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Introduction 

According to the WHO report [1], ischemic heart disease, 

also known as coronary heart disease, was the primary 

cause of death worldwide in 2019. It accounted for 16% 

of all deaths and experienced the most significant rise in 

fatalities since 2000; resulting in 8.9 million deaths in 

2019 (see Fig. 1). Early detection of coronary artery 

disease (CAD) is essential to prevent an increased risk. 

Coronary angiography is the definitive diagnostic tool for 

CAD but is invasive and can result in complications like 

artery dissection, arrhythmia, and even death. 

Additionally, image-based detection methods are 

expensive and impractical for screening large populations, 

particularly in developing countries. Due to these 

limitations and the potentially dangerous nature of 

angiography, researchers have been seeking noninvasive, 

cost-effective, fast, and reliable methods for early CAD 

detection. Machine learning (ML) algorithms are among 

the techniques being explored for this purpose [2].  

ML methodologies have shown significant potential in 

accurately diagnosing heart disease, improving the  

efficiency of medical professionals, and generating 

economic benefits. As datasets expand and ML 

algorithms advance, the impact of ML applications on 

automated heart disease prediction is expected to increase 

substantially. On the other hand, class imbalance issues 

are common in medical diagnostics, where majority class 

samples outnumber minority class samples. Traditional 

classification algorithms often misclassify minority 

observations as noise, leading to lower accuracy for the 

minority class. Addressing this imbalance is essential for 

improving the overall diagnostic performance of ML 

algorithms. In order to tackle this problem, the synthetic 

minority oversampling technique (SMOTE) algorithm is 

used in this study and efforts are made to improve the 

performance of SMOTE. This study has two primary 

contribution to the existing literature:   

• The first is to determine the impact of the k 

hyper parameter in the K-Nearest Neighbors 

(KNN) classifier used for SMOTE on prediction 

performance.   

• The second is to evaluate the effectiveness of 

various machine learning models in predicting 

CAD, aiming to identify the optimal ML model 

for coronary artery disease prediction.   
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ABSTRACT 

 
Coronary artery disease (CAD) is the leading cause of death worldwide, necessitating early detection 

methods that are non-invasive, cost-effective, and reliable. In this study, the effectiveness of various 
machine learning (ML) models in predicting CAD was evaluated, with a focus on addressing class 

imbalance using the Synthetic Minority Oversampling Technique (SMOTE). The Framingham CAD 

dataset was utilized, and SMOTE was applied with different k-values to balance the data, examining the 
impact on prediction performance. Eight significant features—age, diaBP, glucose, heart rate, sysBP, 

totChol, cigsPerDay, and BMI—were determined during preprocessing and used for further analysis. 

Among the models tested, the StackingC classifier demonstrated superior performance, achieving an 
accuracy of 95.81%, sensitivity of 95.9%, specificity of 95.7%, and an AUROC of 99.2% for k=1. These 

findings highlight the potential of the StackingC model as a robust tool for CAD prediction, offering a 

promising non-invasive method for early diagnosis.  
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Figure 1. Leading causes of death globally

The remainder of the paper is structured as follows: 

Section 2 presents the literature review. Section 3 

describes the dataset and outlines the proposed 

methodology. Section 4 discusses the experimental results 

and provides an analysis. Finally, Section 5 covers the 

conclusion and potential future work.    

Literature Review 

Up to now, a substantial number of studies have been 

conducted to predict CAD, extensively applying machine 

learning. Notably, Alizadehsani et al. [2] and Kutiame et 

al. [3] have provided comprehensive reviews on CAD 

prediction. Kurt et al. [4] compared various classification 

techniques for CAD prediction in 1245 subjects, finding 

the multi-layer perceptron (MLP) to be the best predictor 

with an and area under the receiver operating 

characteristic curve (AUROC) of 0.783, outperforming 

logistic regression (LR), classification and regression 

trees (CART), radial basis function (RBF), and self-

organizing feature maps (SOFM). Babaoğlu et al. [5] 

explored principal component analysis (PCA) with 

support vector machines (SVM) for assessing exercise 

stress tests. The results showed that reducing features 

with PCA improved SVM model accuracy and reduced 

errors. Alizadehsani et al. [6] introduced the Z-Alizadeh 

Sani dataset and achieved a 94.08% accuracy in 

diagnosing CAD using effective features and data mining 

methods. 

Furthermore, Akila and Chandramathi [7] proposed a 

hybrid method involving decision trees (C4.5) and MLP, 

achieving classification accuracies of 98.66% for C4.5 

and 96.66% for MLP. Lo et al. [8] combined four heart 

disease datasets, using seven machine learning methods to 

predict CAD, and developed a new classifier with optimal 

performance using the TOPSIS algorithm. Miao et al. [9] 

developed an ensemble machine learning model using 

adaptive boosting, achieving accuracies between 77.78% 

and 96.72% across multiple datasets. Alizadehsani et al. 

[10] also aimed for high accuracy in diagnosing major 

coronary arteries stenosis, achieving rates of 86.14% for 

the LAD artery, 83.17% for the LCX artery, and 83.50% 

for the RCA, which are the highest reported in the 

literature. 

Forssen et al. [11] systematically evaluated machine 

learning methods like L1 regression and random forest 

(RF) classifiers for CAD prediction using metabolomic 

data. Beunza et al. [12]  compared machine learning 

algorithms on the Framingham Heart Study data, finding 

artificial neural networks (ANN) achieved the highest 

AUROC in R-Studio (0.71) and SVMs performed best in 

RapidMiner (0.75). Abdar et al. [13] tested ten traditional 

algorithms, ultimately selecting three types of SVMs 

optimized using genetic algorithms and particle swarm 

optimization, achieving a 93.08% accuracy and 91.51% 

F1-score with the optimized N2Genetic-nuSVM model on 

the Z-Alizadeh Sani dataset. Likewise, Dahal and Gautam 

[14] implemented five supervised classification methods 

for CAD prediction and determined the best model 

through performance comparison. 

Dipto et al. [15] developed a prototype system using 

various machine learning algorithms to identify the most 

suitable model for a clinical dataset, finding the ANN to 

achieve the highest accuracy. Additionally, Dutta et al. 

[16] introduced a two-layer convolutional neural network 

(CNN) for classifying imbalanced clinical data, achieving 

high accuracy and specificity. Joloudari et al. [17] 

enhanced CAD diagnosis accuracy through an integrated 

machine learning approach, utilizing random trees (RT), 

C5.0 decision trees, SVM, and chi-squared automatic 

interaction detection (CHAID) decision trees. Muhammad 

et al. [18] developed machine learning models for CAD 

prediction using data from hospitals in Nigeria, with the 

random forest model achieving the highest accuracy and 

AUROC. Wang et al. [19] introduced a cloud-random 

forest (C-RF) model for assessing CAD risk. Using the 

Framingham dataset from Kaggle, the model achieved 

85% accuracy and demonstrated superior performance in 

classification accuracy, error rates, and AUROC value 

compared to CART, SVM, CNN, and RF models. Wang 

et al. [20] enrolled 3,112 CAD patients and 3,182 controls  
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Table 1. Summary of literature review on CAD prediction using ML techniques

Authors Method Used Dataset Class Imbalance Handling 

Kurt et al. [4] Logistic Regression, CART, Neural 

Networks 

Trakya University dataset (1245 

samples) 

No specific focus on class 

imbalance 

Alizadehsani et al. 

[6] 

SVM with Feature Selection and 

Information Gain 

Z-Alizadeh Sani (303 samples) No specific focus on class 

imbalance 

Alizadehsani et al. 

[10] 

SVM with Kernel Fusion, Information 

Gain, Feature Selection 

Z-Alizadeh Sani (303 samples) No specific focus on class 

imbalance 

Lo et al. [8] Ensemble Learning, Co-Expressed 

Observations, TOPSIS 

UCI Machine Learning 

Repository (822 samples) 

No specific focus on class 

imbalance 

Miao et al. [9] Adaptive Boosting Algorithm, 

Ensemble Learning 

UCI Machine Learning 

Repository (920 samples) 

No specific focus on class 

imbalance 

Forssen et al. [11]  L1 regression, Random Forest 4C Metabolomics dataset (3409 

samples) 

No specific focus on class 

imbalance 

Beunza et al. [12] SVM, Neural Networks, Decision 

Trees, Random Forest 

Framingham Heart Study (4240 

samples) 

Applied oversampling to 

balance dataset 

Dahal and Gautam 

[14] 

SVM, LR, Bagging CART, RF, KNN Z-Alizadeh Sani (303 samples) Applied SMOTE to balance 

dataset 

Dipto et al. [15] Logistic Regression, SVM, ANN Z-Alizadeh Sani dataset (303 

samples) 

Applied SMOTE to balance 

dataset 

Dutta et al. [16] CNN with LASSO NHANES dataset (37,079 

samples) 

Addressed class imbalance 

with CNN structure 

Masih et al. [21] Multilayer Perceptron-based DNN Framingham Heart Study (4583 

samples) 

Applied SMOTE to balance 

dataset 

Wang et al. [20] Cloud-Random Forest Framingham Heart Study (4238 

samples) 

Applied SMOTE to balance 

dataset 

Trigka et al. [22] Stacking Ensemble with SMOTE Framingham Heart Study (4238 

samples) 

Applied SMOTE to balance 

dataset 

Mishra et al. [23] SVM, Logistic Regression, Random 

Forest, Decision Tree 

Various hospitals in Odisha 

(3254 samples) 

No specific focus on class 

imbalance 

Saeedbakhsh et al. 

[23]  
SVM, ANN, Random Forest Isfahan Cohort Study dataset 

(11495 samples) 

No specific focus on class 

imbalance 

This Study (2024) StackingC  Framingham CAD dataset 

(4238 samples) 

SMOTE with varying k-

values 

from three centers in China, developing a RF model. This 

model achieved an AUROC of 0.948 in the development 

cohort and 0.944 and 0.940 in two validation cohorts. An 

easy-to-use tool combining 15 indexes was also created 

for clinical application, enhancing CAD management and 

prevention. Trigka and Dritsas [22] evaluated various 

machine learning models with and without SMOTE, 

finding the stacking ensemble model combined with 

SMOTE and 10-fold cross-validation to outperform 

others. Huang and Huang [24] used the NHANES dataset 

to identify CAD risk factors with machine learning, 

achieving an AUROC of 0.89 with the XGBoost model. 

Özbilgin et al. [25] proposed a non-invasive CAD 

diagnosis method using iris images and SVM, achieving a 

93% accuracy rate. Saeedbakhsh et al. [23] used SVM, 

ANN, and RF to predict CAD with high accuracy, 

identifying key predictors and extracting eleven high-

confidence rules. Li et al. [26] proposed a deep learning 

hybrid model for CAD prediction, significantly improving 

accuracy and addressing overfitting issues. Table 1 

presents a summary of literature review on CAD 

prediction using ML techniques 

After analyzing the related literature, it is evident that 

various studies have explored the use of machine learning 

models for coronary artery disease (CAD) prediction, 

employing methods such as support vector machines 

(SVM), random forests, and convolutional neural 

networks (CNN), demonstrating moderate to high 

accuracy and AUROC scores. However, a significant gap 

exists in addressing the issue of class imbalance, a 

common problem in medical datasets where CAD-

positive cases are underrepresented. This imbalance often 

leads to reduced model performance, particularly in 

predicting minority class instances, which are critical in 

healthcare applications. Additionally, while previous 

research has shown the potential of ensemble models, like 

stacking classifiers, to enhance performance by 

leveraging the strengths of multiple models, there has 

been limited focus on optimizing these models for CAD 

prediction. Another unexplored area in the literature is the 

effect of different SMOTE (Synthetic Minority 

Oversampling Technique) k-values on model 

performance, which can have a substantial impact on how 
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well machine learning models manage imbalanced 

datasets.  

This study addresses these gaps by applying SMOTE to 

balance the dataset and experimenting with various k-

values to optimize model performance. Moreover, it 

evaluates a stacking ensemble model (StackingC), which 

combines multiple classifiers and demonstrates superior 

performance over traditional machine learning models. 

The findings reveal that StackingC consistently 

outperforms other models, achieving high accuracy, 

sensitivity, specificity, and AUROC, making it a robust 

and reliable tool for CAD prediction, especially in the 

context of imbalanced datasets. This research not only 

advances the application of ensemble models for CAD 

prediction but also provides valuable insights into how 

tuning the k-parameter of SMOTE can enhance model 

performance, effectively addressing key gaps identified in 

the literature. 

Material and Method 

This section outlines the approach used in the study, 

detailing the materials, datasets, and methodologies 

employed to predict coronary artery disease (CAD) risk 

using machine learning techniques. 

Dataset description 

This research paper utilizes the Framingham CAD 

dataset, available on Kaggle [27], to conduct an empirical 

examination of CAD risk assessment methods. The 

dataset originates from a continuous cardiovascular study 

involving residents of Framingham, Massachusetts. The 

objective is to predict whether a patient will experience 

coronary heart disease within the following ten years.  

The Framingham CAD dataset encompasses 15 risk 

indicators associated with CAD, with a collective sample 

size of 4238 participants, of whom 644 (15.2%) were 

diagnosed with CAD. Detailed statistical information 

regarding the features concerning the target class labels is 

provided in Table 2 and 3. The Framingham CAD dataset 

was chosen for several reasons. First, it includes well-

established risk factors for CAD, such as age, systolic and 

diastolic blood pressure, cholesterol levels, glucose, and 

smoking habits, all of which are critical in predicting the 

disease. These features have been widely used in 

cardiovascular research and are known to provide reliable 

insight into coronary artery disease. The dataset’s breadth 

and depth allow for a comprehensive analysis of the 

disease risk, making it a suitable foundation for machine 

learning-based predictive modeling.  

Second, the dataset’s public availability on platforms like 

Kaggle ensures transparency and reproducibility, which 

are essential in scientific research. Its accessibility allows 

researchers to validate findings and develop comparable 

models, increasing the robustness of machine learning 

approaches in CAD prediction.  

Additionally, despite its initial class imbalance (with 

15.2% of participants diagnosed with CAD), the dataset 

offers a sufficient sample size to apply techniques like 

Synthetic Minority Oversampling Technique (SMOTE) 

[28]. SMOTE was used to balance the dataset, creating 

equal representation of CAD and non-CAD cases, which 

enhances the accuracy and reliability of the predictive 

models.  

Overall, the Framingham CAD dataset provides an ideal 

combination of relevance, data quality, and availability. 

Its use of established risk factors and its large sample size, 

together with the applied class-balancing techniques, 

make it a robust choice for developing accurate and 

reliable machine learning models for early CAD 

detection.  

Data Preprocessing 

The number of participants who have been diagnosed 

with CAD is 644 (15.2%), indicating an imbalanced 

dataset. In accordance with the principle of balancing the 

quantity of CAD and non-CAD samples,  SMOTE 

method [28] was employed to transform the Framingham 

dataset into a balanced dataset. SMOTE relies on the K-

Nearest Neighbors (KNN) [29] classifier generating 

synthetic data for the minority class in order to achieve a 

uniform distribution across both classes. One of the 

objectives of this study is to observe the effects of the k 

hyper parameter of the KNN classifier used for SMOTE 

on the prediction performance. Hence, SMOTE was 

applied with 3 different k values which are 1, 3, and 5, 

resulting in the creation of three distinct datasets. 

Following the implementation of SMOTE, the datasets 

achieved balance, consisting of 7188 participants with an 

equal distribution of 3594 instances each for both CAD 

and non-CAD classes. Furthermore, in order to prevent a 

reduction in the observation count, any missing values 

within the continuous variables were filled by averaging 

the remaining non-missing values within that specific 

variable. Lastly, all attributes with numeric values were 

normalized within the range of [0, 1]. 

Feature selection 

In this study, Random Forest (RF) [30] was utilized 

alongside 10-fold cross-validation to eliminate irrelevant 

features, which can degrade model performance. The 

combination of robustness, scalability, interpretability, 

and automatic feature selection makes RF a popular 

choice for selecting the best features in machine learning 

tasks. The main steps of feature selection using RF in this 

study are described as follows: 

Step 1: RF was trained using the entire dataset with 10-

fold cross-validation.  

Step 2: Then, for each attribute in the dataset, we 

temporarily removed this attribute and trained the 

classifier again using the remaining attributes. 
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Step 3: After training the RF without each attribute, we 

evaluated the performance of the RF using, accuracy 

metric through cross-validation. 

Step 4: The importance of each attribute was determined 

based on how much the performance of the RF degrades 

when that attribute is removed. If removing an attribute 

causes a significant drop in performance, it suggests that 

the attribute is important for classification.  

Step 5: Finally, the attributes were ranked based on their 

importance scores. Attributes with higher scores were 

considered more important for classification, while 

attributes with lower scores might be deemed less 

important or even irrelevant. 

After obtaining the rank of significance for the features 

(see Fig. 2), a decision was made regarding which 

features to use for the model. Starting from the feature 

with the lowest score, each feature was individually 

removed from the model, and RF classifier was run. The 

accuracy metric reached its maximum level with 8 

features as it is shown Table 4. The 8 features that 

maximize the accuracy of the RF model are as follows: 

age, diaBP, glucose, heartRate sysBP, totChol, 

cigsPerDay, BMI. Hence, only these features were 

utilized for the remainder of the study 

Machine learning models 

In particular, the focus was on evaluating Bayesian 

Network (BN) [31] and the K-Star algorithm [32]. 

Ensemble ML algorithms were also explored, including 

Random Forest (RF) [30], Stacking [33], and StackingC 

[34]. After numerous preliminary experiments, the 

optimal hyper parameters for the algorithms were 

determined and are detailed in Table 5: 

Table 2. Numerical features of Framingham dataset

Attribute Description Min Max Mean ± stdDev 

Age Age of the patient in years 32 70 49.5 ± 8.56 

Cigs/day Number of cigarettes smoked per day 0 70 9 ± 11.92 

totChol Total cholesterol level 113 464 236.8 ± 43.69 

SysBP Systolic blood pressure 83.5 295 132.3 ± 22.1 

DiaBP Diastolic blood pressure 48 142.5 82.9 ± 11.97 

BMI Body Mass Index 15.54 56.8 25.8 ± 4.07 

Heart rate Heart rate (beats per minute) 44 143 75.7 ± 11.99 

Glucose Glucose level 40 394 81.8 ± 23.89 

Table 3. Nominal features of Framingham dataset

Attribute Description Categories n 

Gender Gender of the patient Male  1819 

Female 2419 

Education Level of education Some high school 1825 

High school graduate 1253 

Some college or 

vocational school 

687 

College graduate 473 

Current smoker Indicator of whether the 

participant is smoking 

Yes 2094 

No 2144 

BPMeds Indicator of whether the 

participant is on blood 

pressure medication 

Yes 124 

No 4114 

prevStroke Indicator of whether the 

participant has a history 

of stroke 

Yes 25 

No 4213 

prevHyp Indicator of whether the 

participant has a history 

of hypertension 

Yes 1316 

No 2922 

Diabetes Indicator of diabetes 

presence 

Yes 109 

No 4129 
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 Figure 2. Selection of important influencing factors of CAD using RF 

 

Table 4. Performance evaluation related to the number of features 

Feature Number 6 7 8 9 10 11 12 13 14 15 

Accuracy (%) 90.16 90.33 90.35 90.16 89.89 89.83 89.84 89.79 89.72 89.72 

Table 5. Optimal hyper parameters for ML models for the Framingham dataset

Random Forest (RF) numIterations 300 

 numFeatures 5 

K-Star (K*) globalBlend  30 

Bayesian Network (BN) estimator SimpleEstimator 

 searchAlgorithm K2 

Stacking classifiers RF, K*, BN 

 metaClassifier K* 

StackingC classifiers RF, K*, BN 

 metaClassifier K* 

 

Experimental Results 

This section presents the experimental results of the 

study, detailing the evaluation metrics and test outcomes 

of the machine learning models used for coronary artery 

disease (CAD) prediction. 

Evaluation Metrics 

To assess the performance of machine learning models, a 

confusion matrix was utilized. This matrix showcases the 

disparities between actual and predicted classes. Each row 

of the confusion matrix corresponds to instances in the 

predicted class, while each column represents instances in 

the real class, and vice versa. Typically, the confusion 

matrix comprises four distinct terms: True Positive (TP), 

False Positive (FP), True Negative (TN), and False 

Negative (FN). True Positive (TP) denotes the number of 

predicted values correctly identifying the presence of 

disease, while True Negative (TN) represents the count of  

 

predicted values correctly identifying the absence of 

disease. False Positive (FP) indicates the count of 

predicted values incorrectly classified as positive (when 

they were actually negative), and False Negative (FN) 

refers to the count of predicted values incorrectly 

classified as negative (when they were actually positive). 

Using these terms, performance metrics such as accuracy, 

sensitivity, specificity, and Area Under the Receiver 

Operating Characteristic Curve (AUROC) were 

calculated. A description of each performance metric is 

provided below. 

 

Accuracy = 
𝑇𝑁+𝑇𝑃

𝑇𝑁+𝑇𝑃+𝐹𝑁+𝐹𝑃
                                                (1)                                                                                                       

Sensitivity = 
TP

TP+FN
                                 (2)

  

Specificity = 
TN

TN+FP
                   (3) 
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In this study the performance of the ML models’ was 

assessed using accuracy, specificity, sensitivity, and 

AUROC values. 

Experimental setup 

The algorithms were implemented in WEKA 3.9.6 and 

run on a PC with a 2.3 GHz AMD Ryzen 5 processor and 

8 GB of RAM with Windows 11. A 10-fold cross-

validation was applied to measure the efficiency of the 

machine learning models on the balanced dataset of 7188 

instances after SMOTE, for each of the three values of k: 

1, 3, and 5. 

Test results 

In this paper, five machine learning techniques were 

compared: Bayesian Network (BN) [31], K-Star [32], 

Random Forest (RF) [30], Stacking [33], and StackingC 

[34]. The comparison was performed on Framingham 

dataset balanced by SMOTE [28] using three different 

values of the k hyper parameter: 1, 3, and 5.  

 

Table 6. Performance evaluation of ML models for k=1

 Accuracy (%) Sensitivity (%) Specificity (%) AUROC (%) 

BN 90.35 83.4 97.2 93.5 

K-Star 84.24 98.3 70.2 97.9 

RF 90.43 90.8 90.1 96.5 

Stacking 95.92 95.4 96.5 99.1 

StackingC 95.81 95.9 95.7 99.2 

Table 7. Performance evaluation of ML models for k=3 

 Accuracy (%) Sensitivity (%) Specificity (%) AUROC (%) 

BN 90.58 82.8 98.4 93.6 

K-Star 81.15 94.3 68.0 93.9 

RF 87.54 89.1 86 94.7 

Stacking 95.08 93.9 96.3 98.6 

StackingC 95.23 94.3 96.1 98.7 

  

Table 8. Performance evaluation of ML models for k=5

 Accuracy (%) Sensitivity (%) Specificity (%) AUROC (%) 

BN 88.97 82.2 95.7 93.1 

K-Star 78.85 91.5 66.2 90.9 

RF 86.14 87.7 84.6 93.7 

Stacking 94.23 92.7 95.8 98.1 

StackingC 93.93 93.2 94.6 98.2 

According to Table 6, 7, 8 the k hyper parameter in 

SMOTE influences the performance of the ML models. 

Generally, lower values of k yield higher performance 

metrics, while higher values of k show a decrease in these 

metrics. Considering the overall performance across 

different values of the k hyper parameter in SMOTE, the 

Stacking and StackingC classifiers stand out as the best 

options for Framingham dataset due to their consistently 

high accuracy, sensitivity, specificity, and AUROC. 

However, StackingC has shown slightly better 

performance compared to Stacking. StackingC 

demonstrates high accuracy across all values of k 

(95.81% for k=1, 95.23% for k=3, and 95.23% for k=5). 

Furthermore, both sensitivity (95.9%) and specificity 

(95.7%) are high for k=1, suggesting that the model is 

equally good at identifying CAD cases and non-CAD 

cases. This balance is crucial for medical diagnosis to 

avoid both false alarms and missed diagnoses.  

 Figure 3. ROC curves comparing machine learning 

models at k=1 (SMOTE)  
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Figure 4. ROC curves comparing machine learning 

models at k=3 (SMOTE) 

 

Figure 5. ROC curves comparing machine learning 

models at k=5 (SMOTE) 

To provide a deeper understanding of the classification 

performance of the ML models, ROC curves are 

displayed in Figures 3, 4 and 5. The ROC curve is crucial 

for evaluating classifier performance because it provides a 

comprehensive view of the trade-off between the true 

positive rate (sensitivity) and the false positive rate (1-

specificity) across different threshold settings. The 

AUROC values are consistently high for StackingC, 

indicating strong overall performance and reliability in 

distinguishing between positive and negative cases of 

CAD (99.2 for k=1, 98.7 for k=3, and 98.2 for k=5). 

StackingC gave the best performance for k=1 in SMOTE 

with 10-fold cross-validation, and the confusion matrix of 

this model is given in Table 9. 

Table 9. Confusion matrix for stackingC using k=1 in 

SMOTE for Framingham dataset 

 Predicted CAD 
Predicted non-

CAD 
Total 

Actual CAD 3446 148 3594 

Actual non-

CAD 
153 3441 3594 

Total 3599 3589  

Additionally, a comparative analysis between the current 

study and previous studies was performed using accuracy, 

specificity, sensitivity, and AUROC evaluation criteria, 

with the results presented in Table 10. Beunza et al. [12] 
utilized support vector machines (SVM) on the same 

Framingham dataset, achieving an accuracy of 69% and 

an AUROC of 75%, which is substantially lower than the 

results achieved by the StackingC model in this study. 

Similarly, Wang et al. [20] employed a cloud-random 

forest (C-RF) model on the Framingham dataset and 

achieved an accuracy of 85% and an AUROC of 85%, 

again demonstrating the superior performance of the 

StackingC model used in this paper. 

In comparison, Trigka and Dritsas [22] applied a stacking 

ensemble model with SMOTE to predict CAD and 

achieved an accuracy of 90.9% and an AUROC of 96.1%. 

While this shows strong performance, the StackingC 

model in the current study outperformed it with an 

accuracy of 95.81% and AUROC of 99.2%, underscoring 

the effectiveness of the ensemble learning method used in 

this study. 

Moreover, Masih et al. [21] applied a convolutional 

neural network (CNN) model, achieving an accuracy of 

96.5% on the Framingham dataset. Although the CNN 

model achieved slightly higher accuracy, the StackingC 

model's AUROC of 99.2%, alongside its balanced 

sensitivity and specificity, makes it a more reliable and 

robust model for distinguishing between CAD and non-

CAD cases. 

These comparisons emphasize that while machine 

learning models such as SVM, random forests, stacking 

models, and CNNs have been widely used for CAD 

prediction, the StackingC model in this study 

demonstrates superior overall performance, particularly in 

terms of balancing accuracy, sensitivity, specificity, and 

AUROC. This balance is crucial for medical diagnostics, 

where both false positives and false negatives can have 

significant consequences. The StackingC model’s 

exceptional performance across multiple evaluation 

metrics suggests it is a robust tool for CAD prediction, 

and its applicability could extend to clinical settings for 

early diagnosis. 

In summary, although there have been numerous studies 

using machine learning techniques for CAD prediction, 

this study’s StackingC model offers improved 

performance when compared to many previous 

approaches, making it a valuable contribution to the field. 
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Table 10. Comparison of the ML models from previous studies for Framingham dataset 

Authors Dataset Method Accuracy(%) Sensitivity(%) Specificity(%) AUROC(%) 

Beunza [12] Framingham SVM 69 42 84 75 

Wang [20] Framingham C-RF 85 84 86 85 

Trigka [22] Framingham Stacking 90.9 87.6 NaN 96.1 

Masih [21] Framingham CNN 96.5 91.9 98.28 NaN 

This study Framingham StackingC 95.81 95.9 95.7 99.2 

 

 

Conclusion 

In this study, it is aimed to enhance the prediction of 

coronary artery disease (CAD) using various machine 

learning models, focusing on the Synthetic Minority 

Oversampling Technique (SMOTE) and its impact on 

model performance. The results demonstrated that the 

application of SMOTE, particularly with lower k-values, 

significantly improved the performance metrics of the 

machine learning models. Among the models tested, the 

StackingC classifier consistently outperformed others, 

achieving high accuracy, sensitivity, specificity, and 

AUROC values across different k-values. This suggests 

that StackingC is highly effective in distinguishing 

between CAD and non-CAD cases, making it a reliable 

tool for medical diagnostics. 

To optimize the predictive accuracy of the ML models, it 

was identified the eight most significant features using the 

Random Forest (RF) model. The features that maximize 

the accuracy of the RF model are age, diaBP, glucose, 

heart rate, sysBP, totChol, cigsPerDay, and BMI. Hence, 

only these features were utilized for the remainder of the 

study. This feature selection process was critical in 

enhancing the model's performance, ensuring that the 

most relevant and impactful variables were included in 

the prediction models. 

This study’s findings highlight the importance of 

addressing class imbalance in medical datasets to enhance 

the accuracy and reliability of predictive models. The use 

of SMOTE in balancing the dataset proved crucial, 

particularly for models like StackingC, which showed 

superior performance in all evaluation metrics. The 

StackingC model achieved an accuracy of 95.81%, 

sensitivity of 95.9%, specificity of 95.7%, and an 

AUROC of 99.2% for k=1, underscoring its robustness 

and potential for clinical application. The StackingC 

model holds significant promise for real-world 

applications, particularly in healthcare settings where 

early and accurate detection of CAD is critical. This 

model could be integrated into clinical decision support 

systems to assist healthcare professionals in identifying 

high-risk patients. With its high sensitivity and 

specificity, the model can reliably distinguish between 

CAD-positive and CAD-negative cases, reducing the  

chances of both false positives and false negatives. This 

would be particularly valuable in resource-constrained 

environments where access to invasive diagnostic 

methods, such as coronary angiography, is limited. By 

offering a non-invasive, cost-effective, and rapid 

diagnostic tool, the StackingC model could improve early 

detection and intervention, potentially reducing mortality 

rates from CAD. 

Despite its strong performance, the study has some 

limitations that should be acknowledged. First, the dataset 

used is the Framingham CAD dataset, which, while 

comprehensive, may not fully represent the diverse global 

population. The model’s performance might vary when 

applied to other populations with different risk factors and 

demographic characteristics. Additionally, the study 

primarily focused on balancing the dataset using SMOTE, 

but there could be other methods for handling class 

imbalance that might yield different results. The impact of 

hyper-parameter tuning and alternative resampling 

techniques, such as ADASYN or NearMiss, was not 

explored in this study. 

Future research could address these limitations by 

validating the StackingC model on larger, more diverse 

datasets, potentially from different geographic regions 

and healthcare settings. Expanding the feature set to 

include other relevant risk factors, such as genetic data or 

lifestyle factors, could improve the model's 

generalizability. Additionally, exploring other machine 

learning techniques, such as deep learning models, or 

hybrid approaches that combine ensemble learning with 

neural networks, could further enhance performance. 

Another promising direction for future research is the 

development of interpretable models that allow healthcare 

professionals to understand the underlying reasons for a 

model’s predictions. Explainability in AI models is 

crucial, especially in high-stakes fields like healthcare. 

Research could focus on incorporating explainability 

techniques like SHAP (Shapley Additive Explanations) or 

LIME (Local Interpretable Model-agnostic Explanations) 

to make the predictions more transparent to clinicians. 
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