optimised itinerary for a salesperson, starting 
from his apartment, visiting many places, and 
returning to the starting point, to decrease travel 
time (Gutin et al., 2002).  
By considering the EAPP problem as a TSP 
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problem, we propose three approaches: Nearest 
Neighbour (NN)-based Approach, the Grey Wolf 
Optimiser (GWO)-based Approach, and the 
Genetic Algorithm (GA)-based Approach. 
 
4.1. Nearest Neighbour (NN)-Based 
Approach 
Concurrently, we suggest employing the Nearest 
Neighbour Algorithm (Gutin et al., 2007) to 
address the EAPP problem by seeing it as a 
Travelling Salesman Problem (TSP). 
 
4.2. Grey Wolf Optimizer (GWO)-based 
Approach 
Our methodology consists of tackling the EAPP 
issue by seeing it as a Travelling Salesman 
Problem (TSP) and creating a solution for 3D 
path planning using the Grey Wolf Optimiser 
Algorithm (Mirjalili et al., 2014). To do this, we 
have formulated a solution. 
 
4.3.  Genetic Algorithm (GA)-based 
Approach 
To address the EAPP issue, also referred to as the 
TSP, we offer a solution that employs the Genetic 
Algorithm. This technique is specifically tailored 
for planning paths in three-dimensional space 
(Goldberg, 1989, Bonabeau et al., 1999). Genetic 
algorithms are designed to address complex 
optimization problems by simulating the 
processes of biological evolution. This is done to 
address optimal issues. To address the issues of 
the Travelling Salesman Problem (TSP), a 
genetic algorithm is used. This approach begins 
by identifying the people that make up the TSP 
solution and initializing the population. These 
stages signify the beginning phase of the 
procedure. Throughout the genetic processes of 
selection, crossover, and mutation, individuals in 
the population are evaluated based on a fitness 
function. Individuals who have been identified as 
the most physically competent are selected. The 
maximum number of iterations is the decisive 
parameter that will determine the termination of 
the GA. In this study, individual fitness is 
assessed by either the overall distance travelled 
or the total amount of energy used by the AUV. 
Both factors are taken into account. 
 

5. MODIFIED NEAREST NEIGHBOUR-
BASED APPROACH 

 
This section focuses on the problem of energy-
efficient path planning, considering the 
constraints imposed by specific sensor pairs that 
are located close to each other. Placing barriers 
between sensors may obstruct the direct transfer 
of data between them. The AUV has multiple 
reasons for avoiding a straight transition between 
the first and second sensors. Each of these 
elements will be expounded upon in more detail 
below. These considerations include potential 
hazards, obstructed paths, such as those covered 
in mud, between the two sensors, and 
temperatures that constantly vary. In this specific 
case, the AUV will move towards a sensor or 
sensors positioned between the two sensors.  
Our proposed solution to the problem of three-
dimensional path planning is the modified 
version of Nearest Neighbour-based Approach 
proposed in the works (Gul et al., 2024, Gul, 
2024). This technique aims to address minor 
barriers that frequently occur in the space 
between certain pairs of sensors.  
 
𝑫𝑫

=

⎣
⎢
⎢
⎢
⎢
⎡ 𝒅𝒅𝟏𝟏𝟏𝟏 𝒅𝒅𝟏𝟏𝟏𝟏

𝒅𝒅𝟏𝟏𝟏𝟏 𝒅𝒅𝟏𝟏𝟏𝟏
…
…

𝒅𝒅𝟏𝟏(𝒏𝒏−𝟏𝟏) 𝒅𝒅𝟏𝟏𝒏𝒏
𝒅𝒅𝟏𝟏(𝒏𝒏−𝟏𝟏) 𝒅𝒅𝟏𝟏𝒏𝒏

⋮ ⋮ ⋱ ⋮ ⋮
𝒅𝒅(𝒏𝒏−𝟏𝟏)𝟏𝟏 𝒅𝒅(𝒏𝒏−𝟏𝟏)𝟏𝟏
𝒅𝒅𝒏𝒏𝟏𝟏 𝒅𝒅𝒏𝒏𝟏𝟏

…
…

𝒅𝒅(𝒏𝒏−𝟏𝟏)(𝒏𝒏−𝟏𝟏) 𝒅𝒅(𝒏𝒏−𝟏𝟏)𝒏𝒏
𝒅𝒅𝒏𝒏(𝒏𝒏−𝟏𝟏) 𝒅𝒅𝒏𝒏𝒏𝒏 ⎦

⎥
⎥
⎥
⎥
⎤

 (𝟏𝟏) 

 
If some obstacles or obstructions hinder 
movement from node 𝒏𝒏 − 𝟏𝟏 to node 𝒏𝒏, then the 
distance between node 𝒏𝒏 − 𝟏𝟏 and node 𝒏𝒏, 
denoted by 𝒅𝒅(𝒏𝒏−𝟏𝟏)𝒏𝒏 is assigned a value of 𝑴𝑴, 
where 𝑴𝑴 denotes a considerably large number. 
The distance cost matrix 𝑫𝑫𝒎𝒎𝒎𝒎𝒅𝒅

𝑶𝑶𝑶𝑶 , which is updated 
prior to using the Nearest Neighbour approach 
for 𝒏𝒏 nodes, can be constructed by assigning a 
large integer value 𝑴𝑴 to the entry 𝒅𝒅(𝒏𝒏−𝟏𝟏)𝒏𝒏. 
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⎥
⎥
⎥
⎥
⎤

 (𝟏𝟏) 

 
Using the updated distance cost matrix 𝑫𝑫𝒎𝒎𝒎𝒎𝒅𝒅

𝑶𝑶𝑶𝑶 , we 
implement the 3D Nearest Neighbour algorithm. 
Thus, we have proposed a modified Nearest 
Neighbour approach. 
 
6. NUMERICAL RESULTS 
 
This section assesses the effectiveness of 
algorithms used to solve the 3D energy-aware 
path planning problem of an AUV. The decisive 
factor is the distance separating each pair of 
sensor nodes. Through the random deployment 
of sensor nodes, we were able to establish a 
three-dimensional zone with dimensions of 500 
meters in length, breadth, and height. This 
enabled us to carry out the simulations. The 
selected works utilised a range of dimension 
lengths and distances that were in line with our 
approach. 
 
6.1. 50-node scenario 
This article specifically examines the 
quantitative evaluation of the proposed 
algorithms in a particular scenario involving a 
single AUV and 50 nodes. Figure 1 illustrates the 
configuration of 50 nodes in a three-dimensional 
space, with each dimension measuring 500 m. 
Locations are given as ((442, 22, 474), (502, 59, 
327), (285, 291, 67), (294, 311, 108),  (57, 149, 
390), (454, 22, 47),  (238, 383, 180), (425, 11,  
18),  (159, 463, 38),  (77, 30, 452), (143, 74, 155), 
(292, 356, 348), (4, 215, 113), (148, 179, 127),  
(158, 209, 285), (448, 263, 362), (108, 141, 230), 
(450, 484, 172),(428, 112, 223),  (489, 281, 23), 
(259, 242, 186), (325, 162, 227), (141, 22, 386), 
(296, 108, 402), (414, 355, 411), (439, 62, 14),  
(241,  7,  29), (258, 272, 221), (319, 390, 244), 
(209, 299, 390), (169,156, 443), (150, 465, 96), 
(187, 105, 280), (272, 447, 28),  (348, 263, 305), 
(389, 234, 382), (399, 416, 213), (31, 370,  63), 
(152,  120, 371), (207, 67, 491), (118, 352, 126), 
(225, 361, 460), (460, 203, 139), (15,  100,  244), 

(340, 188, 20), (60, 447, 316), (430, 154, 168), 
(214, 158, 283), (210, 332, 95), (102, 335, 422)). 
 

 
 

Figure 1. Locations of sensors 
 

We evaluate the efficacy of Nearest Neighbour 
(NN), Grey Wolf Optimiser Algorithm (GWO), 
and Genetic Algorithm (GA)-based Approaches 
by analysing different combinations of these 
parameters. 
 
6.1.1. NN-based Approach 
This subsection evaluates performance of an NN-
based solution. Figure 2 demonstrates the NN’s 
achieved path planning solution in a scenario in 
Figure 1. 
 

 
 

Figure 2. Achieved (6293 m) path planning 
solution by Nearest Neighbor 

 
6.1.2. GA-based Approach 
This subsection evaluates performance of an GA-
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based solution. Figure 3 demonstrates the GA’s 
achieved path planning solution in 1000 
iterations in a scenario in Figure 1. 
 

 
 

Figure 3. Achieved (6198 m) path planning 
solution with GA in 1000 iterations 

 
6.1.3. GWO-based Approach 
This subsection evaluates performance of an 
GWO-based solution. Figure 4 demonstrates the 
GWO’s achieved path planning solution in 1000 
iterations in a scenario in Figure 1. 
 

 
 

Figure 4. Achieved (8788 m) path planning 
solution with GWO in 1000 iterations 

 
 

6.1.4. Discussion 
In general, NN-based Approach achieves shorter 
path than GA-based Approach. 
Figure 5 illustrates the total distance travelled by 
AUV employing multiple algorithms (NN Based 
Approach, GWO Based Approach, and GA 
Based Approach) to visit the 50 sensor nodes 
shown in Figure 1. Based on the data presented 
in Figure 5, we can make the following 
inferences about the performance of the 
algorithms in the scenario involving 50 nodes. 
According to the general pattern, the NN-based 
method and GA-based approach are more 
effective than the GWO-based approach. The 
neural network-based approach demonstrates 
superior performance compared to the genetic 
algorithm-based approach in terms of results up 
to the 500th iteration. In addition, the NN-based 
Approach is significantly faster in solving the 
problem, taking only 0.094679 seconds 
compared to the GA-based approach's time of 
3.598634 seconds (38 times faster). 
 

 
 
Figure 5. Achieved path lengths for visiting 50 
nodes by NN, GWO, and GA-based Approaches  
 
Figure 5 enables us to derive the following 
conclusions. Although the NN-based strategy 
quickly found a solution of around 6.27 km, both 
the GA-based method and the GWO-based 
approach initially had longer road lengths of 15 
km in the first iteration. The GA-based strategy 
outperforms the GWO-based technique 
significantly at the 100th iteration, achieving a 
distance of 2.90 Km, which is 30% less. The NN 
strategy performs better than the GWO and GA 
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strategies at the 300th iteration. The GA strategy 
achieves superior performance compared to the 
NN approach at the 600th iteration. Although the 
NN-based technique offers a speedier and more 
practical solution, it does not provide a shorter 
path compared to other methods. At the 1000th 
iteration, the GA-based technique significantly 
beats GWO-based approaches, with a 
performance of 2510 m, which is 28.5% lower 
than the GWO-based approach. 
 
6.2. 100-node scenario 
This article specifically examines the 
quantitative evaluation of the proposed 
algorithms in a particular scenario involving a 
single AUV and 100 nodes. Figure 6 illustrates 
the configuration of 100 nodes in a three-
dimensional space, with each dimension 
measuring 500 m. 
Locations are given as ((410, 84, 325), (455, 400, 
192), (66, 158, 408), (459, 267, 269), (319, 85, 
178), (51, 303, 472), (142, 134, 440), (276, 330, 
278), (481, 347, 314), (485, 377, 296), (81, 228, 
106), (488, 44, 153), (481, 117, 238), (245, 459, 
118), (403, 79, 425), (73, 415, 100), (213, 272, 
115), (460, 501, 88), (399, 42, 116), (482, 224, 
220), (330, 56, 158), (20, 483, 464), (427, 5, 
218), (469, 390, 95), (342, 411, 455), (381, 437, 
492), (374, 45, 222), (199, 202, 58), (330, 132, 
132), (88, 403, 207), (356, 218, 300), (18, 458, 
134), (141, 93, 304), (26, 134, 358), (51, 75, 
113), (414, 71, 61), (350, 437, 151), (161, 292, 
162), (478, 277, 215), (20, 75, 256), (222, 429, 
45), (193, 314, 134), (385, 178, 403), (400, 259, 
17), (96, 203, 467), (247, 40, 368), (225, 122, 
247), (326, 64, 292), (357, 94, 121), (380, 122, 
232), (141, 211, 484), (342, 27, 276), (330, 454, 
263), (84, 475, 118), (62, 248, 247), (252, 247, 
315), (482, 171, 342), (173, 453, 200), (295, 187, 
186), (114, 58, 496), (378, 393, 21), (130, 197, 
445), (255, 123, 459), (352, 204, 401), (448, 51, 
52), (482, 68, 133), (276, 474, 170), (72, 481, 
342), (77, 290, 71), (131, 32, 363), (423, 120, 
56), (130, 179, 329), (410, 413, 250), (124, 10, 
392), (467, 24, 360), (177, 87, 454), (101, 327, 
448), (128, 368, 170), (311, 326, 352), (239, 228, 
101), (178, 276, 18), (418, 151, 375), (295, 375, 
253), (277, 97, 242), (461, 346, 455), (145, 94, 
307), (381, 187, 311), (379, 315, 432), (193, 393, 
405), (286, 43, 291), (40, 467, 94), (29, 390, 

122), (268, 246, 446), (392, 220, 17), (470, 226, 
247), (67, 156, 86), (287, 257, 492), (237, 258, 
359), (8, 411, 253), (171, 400, 238)). 
 

 
 

Figure 6. Locations of sensors 
 

We evaluate the efficacy of Nearest Neighbour 
(NN), Grey Wolf Optimiser Algorithm (GWO), 
and Genetic Algorithm (GA)-based Approaches 
by analysing different combinations of these 
parameters. 
 
6.2.1. NN-based Approach 
This subsection evaluates the performance of an 
NN-based solution. Figure 7 demonstrates the 
NN’s achieved path planning solution in a 
scenario in Figure 6. 
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Figure 7. Achieved (9046 m) path planning 
solution by Nearest Neighbor 

 
6.2.2. GA-based Approach 
This subsection evaluates performance of an GA-
based solution. Figure 8 demonstrates the GA’s 
achieved path planning solution in 1000 
iterations in a scenario in Figure 6. 
 

 
 

Figure 8. Achieved (11441 m) path planning 
solution with GA in 1000 iterations 

 
6.2.3. GWO-based Approach 
This subsection evaluates performance of an 
GWO-based solution. Figure 9 demonstrates the 
GWO’s achieved path planning solution in 1000 
iterations in a scenario in Figure 6. 

 
 

Figure 9. Achieved (17686 m) path planning 
solution with GWO in 1000 iterations 

 
6.2.4. Discussion 
In general, NN-based Approach achieves shorter 
path than GA-based Approach. 
Figure 10 illustrates the total distance travelled 
by AUV employing multiple algorithms (NN 
Based Approach, GWO Based Approach, and 
GA Based Approach) to visit the 100 sensor 
nodes shown in Figure 6. Based on the data 
presented in Figure 10, we can make the 
following inferences about the performance of 
the algorithms in the scenario involving 100 
nodes. According to the general pattern, the NN-
based method and GA-based approach are more 
effective than the GWO-based approach. The 
neural network-based approach demonstrates 
superior performance compared to the genetic 
algorithm-based approach in terms of results up 
to the 500th iteration. In addition, the NN-based 
Approach is significantly faster in solving the 
problem, taking only 0.094679 seconds 
compared to the GA-based approach's time of 
3.508634 seconds (37 times faster). 
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Figure 10. Achieved path lengths for visiting 
100 nodes by NN, GWO, and GA-based 

Approaches  
 
Figure 10 enables us to derive the following 
conclusions. Although the NN-based strategy 
quickly found a solution of around 9.05 km, both 
the GA-based method and the GWO-based 
approach initially had longer road lengths of 27 
km and 30 km in the first iteration. The GA-
based strategy outperforms the GWO-based 
technique significantly at the 100th iteration, 
achieving a distance difference of 10.07 Km, 
which is 36.6% less. The NN strategy performs 
better than the GWO and GA strategies at the 
400th iteration where GA strategy achieves 
13500 m, nearly half of the path achived by 
GWO approach 25294 m (46.6% difference with 
11794 m). With a distance of 12369 m, the GA 
strategy keeps its superior performance 
compared to the GWO approach with 21879 m at 
the 700th iteration (43.42% difference with 9510 
m). The NN-based technique offers not only a 
speedier and more practical solution but also it 
provides a shorter path compared to other 
methods. At the 1000th iteration, the GA-based 
technique with 11440 m achieved distance 
significantly beats GWO-based approach with 
17686 m, with a performance of 6246 m, which 
is 35.3% lower than the GWO-based approach. 
 
6.3. Obstacle Avoidance scenario 
We evaluate the efficacy of the modified Nearest 
Neighbor-based method for solving the 3D TSP 
problem. However, we impose a constraint that 
makes it prohibitively expensive and impractical 
to visit node 𝑖𝑖 immediately after node 𝑖𝑖 − 1.  

6.3.1. Modified NN-approach with 50 nodes 
This subsection examines the solution to the 3D 
TSP issue using the modified Nearest Neighbour 
approach. The path planning solution generated 
by modified NN for visiting 50 nodes depicted in 
Figure 1 is illustrated in Figure 11.  
 

 
 

Figure 11. Achieved path planning solution for 
visiting the 50 nodes by AUV with modified 

NN under limitations 
 
6.3.2. Modified NN-approach with 100 nodes 
This subsection examines the solution to the 3D 
TSP issue using the modified Nearest Neighbour 
approach. The path planning solution generated 
by modified NN for visiting 100 nodes depicted 
in Figure 6 is illustrated in Figure 12.  
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Figure 12. Achieved path planning solution for 
visiting the 100 nodes by AUV with modified 

NN under limitations 
 
6.3.3. Discussion 
Taking into consideration the overall trend, the 
NN-based Approach outperforms the modified 
NN-based Approach. Table 1 shows the total 
distance travelled by AUV utilising NN-based 
Approach and modified NN-based Approach 
under the 50-node scenario in Figure 1 and the 
100-node scenario in Figure 6. 
We can infer the following conclusions from 
Table 1. Under the 50-node situation, NN-based 
approach and modified NN-based Approach 
achieve virtually comparable performance, with 
only a slight deviation (134 m, or 2.04\% less 
than modified NN-based technique).  
Under the 100-node situation, the NN-based 
approach and modified NN-based Approach 
achieve virtually comparable performance, with 
only a slight deviation (18 m, or 0.2\% less than 
the modified NN-based technique). 
 
7. CONCLUSION 
 
Research is concentrating on longer and wider 
exploratory ranges as environmental monitoring 
becomes increasingly important. Using an 
autonomous underwater vehicle with a limited 
battery pack, we theoretically evaluate the 
energy consumption of the wireless sensor 
network (WSN) and propose an efficient path-

planning strategy for charging it. The WSN has 
limited energy, therefore we concentrate on 
charging. To extend the exploration network, 
many AUVs efficiently charge the WSN. It is 
possible to significantly increase exploration 
range and charge efficiency by selecting 
appropriate diving places and building a path that 
takes the node's location and data flow into 
account. 
 
Table 1. Total distance by NN-based Approach 
and OANN-based Approach under 50-node and 
100-node scenarios. 
 
Iteration Achieved Length 
NN with 50 nodes 6322 (m) 
Modified NN with 50 nodes 6456 (m) 

 
 
 
 
 

NN with 100 nodes 9045 (m) 
Modified NN with 100 nodes 9063 (m) 

 
Data collection problems for AUVs can be 
handled using Nearest Neighbour, Grey Wolf 
Optimiser, and Genetic Algorithm approaches. 
Based on simulations, the AUV route planning 
system finds a better solution and converges 
more quickly than previous algorithms by using 
Nearest Neighbour. 
A physical constraint or obstacle that renders 
visiting node 𝒊𝒊 soon after node 𝒊𝒊 − 𝟏𝟏 impractical 
owing to large distance costs is the basis for the 
Obstacle-Avoided Nearest Neighbour-based 
solution for the 3D TSP problem. Even yet, the 
Obstacle-Avoided Nearest Neighbour-based 
method functions similarly. 
 
8. FUTURE WORKS 
 
In the future, this research can be extended in the 
following ways. In addition to underwater 
communication networks, autonomous vehicles 
for data collection are widely used in the 
framework of terrestrial wireless sensor 
networks. The research works (Gul et al., 2020, 
Gul et al., 2022, Gul et al., 2023, Gul et al., 2024) 
have investigated data gathering problem from 
clustered robotic and wireless sensor networks, 
hence reducing the energy consumption of 
cluster heads by considering a UAV with limited 
battery capacity. In underwater communication 
networks, the data gathering problem can be 
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investigated with autonomous underwater 
vehicle with a limited battery capacity.  
As another future work, we can tackle the 
problem by considering the energy harvesting 
models and approaches in the works (Eriş et al., 
2023, Eriş et al., 2024a, Eris et al., 2024b).  
In the future, we can also tackle the problem by 
considering more realistic models about the 
mission, function and working principle of 
autonomous underwater vehicles. 
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