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Abstract: The aim of this study is to determine the differential item functioning 

(DIF) with a mixture model when the data set is multidimensional. The differences 

in determining the number of items with DIF and the source of DIF according to 

the status of considering dimensionality and adding the covariate to the analysis 

were examined. In this context, a total of 28 items of mathematics and science 

answered by 7965 individuals in the 3rd booklet of the electronic Trends in 

International Mathematics and Science Study (eTIMSS) 2019 were found to have 

a multidimensional structure, and the variable with the highest correlation with the 

data structure was determined and included in the model as a covariate. In order to 

select the most appropriate models for the data set, models with different numbers 
of latent classes belonging to the mixture model and multidimensional mixture 

model including the covariate were compared. Descriptive statistics of the latent 

classes created with the selected models were created, item parameters were 

examined and DIF analysis were conducted. In the light of the findings, it was 

determined that the number of items with DIF decreased as the model became more 

complex. In the model with the best knowledge criterion index, it was found that 

the items with DIF at the knowing level generally differed in favor of the focal 

group, while the items with DIF at the application and reasoning levels differed in 

favor of the reference group. 

1. INTRODUCTION 

In measurement and evaluation, various measurement tools are used according to the structure 

of the quality to be measured in order to measure the desired quality of people. The correct 

selection of these tools reduces the error rate involved in measurement and makes the evaluation 

more accurate. However, the skill to be measured, the number of individuals to be subjected to 

measurement and the characteristics of the individuals are also taken into consideration in the 

selection of the measurement tool. Mislevy (1993), points out that “it is only a slight 

exaggeration to describe the test theory that dominates educational measurement today as the 

application of 20th century statistics to 19th century psychology.” Although various criticisms 

have been made similar to Mislevy's (1993) criticism, testing is the most widely used 

measurement tool for a reason. A test is defined as a tool or method that is obtained from a 

sample of examined behaviors in a particular field.  It is then scored and evaluated using a 

standardized process. The scores obtained by administering the test (together with information 

from other sources) are used in the assessment. Validity is the degree to which interpretations 
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of test scores are supported by evidence and theory for the proposed use of the test. Validity is, 

therefore, the most important basis for test evaluation and test development. The validity 

process involves gathering the evidence necessary for a sound scientific basis for proposed 

score interpretations. Validity is the interpretation of test scores for proposed uses in 

assessment, not the test itself. The test developer is expected to defend the validity of the 

proposed interpretations and uses, and it is appropriate to talk about efforts to “validate” the 

claims made. (American Educational Research Association [AERA] et al., 2014; Kane, 2006). 

Validity is concerned with making inferences from test scores and involves evidence-gathering 

processes. One of these processes is gathering evidence about the internal structure of the test. 

Analyses can indicate the extent to which the relationships between test items and test 

components fit the structure on which the proposed test scores are based. One of the methods 

used to gather evidence of test internal structure is the differential item functioning (DIF). In 

its simplest form, DIF is defined as the difference in the probability of a correct response 

between two groups of test takers of the same ability level (Pine, 1977). The fact that the items 

of a test contain DIF is one of the important factors that reduce the validity of interpretations of 

test scores. Test fairness is an essential consideration when determining the validity of test 

scores. DIF analysis is also used to investigate whether a test is fair to subgroups of a targeted 

population. Features of the test itself that are unrelated to the construct being measured, or the 

way the test is used, can sometimes result in different meanings for scores obtained by members 

of different identifiable subgroups. For instance, the occurrence of DIF is purported to transpire 

when test takers of equivalent aptitude exhibit disparate probabilities of answering a test item 

correctly, as a function of group membership (AERA et al., 2014; Fukuhara & Kamata, 2011; 

Kristanjansonn et al., 2005; Messcik, 1995). 

Regardless of the groups studied, DIF is considered a serious threat to test validity because it 

means that one group has an unfair advantage over another group on an item. Given the 

relevance of DIF to test fairness, measurement researchers have developed numerous methods 

to investigate DIF (De Mars & Lau, 2011). These methods have been developed from different 

perspectives. Gomez-Benito and Navas-Ara (2000) classified DIF detection methods based on 

classical test theory (CTT), item response theory (IRT), chi-square and factor analysis. In 

addition, Penfield and Camilli (2007) classified DIF detection methods based on overall odds 

ratio, LR, odds ratio differences and mean differences, and Gelin (2005) classified DIF 

detection methods under two main groups, namely based on manifest groups and latent 

variables. Manifest group refers to a community in which individuals can be differentiated 

according to various distinct characteristics (e.g. gender, race, language, region). Usually, 

methods for detecting DIF compare the functioning of items across manifest groups. However, 

manifest groups in which items function differently may not correspond to the true source of 

bias. Under a model with a latent DIF variable, DIF detection is expected to be more sensitive 

to this source of bias (Maij-de Meij et al., 2010). However, IRT-based approaches have taken 

a step forward over CTT-based approaches in recent years. Likewise, analyses with latent 

classes have also increased significantly compared to analyses with manifest groups. 

The statistical foundation of item response theory (IRT) is often traced back to the seminal work 

of Lord, Novick, and Birnbaum (1968). Over the last 30 years, IRT measurement models and 

related methods such as DIF, scale linking, and computerized adaptive testing have been 

extensively studied and applied in achievement, ability, and skill measurement research (Reise 

& Revicki, 2015). Latent class analysis (LCA) and latent profile analysis (LPA) are techniques 

that aim to recover hidden groups from observed data. LCA and LPA are useful when you want 

to reduce many continuous (LPA) or categorical (LCA) variables to a few subgroups (Oberski, 

2016). LCA allows the identification of specific response combinations that define latent 

subgroups. Thus, individuals with similar response patterns can be grouped in the same classes 

and subgroups with similar characteristics can be obtained. LCA aims to define homogeneous 
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groups within a heterogeneous sample for dichotomous data, that is, to classify individuals 

using observed variables and to identify the observed variables or items that best distinguish 

the classes. For this reason, LCA is considered a very useful statistical model for analyzing 

quantitative data in social sciences (Dayton, 1999; Hagenaars & McCutcheon, 2002; 

McCutcheon, 1987). In IRT models, the latent variable is assumed to be continuous. This 

continuous variable is often referred to as a “latent trait” and is quantitative. In contrast, in LCA 

models, the latent variable is categorical and qualitative (Dai, 2009; De Ayala & Santiago, 

2017; Li, 2014). Mixture IRT (MixIRT) models, which combine IRT and LCA, have been used 

in psychometric research to analyze item response data that may violate the basic assumptions 

of both modeling approaches (Rost 1990). DIF analyses using MixIRT models perform better 

than DIF analyses based on manifest groups and are more effective in reaching the source of 

DIF (Cohen & Bolt, 2005; Maij-de Meij et al., 2010; Samuelson, 2005). The objective of a 

MixIRT model is twofold. Firstly, it is required to compute item parameters and person 

parameters, that is to say, the latent characteristics of subjects. Secondly, it is required to 

estimate the latent class membership of subjects. It should be noted that in MixIRT models, a 

set of item parameters is estimated for each latent class. For the individual parameter, although 

it is assumed that a subject belongs to only one class, class membership is not known with 

certainty. Hence, during estimation, an individual parameter is estimated conditional on 

membership in each class (Dai, 2009). MixIRT models allow simultaneous calculation of the 

individual's ability and latent class membership and item response functions for each latent 

class. Individuals in each class have similar characteristics and model parameters differ across 

classes. Thus, IRT's assumptions of single-quality homogeneous distribution and invariance of 

item parameters have gained flexibility (Cho, 2013). The lowest level of MixIRT models is the 

Mixture Rasch model (MRM). The parameters to be estimated in this model are Rasch difficulty 

and class-specific ability parameters. The equation for the MRM is as follows. 

𝑃(𝑦𝑖𝑗 = 1|𝜃𝑗𝑔) = ∑ 𝜋𝑔
exp[(𝜃𝑗𝑔 −𝑏𝑖𝑔)]

1+exp[(𝜃𝑗𝑔 −𝑏𝑖𝑔)]

𝐺
𝑔=1                        (1) 

Equation 1 relates the membership parameter g of a class to the item index i. Each individual is 

parameterized by an ability parameter (θjg). Where g is an index for the latent class, g = 1,....,G, 

j = 1,.....,N examinees, θjg  is the latent ability of examinee j within class g, πg is the proportion 

of examinees in each class, and big is the difficulty parameter for item i in class g. 2-parameter 

logistic (2PL) MixIRT model is obtained by adding the discrimination parameter to the MRM. 

The 2PL MixIRT equation is as follows. In Equation 2, unlike Equation 1, aig is the 

discrimination parameter for item i in class g. 

𝑃(𝑦𝑖𝑗 = 1|𝜃𝑗𝑔) = ∑ 𝜋𝑔
exp [𝑎𝑖𝑔 (𝜃𝑗𝑔 −𝑏𝑖𝑔)]

1+exp [𝑎𝑖𝑔 (𝜃𝑖𝑗 −𝑏𝑖𝑔)]

𝐺
𝑔=1                          (2) 

Traditional DIF applications assume that a scale is unidimensional and uses the total score to 

match participants from different groups on a common metric. However, in a test developed to 

measure multiple latent traits, if the latent traits are not highly correlated, the total score may 

not provide enough information to describe multidimensional distributions of latent traits. 

When the total score consists of two weakly correlated subscores, the relationship between the 

total score and one of the subscores will be severely weakened, which may reduce the 

representativeness of the matching variable, and thus, reduce the accuracy of the DIF 

assessment (Chen & Jin, 2018). An important distinction between the different MixIRT models, 

which is strongly related to the design of an assessment, is whether the probability of success 

on each item is influenced by only one of the dimensions in the model, or whether responses to 

an item can be modeled as depending on multiple ability dimensions at the same time. The first 

case is called between-item multidimensionality and the second is called within-item 

multidimensionality (Adams et al., 1997). In models with between-item multidimensionality, 



Doğan                                                                                  Int. J. Assess. Tools Educ., Vol. 12, No. 3, (2025) pp. 499–522 

 502 

separate sets of items are used to measure each dimension in the model. In terms of factor 

analytics, these models are characterized by a simple loading structure; they can be considered 

as a combination of several unidimensional measurement models into a common model. The 

combination allows for modeling the relationships between latent ability dimensions (Hartig & 

Höhler, 2009). Some studies have explained both theoretically (Ackerman, 1992) and 

empirically (Walker & Beretvas, 2001) how item bias arises from multidimensionality and 

suggest that practitioners should identify all the skills that items should measure and build a 

complete test validity system, rather than passively accepting a unidimensional combination 

(Yao & Li, 2015). When data are multidimensional, standard DIF detection procedures may 

also be ineffective because they condition on abilities tested on a single latent trait (e.g., Mantel-

Haenszel (MH) test, logistic regression, SIBTEST, likelihood ratio test). In such cases, 

multidimensional models are recommended as they provide both accurate parameter estimates 

and additional information about separate constructs (Reckase, 2009). When evaluating DIF on 

a multidimensional scale, all measured latent traits should be considered together. Otherwise, 

the measurement invariance result may be biased (Chen & Jin, 2018). This necessity is 

especially evident in educational tests. This is because educational and psychological tests 

usually consist of multiple subtests that measure multiple interrelated constructs. To broaden 

the scope of applications of the MixIRT model, it is therefore useful to consider a 

multidimensional extension of the model. 

The equation for the multidimensional MixIRT model (MMixIRT) is given below. In Equation 

3, in addition to Equation 2, there is a parameter θjgm which is the latent ability of examinee j 

for dimension m within class g. 

𝑃(𝑦𝑖𝑗 = 1|𝜃𝑗𝑔𝑚) = ∑ 𝜋𝑔
exp [𝑎𝑖𝑔 (𝜃𝑗𝑔𝑚 −𝑏𝑖𝑔)]

1+exp [𝑎𝑖𝑔 (𝜃𝑗𝑔𝑚 −𝑏𝑖𝑔)]

𝐺
𝑔=1                                  (3) 

One of the biggest challenges when using MixIRT models is to determine what causes the 

heterogeneity of the population. This is also a question that researchers often ask when using 

latent class modeling. This is because the latent classes identified by mixture models are 

difficult to interpret qualitatively. Therefore, the inclusion of potentially influential covariates 

in models can help to overcome the difficulties of latent class identification and improve the 

estimation of model parameters. In the selection of covariates, the correlation coefficients 

between candidate covariates and the latent variable of interest should be examined to 

determine the strength of the relationship (Embretson, 2007; Karadavut et al., 2019; Zhang, 

2017). Smit et al. (1999, 2000) investigated the use of covariates for latent class membership 

in MRM and 2PL IRT models. Samuelsen (2005) further investigated the addition of covariates 

in the context of DIF. Dai (2013) modeled latent class membership for MRM using logistic 

regression with a binary covariate. Tay et al. (2011) conducted a real data analysis using both 

continuous and binary covariates as predictors of implicit class membership. In addition, 

Sırgancı (2019) examined the effect of covariates in MRM and DIF analysis, while Uysal Saraç 

(2022) examined the effect of covariates on classification and prediction accuracy. Within the 

scope of the research, a covariate was added to the MMixIRT model. The formula for the model 

where the covariate is added is as follows. 

𝑃(𝑦𝑖𝑗 = 1|𝜃𝑗𝑔𝑚) = ∑ 𝜋𝑗𝑔/𝑊𝑗
exp [𝑎𝑖𝑔 (𝜃𝑗𝑔𝑚 −𝑏𝑖𝑔)]

1+exp [𝑎𝑖𝑔 (𝜃𝑗𝑔𝑚 −𝑏𝑖𝑔)]

𝐺
𝑔=1          (4) 

𝜋𝑗𝑔/𝑊𝑗 =
exp (𝛽0𝑔+∑ 𝛽𝑝𝑔𝑊𝑗𝑝

𝑃
𝑝=1

∑ exp (𝛽0𝑔+∑ 𝛽𝑝𝑔𝑊𝑗𝑝
𝑃
𝑝=1

𝐺
𝑔=1

            (5) 

In Equations 4 and 5, πjg is the probability that examinee j belongs to class g. Group membership 

g, has a multinomial distribution and latent groups G are modeled as functions of covariates Wjp 
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such that πjg is a multinomial logit regression. βpg is the class-specific effect of the covariate p 

on group membership. For identifiability, β01 = 0 and βp1 = 0 (Cho et al., 2013). 

Studies using MixIRT models (Dai, 2013; Frick et al., 2015; Sırgancı, 2019; Uysal Saraç, 2022) 

generally use MRM, and most of these studies are simulative in terms of data structure (Li et 

al., 2009; Sırgancı, 2019; Uyar, 2015). Considering that educational tests are generally 

multidimensional, adding multidimensionality to MixIRT models will contribute to DIF 

detection. In this context, it is thought that the number of items with DIF and effect size will 

change when dimensionality is included in the analysis. Moreover, analyzing the data 

appropriately will reduce the amount of errors. Another important issue is the inclusion of 

covariates in the analysis. In addition to contributing to reaching the source of DIF, covariates 

are useful in characterizing and naming latent classes. In studies (Çepni & Kelecioğlu, 2021; 

Pektaş, 2018; Yalçın, 2018) where the data set is not multilevel, multidimensionality is 

generally not considered, and the covariate associated with this multidimensional structure is 

not included in the analysis. For this reason, more accurate information about the nature of DIF 

and items with DIF can be obtained by adding a covariate to the 2PL MMixIRT model. In 

scenarios where real data is employed, the data set is characterized by multidimensionality, and 

the analysis is designed accordingly. In addition, important information can be obtained by 

comparing the MixIRT model, the MMixIRT model and the MMixIRT model in which the 

covariate is added. 

The aim of this study is to examine the effect of dimensionality and the addition of covariates 

when performing DIF detection with MixIRT when the data set is multidimensional. In this 

context, the models to be compared were examined in terms of the number of items with DIF 

and the source of DIF. The data set of the study consists of data from the electronic Trends in 

International Mathematics and Science Study (eTIMSS) 2019 3rd booklet. This is because the 

TIMSS tests, a large-scale international educational assessment in line with the purpose of the 

study, are based on multiple dimensions with three cognitive domains of mathematics and 

science skill sets (knowing, application, and reasoning) as well as four subject areas (numbers, 

geometry, algebra, and data-probability, and physics, chemistry, biology, and earth sciences).  

In this context, models of the mixture model, the multidimensional mixture model and the 

multidimensional mixture model with the addition of the covariate were created according to 

two, three and four latent student classes, and model fit statistics were examined. The number 

of items with DIF and effect sizes of the best-fitting models were compared. Furthermore, the 

item parameter estimates of these models were also provided. With the findings obtained, the 

difference caused by taking dimensionality into account and the effect of the covariates on the 

analysis results were investigated. In addition, the contribution of these factors in DIF studies 

to reaching the possible sources of DIF was examined. 

2. METHOD 

2.1. Research Method 

The present study constitutes a descriptive research study, in which the DIF analysis results of 

the MixIRT models, including dimensionality and covariates, were compared. Descriptive 

studies describe a particular situation as completely and carefully as possible (Fraenkel et al., 

2012). 

2.2. Sample 

The research sample consisted of 8145 individuals who completed the 3rd booklet in eTIMSS 

2019. However, within the scope of the study, an individual did not respond to any items.  

Furthermore, 179 participants were excluded from the analysis because they did not respond to 

the item "how often they solve problems on their own", which was selected as a covariate. The 

analysis was conducted using the responses of 7,965 participants. 
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2.3. Data 

eTIMSS is an implementation of TIMSS as of 2019 and has been implemented in 22 countries 

excluding benchmark participants.  Unlike paper-and-pencil exams, students responded to the 

items electronically. eTIMSS 2019 booklet 3 contains 28 four-choice multiple-choice items. 

The topics and cognitive domains of 12 mathematics and 16 science items are given in Table 

1. 

Table 1. Subject areas and cognitive domains of the 28 multiple-choice items that constitute the data. 

Item Number Course Subject Area Cognitive Domain 

1 Math Numbers Knowing 

2 Math Numbers Knowing 

3 Math Algebra Knowing 

4 Math Algebra Knowing 

5 Math Algebra Application 

6 Math Geometry Application 

7 Math Geometry Reasoning 

8 Math Data and Probability Application 

9 Math Numbers Reasoning 

10 Math Numbers Application 

11 Math Algebra Knowing 

12 Math Algebra Application 

13 Science Chemistry Knowing 

14 Science Chemistry Application 

15 Science Biology Application 

16 Science Physics Knowing 

17 Science Physics Knowing 

18 Science Physics Application 

19 Science Earth Science Knowing 

20 Science Earth Science Knowing 

21 Science Biology Application 

22 Science Biology Knowing 

23 Science Biology Knowing 

24 Science Biology Knowing 

25 Science Physics Application 

26 Science Physics Reasoning 

27 Science Earth Science Reasoning 

28 Science Earth Science Knowing 

According to Table 1, five of the 12 mathematics items were in the subject area of algebra, four 

in the subject area of numbers, two in the subject area of geometry, and one in the subject area 

of data probability. In addition, five items were in the cognitive domain of knowing, five items 

in the cognitive domain of Application and two items in the cognitive domain of reasoning. As 

for the 16 science items, five of each were in biology and physics, four in earth sciences and 

two in chemistry. In addition, nine items were in the cognitive domain of knowing, five items 

in the cognitive domain of Application and two items in the cognitive domain of reasoning.   

2.4. Data Analysis 

Within the scope of the research, the analysis of the data set consisting of 28 items was 

conducted with open-source R (R Core Team, 2024) programming language and Mplus 

(Muthen & Muthen, 2017) program. First, the dimensionality of the data set was examined. In 
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this context, the most used methods are Kaiser K1 rule (1960), the scree plot or parallel analysis. 

In the parallel analysis method developed by Horn (1965), random data sets are generated 

parallel to the real data set. The point where the eigenvalue of the randomly generated data is 

greater than the eigenvalue of the real data gives the number of factors. Within the context of 

the study, firstly, parallel analysis was conducted with the “paran” package (Dinno, 2018) in 

the R library for the items that formed the data set. After the parallel analysis, confirmatory 

factor analysis (CFA) was conducted for the dimensionality of the data set. After the 

dimensionality analysis, the ICC values of each item were obtained with the "icc" function in 

the "misty" (Yanagida, 2023) package in the R library to determine whether the data set exhibits 

a multilevel structure. 

Within the scope of the research, the multidimensional data were analyzed by adding a 

covariate. In addition to the “About how many books are there in your home?” variable, 26 

other variables such as the presence of a computer or tablet, the presence of internet, family 

education level, “In mathematics lessons, how often do you work on problems on your own?”, 

“How much do you agree with these statements about learning science? I like science”,  “How 

well do you know the meaning of each of the following terms? Cut and paste” were correlated 

with the students' total score on the 28 items, and the variable with the highest correlation value 

(Pearson’ r) was the variable (.33) belonging to the answers given to the item " In mathematics 

lessons, how often do you work on problems on your own?". 

The three most commonly used information criterion indices to determine the optimal model 

for parameter estimation based on mixture models are Akaike's (1974) information criterion 

(AIC), Schwarz's (1978) Bayesian information criterion (BIC) and the sample size adjusted 

version of BIC (SABIC; Sclove, 1987). The equations for the criteria are given in Equations 6, 

7 and 8. 

AIC=-2logL+2p              (6) 

BIC=-2logL+p*ln(N)              (7) 

SABIC=-2logL+p*ln((N+24)/2)              (8) 

Where "L" is the likelihood function, "p" is the number of parameters to be estimated, and "N" 

is the sample size. AIC and BIC criteria with smaller values represent better model fit. When 

AIC and BIC results are different, researchers' preferences may change. McLachlan and Peel 

(2000) state point out the AIC criterion tends to overestimate the number of classes due to 

inconsistency, whereas the BIC and SABIC criteria apply more corrections to the likelihood 

function, and Vrieze (2012) reports that as the sample size increases, the BIC criterion tends to 

consistently select the correct classes. Although there are studies (Cho, 2007; Zhu, 2013) 

indicating that the AIC value produces more accurate results, decisions are made based on the 

BIC information criterion.  

Mantel Haenszel (MH) method was preferred for DIF analysis. One of the reasons for this is 

that Diaz et al. (2021) argue that the MH procedure without continuity correction is the best 

method with respect to the Type I error rate. The other reason is that it is the most widely used 

method and the consequences of using it without dimensionality analysis can be seen. 

Therefore, many similar studies (Finch & Finch, 2013; Uyar, 2015; Yalçın, 2018) use MH to 

examine the DIF of latent classes determined by mixture models. Since there are two latent 

classes in each model, the "difMH" function of the "difR" (Magis et al., 2010) package from 

the R library was used for the analysis with the MH method in this study. 

3. RESULTS 

The figures and tables of the analyses described in the data analysis section are presented in the 

first part of this section. Within the scope of the study, the figure of the analysis performed with 
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the “paran” package (Dinno, 2018) in the R library for the 28 items that made up the data set is 

shown in Figure 1. 

Figure 1. The image of the 28-item data set for the parallel analysis results. 

 
As a result of the analysis, two of the adjusted eigenvalues (retained) and two of the unadjusted 

eigenvalues in Figure 1 were higher than the randomly generated eigenvalues. Accordingly, it 

is seen that the number of factors of the data is two. Following this result, parallel analyses were 

conducted separately for mathematics and science items. Figure 2 displays the image of the 

parallel analysis results for the 12-item mathematics course. 

Figure 2. The image of the parallel analysis results for the 12-item mathematics course. 

 
Our analysis revealed that one of the adjusted eigenvalues (retained) and one of the unadjusted 

eigenvalues in Figure 2 was higher than the randomly generated eigenvalues. Accordingly, it is 

seen that the factor number of the data was one, that is, it was unidimensional. Figure 3 displays 

the image of the parallel analysis results of the 16-item science course. As a result of the 

analysis, one of the adjusted eigenvalues (retained) and one of the unadjusted eigenvalues in 

Figure 2 was higher than the randomly generated eigenvalues. Accordingly, it is seen that the 

number of factors of the data was one, that is, it was unidimensional. The results of the parallel 

analysis, which was stated to be superior to the Kaiser and scree plot methods used to determine 

the number of factors (Crawford et al., 2010; Piccone, 2009), supported the two-dimensional 

structure. Accordingly, the items belonging to these courses were examined by considering 

them as two separate dimensions with the belief that the dimensions in the test were math and 
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science. As a result of the analysis, it was found that the items belonging to mathematics and 

science courses were found to be unidimensional separately. 

Figure 3. The image of the parallel analysis results for the 16-item science course. 

 
Following the parallel analysis, confirmatory factor analysis (CFA) was conducted for the 

dimensionality of the data set. The CFA was first conducted with the assumption that the dataset 

was unidimensional, and then, with the assumption of two-dimensional. The fit index values 

for both assumptions are presented in Table 2. 

Table 2. Fit index values for the unidimensional and two-dimensional structures. 

Indices 
               Index Value 

Unidimensional Two-Dimensional 

AGFI .89 .98 

GFI .90 .99 

CFI .75 .95 

TLI (NNFI) .73 .95 

NFI .74 .93 

BIC 326219.01 221199.08 

RMSEA .06 .02 

RMR .01 .00 

As demonstrated in Table 2, all goodness of fit index (AGFI, GFI, CFI, TLI and NFI) values 

obtained for the two-dimensional data structure were higher than the unidimensional data 

structure assumption, while the error index (RMSEA and RMR) values were smaller. 

Moreover, the BIC value was smaller for the two-dimensional data structure, where a smaller 

value means a better fit.   

After the dimensionality analyses, intra class correlation (ICC) values of each item were 

obtained with the "icc" function in the "misty" (Yanagida, 2023) package in the R library to 

determine whether the data set exhibited a multilevel structure. For 28 items, the lowest ICC 

values were .01 and the highest .14 and the average ICC value was found to be .06. This result 

shows that the country level can explain 6% of the total variance. Muthén (1997) suggests that 

multilevel modeling should definitely be considered when the ICC value is greater than .10. 

Koo and Li (2016) assert that ICC values less than .50 indicate poor reliability, values 

between .50 and .75 indicate moderate reliability, values between .75 and .90 indicate good 

reliability, and values greater than .90 indicate excellent reliability. Accordingly, it was decided 

that a 6% variance would not be sufficient for multilevels. Table 3 displays the descriptive 
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statistics of the 28-item data set, including measures of central tendency and dispersion, 

skewness and kurtosis. 

Table 3. Descriptive statistics of the data set. 

Central Tendency and 

Dispersion Measures 
Value 

Mean 13.96 

Median 14 

Mode 13 

Standart Deviation 5.46 

Minimum 0 

Maximum 28 

Range 28 

Skewness .2 

Kurtosis -.7 

When the mean, median and mode, which are the measures of central tendency in Table 3, are 

examined, it is seen that these values were very close to each other. This situation indicated a 

normal distribution. In addition, skewness and kurtosis values vary between -1 and +1. 

According to Tabachnick and Fidell (2013), these values between -1.5 and +1.5 are within the 

acceptable range. In this case, it can be claimed that the scores did not deviate excessively from 

normality. The coding of the models was based on the existing usage in Mplus. Accordingly, 

"C" represented the latent class at the student level, and the model "C3" indicated three latent 

classes of students. "D-C2" represented a multidimensional model with two latent student 

levels, while "Cov-D-C4" represented a multidimensional model with four latent student levels 

where the covariate was added to the model. Table 4 displays the information criterion index 

values of the 9 selected models. 

Table 4. Information criterion indices for models. 

Model LL np AIC BIC SABIC 

C2 -135400.99 113 271027.98 271817.04 271457.95 

C3 -135168.03 170 270676.07 271863.15 271322.92 

C4 -135099.93 227 270653.86 272238.96 271517.59 

D-C2 -135356.67 116 270945.33 271755.34 271386.71 

D-C3 -135106.45 173 270558.89 271766.92 271217.16 

D-C4 -135027.28 230 270487.07 272103.45 271406.48 

Cov-D-C2 -134970.11 117 270174.20 270991.19 270619.39 

Cov-D-C3 -134712.74 175 269775.48 270997.47 270441.36 

Cov-D-C4 -134654.89 233 269651.12 271321.26 270659.78 

LL: Log-likelihood; np: Number of Parameter; AIC: Akaike’s Information Criteria; BIC: Bayesian Information Criterion; 
SABIC: Sample Size-Adjusted Version of BIC 

As shown in Table 4, the C2 model had the best information criterion index value in the MixIRT 

model, the D-C2 model had the best information criterion index value in the MMixIRT model, 

and the Cov-D-C2 model had the best information criterion index value in the MMixIRT model 

where the covariate was added. In the next stage, analyses were conducted using these three 

models. Tables 5, 6 and 7 display the item parameter values of the selected models before the 

DIF analyses. Table 5 displays the item parameter values of the C2 model. As demonstrated in 

Table 5, the discrimination index values of latent classes were generally higher for latent class 

1 (LC1) than LC2. When the item difficulty index values are analyzed, it is seen that all items 
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except items 3 and 7 were lower in LC1, that is, they were perceived more easily by students 

in LC1. Table 6 displays the item parameter values of the D-C2 model. As seen in Table 6, the 

discrimination index values of latent classes were generally higher for latent class 1 (LC1) than 

LC2, but the differences were quite low. When the item difficulty index values are analyzed, it 

is seen that all items except items 3, 7, 13, 21 and 22- were lower in LC1, that is, they were 

perceived more easily by students in LC1. 

Table 5. Item difficulty and discrimination index values for the C2 model. 

Item 
LC1 

α1 

LC1 

β1 

LC2 

α2 

LC2 

β2 

1 .37 -3.77 .36 .99 

2 .78 -3.35 .90 .13 

3 .55 .04 -.03 -3.27 

4 .42 -.37 .22 3.06 

5 .78 -4.47 1.12 -.31 

6 .49 -2.74 .18 2.47 

7 .57 .29 -.15 -1.87 

8 .57 -1.61 .55 .65 

9 .97 -1.03 .20 4.16 

10 1.46 -1.47 .94 .13 

11 1.81 -2.42 .68 .14 

12 .69 -.88 .64 1.72 

13 1.29 -1.96 .72 -1.48 

14 1.13 -1.25 .90 .18 

15 .64 .10 .31 1.77 

16 .88 -.23 .50 .82 

17 .67 -.66 .47 1.76 

18 1.01 -2.28 .75 -.80 

19 .93 -.76 .53 -.17 

20 .40 -.54 .38 .25 

21 1.25 -1.18 1.34 -.38 

22 1.31 -1.14 .92 -.11 

23 1.10 -1.16 .83 .12 

24 .40 .78 .42 1.99 

25 1.22 .23 .74 1.68 

26 .94 -.20 .61 .90 

27 1.49 -.91 1.16 -.08 

28 1.23 -.72 .98 -.43 

Table 7 displays the item parameter values of the D-C2 model. As seen in Table 7, the 

discrimination index values of latent classes were generally higher for latent class 1 (LC1) than 

LC2, but the differences were quite low. When the item difficulty index values are analyzed, it 

is seen that unlike the other models, all items were lower in LC1, that is, they were perceived 

more easily by students in LC1. Table 8 displays the mean scores and standard deviation values 

for the latent classes of the 3 best-fitting models. These scores were determined by the rule that 

students received 1 point for each item they responded correctly and 0 point for each item they 

responded incorrectly, and the highest score was 28. When the means and standard deviations 

of the latent classes of the models are analyzed, the LC1 latent class of the C2 model had the 

highest mean, while the LC2 latent class of the same model had a higher mean than the latent 

classes with low mean scores in the other models.  
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Table 6. Item difficulty and discrimination index values for the D-C2 model. 

Item 
LC1 

α1 

LC1 

β1 

LC2 

α2 

LC2 

β2 

1 .28 -.26 .24 2.41 

2 1.18 -1.91 .77 .42 

3 .62 -.90 -.25 -2.75 

4 .38 .70 .11 3.81 

5 1.54 -.74 1.11 -.17 

6 .98 -1.04 .17 2.65 

7 .85 -.47 -.19 -3.51 

8 .87 -2.06 .55 .69 

9 .74 -.63 .04 3.74 

10 5.3 -2.41 1.57 -.04 

11 2.04 -1.93 .41 1.02 

12 .65 .14 .64 2.02 

13 1.05 -.12 .56 -1.48 

14 .73 -.17 .81 .55 

15 .56 -1.17 .23 2.73 

16 .97 -.62 .44 1.01 

17 .83 -1.76 .47 1.79 

18 .16 -1.94 .61 -0.41 

19 1.02 -1.49 .49 -.12 

20 .19 -1.52 .35 .65 

21 .78 .72 1.31 -.16 

22 1.00 .35 .81 .15 

23 .80 -.06 .79 .40 

24 .38 -.9 .31 3.09 

25 1.22 -.92 .70 1.89 

26 1.00 -.26 .57 1.02 

27 1.37 -1.91 1.17 .04 

28 1.02 -.92 .94 -.30 

When the high and low achieving latent classes in the three groups were compared, the 

difference in mean scores between the latent classes in the D-C2 model was smaller than the 

others. The latent group with the lowest mean score was the LC2 latent class of the Cov-D-C2 

model. Cov-D-C2, the model with the highest difference in achievement between latent groups 

and the lowest standard deviations, provided the best separation in terms of scores. 
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Table 7. Item difficulty and discrimination index values for the Cov-D-C2 model. 

Item 
LC1 

α1 

LC1 

β1 

LC2 

α2 

LC2 

β2 

1 .93 -.83 .53 .68 

2 1.12 -1.87 .65 .71 

3 1.39 .68 .28 3.63 

4 .45 .07 .15 3.21 

5 .98 -2.83 .92 .09 

6 .88 -.76 .25 1.74 

7 1.37 .81 .22 4.01 

8 .30 -3.20 .09 4.45 

9 1.48 -.17 .40 1.98 

10 .25 -3.14 .11 3.19 

11 2.07 -1.19 .70 .37 

12 .78 -.37 .58 2.32 

13 .88 -2.78 .46 -1.53 

14 .61 -2.30 .57 1.08 

15 .42 .02 .10 3.26 

16 .71 -.36 .32 1.91 

17 .54 -.44 .31 3.30 

18 1.45 -1.32 1.15 -.52 

19 .60 -1.45 .25 .77 

20 .27 -1.01 .41 .56 

21 .45 -3.98 .91 .16 

22 .95 -1.58 .68 .40 

23 .63 -1.97 .61 .81 

24 .39 .79 .27 3.71 

25 .96 .23 .41 3.75 

26 .53 -.62 .30 2.86 

27 .60 -2.57 .74 .64 

28 .51 -2.47 .63 .13 

 
Table 8. Mean scores and standard deviations of latent classes for the 3 best-fitting models. 

Model Latent Class Mean Standard Deviation 

C2 LC1 19.88 3.99 

LC2 11.90 4.27 

D-C2 LC1 18.48 4.41 

LC2 11.13 3.93 

Cov-D-C2 LC1 18.51 3.90 

 LC2 10.38 3.48 

 

After the latent classes were identified through Mplus, DIF analyses were conducted. Table 9 

displays the DIF analysis statistical values and effect size for 28 items of the C2 model. If the 

Chi Square value was above 3.84, it was accepted that the items had DIF at .05 significance 

level. In addition, level A effect size was coded if the Delta MH value was in the range of 0-1, 

level B if it was in the range of 1-1.5, and level C if it was greater than 1.5.  As a result of the 

DIF analysis, all items except item 4 were found to have DIF. Among the items with DIF, items 
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8, 10, 14, 17, 18 and 23 had A level effect size, while items 12, 13, 22 and 24 had B level effect 

size and the other items had C level effect size.  

Table 9. DIF analysis results for model C2. 

Item Chi Square Alpha MH Delta MH Effect Size 

1 215.55 3.26 -2.78 C 

2 224.86 4.97 -3.77 C 

3 269.95 3.60 -3.01 C 

4 .07 1.02 -.05 A 

5 224.82 12.43 -5.92 C 

6 312.59 4.01 -3.26 C 

7 365.37 5.04 -3.80 C 

8 5.62 1.20 -.43 A 

9 183.49 2.69 -2.33 C 

10 10.70 1.33 -.68 A 

11 445.64 24.49 -7.52 C 

12 59.98 1.77 -1.34 B 

13 27.98 .59 1.25 B 

14 12.88 .75 .69 A 

15 74.50 .51 1.57 C 

16 132.25 .40 2.17 C 

17 6.55 1.21 -.44 A 

18 7.40 1.31 -.64 A 

19 158.95 .36 2.41 C 

20 89.71 .49 1.68 C 

21 275.66 .21 3.65 C 

22 52.59 .54 1.46 B 

23 25.40 .66 .98 A 

24 57.88 .56 1.37 B 

25 114.68 .40 2.13 C 

26 116.67 .42 2.03 C 

27 177.45 .30 2.82 C 

28 473.31 .14 4.60 C 

Table 10 displays the DIF analysis statistical values and effect size for 28 items belonging to 

the D-C2 model. As a result of the DIF analysis, all items except items 13, 22 and 23 were 

found to have DIF. Among the items with DIF, items 4, 6, 14, 15, 17, 20, 21 and 24 had level 

A effect size, while items 5, 8 and 12 had level B effect size, and the other items had level C 

effect size. 

Table 11 displays the DIF analysis statistical values and effect size for 28 items of the Cov-D-

C2 model. As a result of the DIF analysis, all items except items 11, 12, 13, 17, 19, 22, 26 and 

28 were found to have DIF. Among the items with DIF, items 4, 6, 14, 15, 17, 20, 21 and 24 

had an effect size of level A, while items 1, 14, 16, 20, 21, 24 and 27 had an effect size of level 

B and the other items had an effect size of level C. 
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Table 10. DIF analysis results for model D-C2. 

Item Chi Square Alpha MH Delta MH Effect Size 

1 344.00* 3.38 -2.86 C 

2 149.10* 2.44 -2.09 C 

3 190.30* 3.01 -2.59 C 

4 5.61* 1.17 -0.36 A 

5 36.77* 1.64 -1.16 B 

6 13.22* 1.26 -.55 A 

7 85.08* 2.23 -1.88 C 

8 43.25* .64 1.06 B 

9 222.07* 2.61 -2.26 C 

10 560.37* .12 4.92 C 

11 708.39* 8.30 -4.97 C 

12 55.68* 1.63 -1.15 B 

13 2.09 1.13 -.28 A 

14 39.66* 1.52 -.98 A 

15 37.07* .66 .97 A 

16 158.64* .41 2.11 C 

17 24.91* .71 .81 A 

18 310.21* 4.79 -3.68 C 

19 202.92* .37 2.37 C 

20 6.48* .85 .38 A 

21 23.96* .70 .83 A 

22 .32 .96 .09 A 

23 .16 1.03 -.06 A 

24 12.24* .79 .56 A 

25 125.68* .42 2.03 C 

26 172.88* .38 2.24 C 

27 169.21* .37 2.32 C 

28 258.32* .31 2.79 C 

Table 12 displays the statistics of the DIF analyses for the most appropriate models for the data 

set. According to Table 12, the multidimensionality and covariate added to the MixIRT model 

caused a decrease in the number of items with DIF. This decrease was similar for the items with 

C level and total B and C level effect size.  
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Table 11. DIF analysis results for model Cov-D-C2. 

Item Chi Square Alpha MH Delta MH Effect Size 

1 55.29* .57 1.34 B 

2 76.50* 1.96 -1.58 C 

3 99.65* .36 2.42 C 

4 21.00* .70 .83 A 

5 108.18* 2.50 -2.15 C 

6 18.48* .73 .75 A 

Item Chi Square Alpha MH Delta MH Effect Size 

7 51.69* .46 -1.83 C 

8 142.07* 2.37 -2.03 C 

9 111.51* .42 -2.04 C 

10 903.54* 13.01 -6.03 C 

11 3.04 .87 .32 A 

12 3.48 1.15 -.34 A 

13 1.26 1.11 -.24 A 

14 62.26* 1.79 -1.37 B 

15 6.71* .82 .46 A 

16 53.81* .57 1.32 B 

17 .37 1.05 -.11 A 

18 255.14* .25 3.28 C 

19 4.01* .86 .35 A 

20 60.81* .56 1.35 B 

21 48.28* 1.77 -1.34 B 

22 1.71 .90 .24 A 

23 9.17* 1.25 -.53 A 

24 37.10* .62 1.13 B 

25 5.19* .82 .45 A 

26 .00 1.00 -.01 A 

27 38.44* 1.60 -1.11 B 

28 .46 1.05 -.12 A 

Table 12. DIF analysis statistics using the most appropriate models for the data set. 

Model 
Number of Items 

with DIF 

   Items with DIF and Effect Size Levels Number of Items with 

B and C Level DIF A B C 

C2 27 6 4 17 21 

D-C2 25 8 3 14 17 

Cov-D-C2 20 6 7 8 15 

Table 13 displays the number of latent classes for the three models, the averages of the math 

and science tests, the correlation value of these courses, and the overall average of the 

individuals in the latent classes. As shown in Table 13, there was a differentiation in the 

distribution of students to latent classes in the models. While the LC1 class of the C2 model 

had the highest overall mean, the LC2 class of the Cov-D-C2 model had the lowest mean. 
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Similarly, the highest mean class in mathematics was the LC1 class of the C2 model, while the 

lowest was the LC2 class of the Cov-D-C2 model. The mean for science was highest in the LC1 

class of the Cov-D-C2 model and lowest in the LC2 class of the Cov-D-C2 model.   The highest 

correlation for mathematics and science tests was between the latent classes of the C2 model. 

Table 13. Number of individuals, means and correlation values of latent classes in selected models and 

mean of covariates. 

Model Latent 

Class 

Number of 

Individuals 

Mathematics 

Mean 

Science 

Mean 

Correlation 

Values 

Overall 

Mean 

C2 LC1 2050 9.18 10.70 .48 19.88 

LC2 5915 4.38 7.52 .49 11.90 

D-C2 LC1 3063 8.05 10.43 .47 18.48 

LC2 4902 4.10 7.03 .37 11.13 

Cov-D-C2 LC1 3504 7.74 10.77 .33 18.51 

LC2 4461 3.95 6.43 .37 10.38 

Table 14 displays the DIF items of the 3 models with a common effect size of B or C, and the 

related subject area, subject domain and cognitive domain of these items. In addition, focal and 

reference group differentiations were also examined. In this context, negative values of MH 

statistics indicated that the item worked in favor of the reference group, while positive values 

indicated that the item worked in favor of the focal group (Çepni & Kelecioğlu, 2021). 

Table 14. Courses, subject areas and cognitive domains for level B and C DIF items. 

Items with DIF with a common effect 
size of level B or C 

Course Subject Area 

Cognitive 

Domain Item 

Focal Group 

C2 D-C2 Cov-D-C2 

1 - - + Math Numbers Knowing 

2 - - - Math Numbers Knowing 

3 - - + Math Algebra Knowing 

5 - - - Math Algebra Application 

7 - - - Math Geometry Reasoning 

9 - - - Math Numbers Reasoning 

16 + + + Science Physics Knowing 

27 - - - Science Earth Science Reasoning 

As demonstrated in Table 14, when the advantage of the common items of six mathematics and 

two science courses with B or C level DIFs to the focal and reference groups is examined, it is 

seen that all of the common items in the mathematics sections of the C2 and D-C2 models 

provided advantage to the reference group and one of the common items in science provided 

advantage to the focal group. According to the Cov-D-C2 model, four of the six mathematics 

items were advantageous for the reference group, while one of the two items in science was 

advantageous for the focal group and the other for the reference group. When the subject areas 

were examined, there was a contrast in the differentiation of the focal and reference group 

between the models in algebra and numbers in mathematics. When the cognitive domains were 

analyzed, the difference in the level of knowing stood out. 

4. DISCUSSION and CONCLUSION 

In the research, using the data in the third booklet of eTIMSS 2019, latent classes were created 

with MixIRT, MMixIRT and MMixIRT models with the addition of a covariate, DIF analysis 

was performed and the variables that could be the source of DIF were examined.  The models 

with the best information criterion value of these models were selected and all selected models 
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were the ones with two latent classes. Sen and Cohen (2019) found that the number of latent 

classes selected in the MixIRT studies they analyzed varied between one and ten, and most of 

the studies used models with two latent classes (63%). Although the most common model in 

MIRT studies is the Rasch mixture model (50%) (Sen & Cohen, 2019), the 2PL model was 

used in this study to examine item discrimination index values. When the item discrimination 

index values are examined, it is seen that the three models that provided the best fit were close 

to each other. In addition, considering the discrimination index values, it was observed that the 

items in LC2 latent classes were lower and some of them had negative discrimination values 

compared to LC1 latent classes. Choi et al. (2015) found that the group with lower achievement 

level had higher discrimination values in most of the items in their study. However, it was 

observed that the discrimination values of the group with higher achievement level were higher 

in the multiple-choice items in the composite test used. 

In the latent classes created for the models, the number of students in the latent classes with low 

achievement levels was higher in all three models. In addition, these latent classes had 

significantly lower mean scores in both courses. In Finch and Finch's (2013) study, two of the 

three latent classes were found to have high mean achievement and low mean achievement in 

the selected courses, while the third latent class was found to have the highest mean 

achievement in one course and the lowest mean achievement in the other course. This reveals 

potential omissions of comprehensive analyses and suggests that when multiple constructs are 

assessed in a single test session, MMixIRT can provide more information about uniform DIF 

by examining multiple dimensions simultaneously (Finch & Finch, 2013). The inclusion of 

multiple dimensions provides a more complete characterization of test takers by simultaneously 

using their relative proficiency on multiple constructs to reflect the real-world contexts in which 

students learn and are assessed. In this study, the two-dimensional structure across items was 

considered and the inclusion of dimensionality improved the knowledge criterion index. Many 

studies (Bulut & Suh, 2017; Choi & Wilson, 2015; Hartig & Höhler, 2009; Yao & Li, 2015) 

have addressed the concept of dimensionality in the context of multidimensional IRT and the 

results of the analysis emphasized the importance of considering dimensionality. In the context 

of dimensionality, Gürdil (2023) found that the results of multidimensional estimation obtained 

lower Type I error and higher statistical power ratios than one-dimensional estimation in all 

DIF detection methods. Finch and Finch (2013) reported that the results of their analysis 

showed that the multidimensional model provided more complete information about the nature 

of the DIF than separate one-dimensional models. 

As a covariate in the study, the responses to the item on ’How often do they solve math problems 

on their own?’ were used. This variable was not related to socioeconomic status, which was 

often used, but was an individual preference. Although problem solving on its own was 

perceived as finding a correct result, it was an action that encompassed a broader mental process 

and skills, and the problem-solving process involved conducting research through controlled 

activities to reach a goal that was clearly designed but not immediately attainable (Altun, 2004; 

Polya, 1957). For this reason, with the addition of the covariate, the advantageous group in DIF 

items differed in some items compared to other models. Sırgancı (2019) found that with the 

addition of a discrete covariate to the MRM, the power and accuracy of DIF detection was 

higher than the MRM. In other words, if there was prior knowledge about the variables that 

were thought to be the source of DIF, including these variables as covariates in the MixIRT 

model showed that more accurate results could be obtained in DIF identification. Smit et al. 

(1999; 2000) suggested that latent class assignment could benefit significantly from the 

inclusion of dichotomous covariates that were moderately or strongly related to the latent class 

variable. In line with these results, Li et al. (2016) found in their study that correctly specifying 

both dichotomous and continuous covariates in MRM led to a moderate increase in the correct 

classification rate. Similarly, Choi et al. (2015) reported that adding a covariate had the 

potential to improve the interpretation of differences between groups. In the light of this 
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information, it is estimated that the Cov-D-C2 model, to which the covariate is added, classifies 

latent classes more accurately. This suggests that the results of the DIF analysis conducted with 

the Cov-D-C2 model are more reliable. The multidimensionality and covariate added to the 

MixIRT model have caused a decrease in the number of items with DIF. Although the current 

decrease does not suggest that making additions to the model leads to more accurate 

identification of items with DIF, the fact that it has better information criterion criteria may 

allow inferences to be made. Nevertheless, this is an issue that needs to be examined in tests 

for which items are available.  On the other hand, as Gierl et al. (2000) suggested two decades 

ago, the priority should be to explain the causes of DIF due to the trend towards using more 

theory-oriented tests for the existence of DIF rather than examining statistically marked DIF 

items in an effort to find an explanation for DIF that was large enough to be statistically 

significant. Huang (2010) stated that the results of her research showed that DIF was not a fixed 

characteristic of any test item, and that DIF was a function of the use and interpretation of test 

scores, not an inherent feature of the test. Yıldıztekin (2020) found that taking dimensionality 

into account resulted in fewer items with DIF than the analyses conducted without taking 

dimensionality into account. Huang (2010) examined DIF as a result of language, curriculum 

and culture, and found that when dimensionality was included, the number of items with DIF 

decreased for all comparisons. Liaw (2015) also reached a similar conclusion. In Cho and 

Cohen's (2010) study, adding a covariate did not change the number of items with DIF. 

The items with DIF and their numbers in the findings of the studies differ according to the 

models. Expert opinion, which was one of the practices to determine whether these items were 

indeed DIFs, was not conducted because the items could not be accessed. Therefore, the 

inferences made below were based on the findings. When the DIF results of the Cov-D-C2 

model, which provided the best fit, were examined, it was seen that the majority of the items 

with DIF in favor of the focal group were at the knowing level, while the DIF worked in favor 

of the reference group in the differences at the application and reasoning levels. According to 

the results obtained, three of the eight mathematics items identified as having DIF were at the 

knowing and application levels and two were at the reasoning level. While two of the three 

items at the knowing level were in favor of the focal group, and one was in favor of the reference 

group, all five items at the application and reasoning levels were in favor of the reference group. 

In addition, three of the seven science items identified as DIFs were at the knowing and 

practicing levels and one was at the reasoning level. While all the three items at the knowing 

level were in favor of the focal group, three of the four items at the application and reasoning 

level were in favor of the reference group and one of the four items at the application and 

reasoning level were in favor of the focal group. While C2 and D-C2 models gave the same 

results for seven items with B and C level DIFs common to three models, Cov-D-C2 model 

gave results in favor of the focal group in two items at the knowledge level. Up to now, stating 

the results one of the reasons for this situation could be the idea that the selected covariate was 

effective in the formation of the focal and reference groups, and the items in which the reference 

group differed at the application and reasoning level, which was the upper level, and the focus 

group differed at the knowledge level, which was the lower level, with the effect of problem 

solving frequency, were revealed in this way. Yalcin (2018) conducted DIF analysis in two 

different ways, and in the first study, no item with DIF was found in favor of the focal group. 

The reason for this was that the three countries that made up the sample were successful, 

middle-achieving and low-achieving countries. In her analysis according to the MH method, 

seven of the ten items were found to have DIF in favor of the reference group and three in favor 

of the focal group. 

One of the objectives of the study was to reach the source of DIF, and when dimensionality and 

covariate conditions were added to the model, it was seen that there was a difference in the 

number of items with DIF, the level of effect and the affected group (focal or reference). 

Accordingly, it was found that the manifest variable (e.g. gender, race) included in many studies 
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(Cohen & Bolt, 2005; Cohen et al., 2005; Doğan & Atar, 2024; Maij-de Meij et al.,2010; 

Samuelson, 2005) might not provide accurate information about DIF and MIRT models were 

more reliable. With the extension of the model, it became easier to explain the reason why the 

item with DIF in which course, subject and cognitive domain differed in favor of which group. 

Thus, it was revealed that the focal group differed at the knowledge level and the reference 

group differed at the other two levels. In this way, the reason for the correctly determined 

differentiation can be discussed by field experts (e.g. curriculum development, teaching 

principle methods, mathematics and science field experts, teachers, administrators, ministries 

of education, politicians) and renewal or improvements can be made on issues such as 

curriculum, teaching techniques or assessment and evaluation processes. 

Within the scope of this study, eTIMMS 2019 data were used. However, since it was not 

possible to examine the items in the study, the items showing DIF could only be analyzed in 

the context of the course, subject area and cognitive domain. Researchers who will study in this 

field can reach more comprehensive results if they use the data whose items they can access. 

An expert evaluation process can be carried out with the accessed items. In addition, only 2PL 

model was used in the study. In addition to the frequently used Rasch model, such studies can 

be conducted with 3PL and 4PL models. It is important to examine the data set very carefully 

before the application and to make an appropriate analysis in order for the research to serve the 

purpose. For example, since the data set of this study was single-level, multilevel analyses were 

not conducted. In studies where covariates will be included, diversification of covariates may 

give a more detailed idea about the source of DIF. Very few studies in this field have been 

conducted using open-ended items. For this reason, different item types can be used in MIRT 

or more comprehensive analyses. 
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