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Abstract: Missing data is an important problem in the analysis and classification of high dimensional data. The aim of this study is to 
compare the effects of four different missing data imputation methods on classification performance in high dimensional data. In this 
study, missing data imputation methods were evaluated using data sets, whose independent variables between mixed correlated with 
each other, for binary dependent variable, p=500 independent variables, n=150 units and 1000 times running simulation. Missing data 
structures were created according to different missing rates. Different datasets were obtained by imputing the missing values using 
different methods. Regularized regression methods such as least absolute shrinkage and selection operator (lasso) and elastic net 
regression were used for imputation, as well as tree-based methods such as support vector machine and classification and regression 
trees. At the end of simulation, the classification scores of the methods were obtained by gradient boosting machine and the missing 
data prediction performances were evaluated according to the distance of these scores from the reference. Our simulation 
demonstrates that regularized regression methods outperform tree-based methods in classifying high dimensional datasets. 
Additionally, it was found that the increase in the amount of missing values reduced the classification performance of the methods in 
high dimensional data. 
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1. Introduction 
Dealing with missing data is a crucial aspect of statistical 
analysis. In statistical studies, missing values occur when 
observations for a variable cannot be obtained due to 
various reasons (Jadhav et al., 2019). The presence of 
missing data is a common issue in clinical research and 
can significantly affect the data analysis process. 
Understanding the source and structure of missing data 
is crucial. Naive analyses, such as complete-case and 
available-case analysis, can cause bias, loss of efficiency, 
and unreliable results (Enders, 2022). When dealing with 
missing data, it is advisable to make use of any available 
partial information to estimate the missing values and 
analyze the complete dataset. This approach is more 
preferable than excluding the missing units from the 
analysis, as it helps to preserve the integrity and 
completeness of the data (Rubin, 1988; Little and Rubin, 
2019). 
Missing data, which negatively affects statistical analysis 
processes, is also an important problem for researchers 
dealing with classification problems in high dimensional 
data. When training a model, several commonly used 
classification methods are unable to deal with missing 
values in the training data (Deng et al., 2016). Therefore, 
it has become imperative to research and develop 
appropriate imputation methods for missing values in 

the training data to enhance the overall performance of 
the classifier on test data. Many of the methods that 
handle missing data are not suitable for high dimensional 
data because of their theoretical structure. Tree-based 
and regularized regression-based methods are 
remarkable in studies on missing values in high 
dimensional data (Yin et al., 2016; Zhao and Long, 2016). 
The objective of this research is to assess the impact of 
regularized regression imputation methods, such as least 
absolute shrinkage and selection operator (lasso) and 
elastic net regression, and tree-based missing data 
imputation methods, such as support vector machine 
(SVM) and classification and regression trees (CART) on 
the classification performance by gradient boosting 
machine (GBM) in simulated high dimensional data. 
 
2. Materials and Methods 
In this section, we first described the theory of 
imputation methods and GBM structure. At the end of 
this section, we gave information about the simulation 
algorithm. 
2.1. Regularized Regression Models 
Regularized regression is a statistical technique that is 
quite similar to ordinary regression, whether it is linear 
or logistic. The main difference between the two lies in 
the fact that regularized regression adds an extra 
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constraint, which has the objective of shrinking the 
values of unimportant regression coefficients towards 
zero. This technique is particularly useful when dealing 
with high dimensional datasets. In such situations, 
regularized regression helps in avoiding overfitting, 
which can occur when the model is too complex and 
captures the noise present in the data. By shrinking the 
coefficients, regularized regression allows the model to 
focus on the most relevant predictors, thereby improving 
its generalization performance on new, unseen data ( 
Przednowek and Wiktorowicz, 2013; Patil and Kim, 
2020).  
2.1.1. Lasso regression 
Lasso regression is a technique used in linear regression 
to reduce the complexity of models when working with 
high dimensional datasets. The lasso regression, also 
known L1 regularization, works adding a penalty term to 
the cost function. This penalty shrinks some variable 
coefficients to zero, selecting only the most significant 
features, and induces a sparse solution (Breiman, 1995; 
Tibshirani, 1996). 
2.1.2. Elastic net regression 
Elastic net regression is a general regularization 
technique that combines L1 and L2 regularization 
techniques for feature selection and reduction. The 
regularization term L2, also known as Ridge regression, 
suggests keeping the coefficients small but not zero, 
which in turn reduces the coefficients of less significant 
features. Thus, some coefficients shrink to exactly zero, 
while others shrink towards each other. This allows for 
variable selection and reduces the complexity of the 
model ( Zou and Hastie, 2005; Friedman et al., 2010). 
2.2. Tree-Based Models 
Tree-based models are a type of machine learning 
algorithm that can also be applied for high dimensional 
data and fall under the category of nonparametric 
models. These models operate by dividing the feature 
space into smaller, non-overlapping regions. The 
partitioning process is done in such a way that the 
response values within each region are similar to each 
other. Overall, tree-based models are a powerful tool for 
solving a wide range of supervised learning problems, 
including regression and classification tasks (Chang and 
Chen, 2005; Clark and Pregibon, 2017).  
2.2.1. Support vector machine 
SVM is a popular machine learning algorithm used for 
classification and regression analysis. SVM works by 
finding the best possible boundary that separates data 
points into different classes. It tries to maximize the 
margin between the classes, which is the distance 
between the boundary and the closest data points. SVM is 
particularly useful when working with high dimensional 
datasets and can handle both linear and non-linear data. 
It is also known for its ability to deal with noisy data and 
outliers (Cortes and Vapnik, 1995; Hastie et al., 2009). 
2.2.2. Classification and regression trees 
CART is a decision tree algorithm that can be utilized for 
both classification and regression tasks. The data is 

divided into subsets by this algorithm in a recursive 
manner, depending on feature values. This process 
continues until a stopping criterion, such as reaching a 
maximum depth or minimum number of samples per leaf 
node, is met. At each split, the algorithm determines the 
feature that can separate the data into various classes or 
produce the smallest residual sum of squares for 
regression (Breiman, 2017; Loh, 2011). 
2.3. Imputation Algorithm for Dealing with Missing 
Data 
Let’s consider a data set 𝑋𝑋 consisting of 𝑛𝑛 rows and 𝑝𝑝 
columns, where each row represents an observation and 
each column represents a variable denoted by 𝑥𝑥1, … ,𝑥𝑥𝑝𝑝. 
We assume that the first t variables have missing. We use 
the notation 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜,𝑗𝑗 to represent the observed components 
and 𝑥𝑥𝑚𝑚𝑚𝑚𝑜𝑜,𝑗𝑗 to represent the missing components for 
variable j where 𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜,𝑗𝑗 and 𝑛𝑛𝑚𝑚𝑚𝑚𝑜𝑜,𝑗𝑗 represent the number 
of samples, respectively. The collection of 𝑝𝑝 − 1 variables 
in 𝑋𝑋, excluding 𝑥𝑥𝑗𝑗, can be denoted as 𝑋𝑋−𝑗𝑗 =
�𝑥𝑥1, …𝑥𝑥𝑗𝑗−1,𝑥𝑥𝑗𝑗+1 … , 𝑥𝑥𝑡𝑡 ,𝑥𝑥𝑡𝑡+1, … ,𝑥𝑥𝑝𝑝�. Let 𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜𝑗𝑗,−𝑗𝑗 and 
𝑋𝑋𝑚𝑚𝑚𝑚𝑜𝑜𝑗𝑗,−𝑗𝑗 be the components of 𝑋𝑋−𝑗𝑗 that correspond to the 
complement data of 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜,𝑗𝑗 and 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜,𝑗𝑗 (Deng et al., 2016; 
Stekhoven and Bühlmann, 2012). 
All the imputation methods employed in the study run 
based on a particular algorithm. The algorithm can be 
described as follows (Zhang, 2016; Zhang et al., 2021): 

1. Sort 𝑋𝑋 in descending order based on the amount 
of missing values. 

2. Use mean imputation to make an initial guess 
for any missing values and update 𝑋𝑋 matrix ��́�𝑋�. 

3. Fit a model �𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜,𝑗𝑗~ �́�𝑋𝑜𝑜𝑜𝑜𝑜𝑜𝑗𝑗,−𝑗𝑗�. 

4. Predict 𝑥𝑥𝑚𝑚𝑚𝑚𝑜𝑜,𝑗𝑗 using �́�𝑋𝑚𝑚𝑚𝑚𝑜𝑜𝑗𝑗,−𝑗𝑗 and obtain �́�𝑥𝑚𝑚𝑚𝑚𝑜𝑜,𝑗𝑗. 

5. Update variable j of �́�𝑋 ��́�𝑋 ← �́�𝑥𝑗𝑗�. 
6. Repeat steps 3-5 for 𝑗𝑗 = 1,2, … , 𝑡𝑡. 
7. Obtain ultimate imputed dataset � �́�𝑋𝑛𝑛𝑛𝑛𝑛𝑛 ← �́�𝑋�.  

2.4. Gradient Boosting Machine 
GBM is a type of machine learning algorithm that uses an 
ensemble of decision trees to make predictions. It is a 
powerful and popular method for both regression and 
classification tasks, and is known for its ability to handle 
complex datasets with high accuracy (Schapire, 2003; 
Tian et al., 2020). GBM algorithm works by iteratively 
adding decision trees to a model, with each subsequent 
tree focusing on the errors made by the previous tree. 
This allows the model to gradually improve its 
performance over time, leading to highly accurate 
predictions (Nawar and Mouazen, 2017; Zhang et al., 
2019). Any arbitrary loss function 𝐿𝐿(. , . ) can be used 
here. 
Let n and p indicate the number of observations and 
independent variables, respectively; 𝑦𝑦𝑚𝑚 ∈ 𝑅𝑅𝑎𝑎 denotes the 
dependent variable value of each observation (𝑎𝑎=1 for 
regression, 𝑎𝑎=2 for classification) and {(𝑥𝑥𝑚𝑚 ,𝑦𝑦𝑚𝑚)|𝑥𝑥𝑚𝑚 ∈
𝑅𝑅𝑝𝑝,𝑦𝑦𝑚𝑚 ∈ 𝑅𝑅𝑎𝑎}𝑚𝑚=1𝑛𝑛  denotes the training set. According to 
(Elith et al., 2008) the GBM algorithm can be described as 
follows: 
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1. To begin, the weak classifiers must be initialized 
by solving the equation 1 below, where 𝛾𝛾 denotes the 
step size: 
 

𝐹𝐹0(𝑥𝑥) =  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝛾𝛾� 𝐿𝐿(𝑦𝑦𝑚𝑚 ,𝛾𝛾)
𝑛𝑛

𝑚𝑚=1
 

(1) 

 

2. Starting from first iteration 𝑎𝑎 = 1, and up to a 
maximum of M iterations for learning: 
a. The pseudo-residuals is computed for 𝑎𝑎 =
1,2, … , 𝑛𝑛 as follows (equation 2): 
 

𝑎𝑎𝑚𝑚𝑚𝑚 = −�
𝜕𝜕𝐿𝐿[𝑦𝑦𝑚𝑚,𝐹𝐹𝑚𝑚−1(𝑥𝑥𝑚𝑚)]
𝜕𝜕𝐹𝐹𝑚𝑚−1(𝑥𝑥𝑚𝑚)

� 
(2) 

 

b. We need to train a new base model ℎ𝑚𝑚(𝑥𝑥𝑚𝑚) 
using the revised dataset {𝑥𝑥𝑚𝑚 ,𝑎𝑎𝑚𝑚𝑚𝑚}𝑚𝑚=1𝑛𝑛 . Then the parameter 
𝛾𝛾𝑚𝑚 is defined to solve the optimization problem as follow 
(equation 3): 
 

𝛾𝛾𝑚𝑚 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝛾𝛾� 𝐿𝐿[𝑦𝑦𝑚𝑚,𝐹𝐹𝑚𝑚−1(𝑥𝑥𝑚𝑚)
𝑛𝑛

𝑚𝑚=1
+ 𝛾𝛾ℎ𝑚𝑚(𝑥𝑥𝑚𝑚)] 

(3) 

 

c. At last, we get our final strong classifier 
(equation 4): 
 

𝐹𝐹𝑚𝑚(𝑥𝑥) = 𝐹𝐹𝑚𝑚−1(𝑥𝑥) + 𝛾𝛾𝑚𝑚ℎ𝑚𝑚(𝑥𝑥) (4) 
 
2.5. Performance Evaluation Criteria 
The performance of missing data imputation methods in 
predicting original values and their impact on 
classification was assessed using the area under the 
receiver operating characteristic (ROC) curve (AUC) and 
F1 score. AUC measures model separability, ranging from 
0 to 1, with higher values indicating better performance. 
(Hanley and McNeil, 1982; Fawcett, 2006). The F1 score, 
which balances precision and recall, is particularly useful 
when false positives and false negatives carry similar 
consequences, with higher scores indicating a more 
balanced model (Tharwat, 2021). 
2.6. Simulation 
Statistical analysis of the study was performed using R 
software, version 4.2.3 (R Foundation for Statistical 
Computing, Vienna, Austria). Most existing MI methods 
rely on the assumption of missing at random (MAR), i.e., 
missingness only depends on observed data; our work 
also focuses on MAR. We set the sample size to n=150 
and included p=500 predictors in simulated dataset. The 
dataset contains a binary outcome y, which is fully 
observed, and 𝑋𝑋 = (𝑋𝑋1,𝑋𝑋2) = �𝑥𝑥1, … , 𝑥𝑥𝑝𝑝�. Firstly, a set of 
𝑝𝑝 − 10 independent variables denoted as 𝑋𝑋1 =
�𝑥𝑥11,, … , 𝑥𝑥𝑝𝑝� were created by drawing from a multivariate 
standard normal distribution with a mean vector of 
(0, … ,0)𝑝𝑝−10 and the correlation matrix was defined as 
the absolute values of its all off-diagonal terms were a 
maximum of 0.7. We randomly selected 50 variables (𝑋𝑋𝑜𝑜) 
from 𝑋𝑋1. We also generated a separate group of 10 
variables called 𝑋𝑋2 = �𝑥𝑥1,, … , 𝑥𝑥10� from a normal 
distribution (𝑋𝑋2 ∼ 𝑁𝑁𝑝𝑝2(𝜇𝜇2,𝜎𝜎22)), where 𝜇𝜇2 is a linear 
combination of 𝑋𝑋𝑜𝑜 and 𝜎𝜎22 is equal to 1.5. To produce a 

binary outcome, certain values were randomly generated 
and divided into two groups depending on whether they 
were below or above the median value. These values 
were generated from a normal distribution�𝑁𝑁𝑝𝑝(𝜇𝜇,𝜎𝜎2)�, 
where 𝜇𝜇 denotes linear combination of 𝑋𝑋 and 𝜎𝜎2 is equal 
to 5. Then missing values with MAR mechanism were 
created in �𝑥𝑥1,, … , 𝑥𝑥10�, resulting in approximately 10%, 
20%, 30%, 40% and 50% missing rates per variable. 
Thus, datasets with different missing rates were 
obtained. Missing values were imputed using lasso, 
elastic net, SVM and CART. To assess the classification 
performance of the methods, complete (reference) and 
imputed datasets were initially split into training and test 
subsets using a 70:30 ratio, selected randomly. The 
models were trained using training sets, while test sets 
were utilized to obtain AUC and F1 values of the models. 
Missing data prediction performances were evaluated 
according to the distance of these values from the 
reference. The processes were repeated 1000 times..  
 
3. Results 
The performance evaluation of the imputation models 
was done by AUC and F1 values. Performance metrics 
were calculated as median (25th – 75th percentiles) and 
presented visually using forest plots. Hence, the 
evaluation process identified the methods that exhibited 
comparable performance and generated results in 
proximity to the ones derived from the reference dataset. 
The reference data set provided median values of 0.945 
and 0.902 for AUC and F1 values, respectively. The 
imputed datasets had the following median ranges for 
AUC and F1: 0.945-0.946 and 0.900-902 for the 10% 
missing rate; 0.943-0.944 and 0.898-900 for the 20% 
missing rate; 0.931-0.940 and 0.884-897 for the 30% 
missing rate; 0.928-0.937 and 0.885-889 for the 40% 
missing rate; 0.903-0.927 and 0.857-880 for the 50% 
missing rate. The performance of imputation methods 
was also assessed based on their AUC and F1 values. The 
median ranges for these values were as follows 
respectively: for the lasso, 0.925-0.945 and 0.880-0.900; 
for the elastic net, 0.927-0.946 and 0.880-0.900; for the 
SVM, 0.903-0.945 and 0.857-0.902; for the CART, 0.908-
0.945 and 0.868-0.898 (Table 1).  
After evaluating the effectiveness of all imputation 
techniques, considering AUC and F1 values, it was 
noticed that, all methods demonstrated good 
performance and were very close to the reference at 10% 
and 20% missing rates. However, the performance of the 
methods began to decline after the 20% missing rate. The 
regularized regression models performed slightly better 
than tree-based methods at the missing rate of 30%. 
Although the performance of the SVM method did not 
change at the missing rate of 40%, the performance of 
other methods decreased. However, regularized 
regression methods maintained their superiority over 
tree-based methods. As the rate of missing data increased 
to 50%, the differences in performance between 
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regularized regression methods and tree-based methods 
became more pronounced, with the former being closer 
to the reference than the latter. As a result, the tree-
based methods moved further away from the reference 
as the rate of missing data increased, while the 
regularized regression methods showed more robustness 
in handling the missing data and produced better results 
(Figures 1 and 2). 
Hierarchical clustering analysis, based on AUC and F1 

values for all missing rates, was applied to determine the 
relationships among the methods and which methods 
were close to the reference. As shown the dendrogram 
graph in Figure 3, it was observed that the lasso and 
elastic net methods clustered together with the 
reference. However, the SVM and CART methods have 
formed a distinct cluster, separate from the others 
(Figure 3). 

 
Table 1. Classification performances of the imputation models according to varying missing rates 

Missing Rate 

 Method %10 %20 %30 %40 %50 

AU
C 

Reference 0.945 (0.916 - 0.970) 0.945 (0.916 - 0.970) 0.945 (0.916 - 0.970) 0.945 (0.916 - 0.970) 0.945 (0.916 - 0.970) 
Lasso 0.945 (0.912 - 0.970) 0.944 (0.914 - 0.966) 0.940 (0.909 - 0.966) 0.935 (0.902 - 0.964) 0.925 (0.887 - 0.955) 
Elastic net 0.946 (0.912 - 0.966) 0.944 (0.912 - 0.966) 0.940 (0.905 - 0.966) 0.937 (0.901 - 0.964) 0.927 (0.885 - 0.956) 
SVM 0.945 (0.913 - 0.970) 0.943 (0.911 - 0.966) 0.931 (0.897 - 0.958) 0.928 (0.888 - 0.958) 0.903 (0.854 - 0.939) 
CART 0.945 (0.913 - 0.968) 0.944 (0.911 - 0.968) 0.937 (0.904 - 0.966) 0.933 (0.897 - 0.960) 0.908 (0.865 - 0.946) 

F1
 

Reference 0.902 (0.865 - 0.933) 0.902 (0.865 - 0.933) 0.902 (0.865 - 0.933) 0.902 (0.865 - 0.933) 0.902 (0.865 - 0.933) 
Lasso 0.900 (0.864 - 0.933) 0.900 (0.865 - 0.932) 0.897 (0.857 - 0.929) 0.889 (0.850 - 0.923) 0.880 (0.837 - 0.915) 
Elastic net 0.900 (0.864 - 0.930) 0.900 (0.864 - 0.931) 0.895 (0.857 - 0.929) 0.889 (0.852 - 0.929) 0.880 (0.837 - 0.913) 
SVM 0.902 (0.864 - 0.933) 0.898 (0.857 - 0.930) 0.884 (0.846 - 0.917) 0.885 (0.842 - 0.919) 0.857 (0.815 - 0.897) 
CART 0.898 (0.865 - 0.929) 0.898 (0.863 - 0.933) 0.895 (0.857 - 0.927) 0.889 (0.851 - 0.920) 0.868 (0.818 - 0.902) 

 

 
 

Figure 1. Forest plot that displays the AUC values of the methods. 
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Figure 2. Forest plot that displays the F1 values of the methods. 
 

 
Figure 3. Dendrogram showing the relationship among the imputation models by AUC and F1 values. 
 
4. Discussion 
As the field of health continues to evolve, it is anticipated 
that accurate estimation of missing data will become even 
more critical to prevent information loss. As high 
dimensional data containing numerous patient details 
continue to increase, the incidence of missing data is 
expected to rise. Therefore, it will be essential to develop 
techniques to estimate missing data with minimum error 
to ensure that the models created with this data are as 
accurate and effective as possible. Schafer and Graham 
(2002), indicated in their study with real data that if 
missing observations are deleted from the data set, the 
statistical power decreases and erroneous inferences are 
obtained, especially as the missing rate increases. 

Therefore, it is recommended to use appropriate methods 
to handle missing data rather than simply deleting them 
from the dataset. Liu and De (2015), suggested that the 
foremost consideration in building an imputation model 
is to ensure compatibility, failing which, efforts should be 
directed towards enhancing the predictive accuracy of the 
imputation model. 
The increase in the missing rate directly affects the 
effectiveness of imputation techniques. The higher the 
missing rate, the more challenging it becomes to impute 
the missing values accurately. Qin et al. (2007), showed 
that an increase in the rate of missing data decreased the 
accuracy of estimating missing values. Choudhury and Pal 
(2019), reported that the rise in the rate of missing data 
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has a detrimental impact on the effectiveness of 
imputation methods on classification performance, as also 
found in our study. Furthermore, in our study, although 
the change in the number of observations and the 
increase in dimensionality had some impact on the 
performance of the methods, it was observed that they 
did not alter the overall performance ranking. Therefore, 
fixed values for the number of observations and variables 
were used. 
As known, choosing a proper method plays a crucial role 
dealing with missing data process. Since data structures 
vary in each dataset, the answer to the question “which 
method for which dataset” changes. Slade and Naylor 
(2020), conducted a comparison of the parametric and 
tree-based imputation methods in the MICE package of 
the R program. They performed this comparison on a 
simulated dataset for the regression problem. Their 
analysis revealed that both parametric and tree-based 
methods had similar error values and performance. 
However, the random forests method, which is one of 
tree-based methods, had the narrowest confidence 
interval as compared to the other methods. Lavanya et al. 
(2019), indicated that the lasso imputation method is a 
highly effective approach to address the challenges 
associated with missing data in high dimensional 
datasets. Peña et al. (2019), demonstrated using a real 
data set that imputation methods such as ridge and lasso, 
which are based on regularized regression, can estimate 
missing values with a very low error. 
There are only a limited number of studies in the 
literature that examine the effect of missing data 
imputation methods on classification performance with 
different performance evaluation criteria. Liu et al. 
(2020), conducted a research study analyzing the impact 
of missing rate on the accuracy of classification. The study 
revealed that as the rate of missing data increases, the 
rate of correct classification decreases. Acuna and 
Rodriguez (2004), found that the imputation method did 
not significantly affect classification accuracy. However, in 
their studies, they only used basic and simple imputation 
methods and worked with datasets that had relatively 
small amounts of missing data (i.e., between 1% and 
20%). Farhangfar et al. (2008), evaluated the effect of 
some tree-based imputation methods on classification 
performance on missing data sets with missing rates 
ranging from 5% to 50%. According to their report, when 
dealing with data with over 10% missing data, imputation 
methods tend to improve classification error more than 
simply ignoring the missing data. However, there is no 
universally accepted method which could be considered 
as the best. In our study, we examined the effects of 
imputation methods on classification performance in high 
dimensional data, unlike previous literature. Our study 
revealed that, at lower missing rates, there wasn't a 
notable variation in performance between the methods in 
terms of their impact on classification performance. 
However, as the missing rate increased, tree-based 
methods were observed to be less effective as compared 

to the lasso, and elastic net methods that are based on 
regularized regression. It was noted that these 
regularized regression methods performed better than 
tree-based methods as the missing rate increased. 
 
5. Conclusion 
In this study, the impact of various imputation methods 
on classification performance in high dimensional data 
was evaluated. Our simulation results indicate that 
regularized regression methods outperform tree-based 
methods in improving classification on high dimensional 
data. In the field of data analysis, there are various 
techniques employed to address the issue of missing data. 
However, certain methods may not be efficient in 
handling high dimensional data due to their underlying 
theoretical framework. As a result, it is crucial to carefully 
select the appropriate method to avoid information loss 
that is common in high dimensional data and to enhance 
the accuracy of predictive models. 
 
Author Contributions 
The percentages of the authors’ contributions are 
presented below. The authors reviewed and approved the 
final version of the manuscript. 
 

 B.V. İ.K.Ö. M.T. 

C 35 35 30 
D 40 40 30 
S 10 45 45 
DCP 50 25 25 

DAI 30 50 20 
L 25 25 50 
W 60 20 20 
CR 40 30 30 
SR 45 45 10 
PM 40 40 20 

FA 50 30 20 
C=Concept, D= design, S= supervision, DCP= data collection 
and/or processing, DAI= data analysis and/or interpretation, L= 
literature search, W= writing, CR= critical review, SR= 
submission and revision, PM= project management, FA= funding 
acquisition. 
 
Conflict of Interest  
The authors declared that there is no conflict of interest. 
 
Ethical Consideration  
Ethics committee approval was not required for this 
study because of there was no study on animals or 
humans. 
 
Acknowledgements  
I would like to thank the anonymous reviewers and 
editors for their valuable comments and suggestions 
regarding this article. 
 



Black Sea Journal of Engineering and Science 

BSJ Eng Sci / Buğra VAROL et al. 1269 
 

References 
Acuna E, Rodriguez C. 2004. The treatment of missing values and 

its effect on classifier accuracy. In: Classification, Clustering, 
and Data Mining Applications: Proceedings of the Meeting of 
the International Federation of Classification Societies (IFCS), 
Illinois Institute of Technology, July 15–18, Chicago, USA, pp: 
639-647. 

Breiman L. 1995. Better subset regression using the nonnegative 
garrote. Technometrics, 37(4): 373-384. 

Breiman L. 2017. Classification and regression trees. Routledge, 
New York, USA, 1st ed., pp: 368. 

Chang LY, Chen WC. 2005. Data mining of tree-based models to 
analyze freeway accident frequency. J Saf Res, 36(4): 365-375. 

Choudhury SJ, Pal NR. 2019. Imputation of missing data with 
neural networks for classification. Knowledge-Based Syst, 182: 
104838. 

Clark LA, Pregibon D. 2017. Tree-based models. In: Hastie T, 
Chambers J, editors. Statistical models in S, Routledge, 
Oxfordshire, UK, pp: 377-419. 

Cortes C, Vapnik V. 1995. Support-vector networks. Mach Learn, 
20: 273-297. 

Deng Y, Chang C, Ido MS, Long Q. 2016. Multiple imputation for 
general missing data patterns in the presence of high-
dimensional. Data Sci Rep, 621689, 6(1): 21689. 

Elith J, Leathwick JR, Hastie T. 2008. A working guide to boosted 
regression trees. J Anim Ecol, 77(4): 802-813. 

Enders CK. 2022. Applied missing data analysis. Guilford Press, 
New York, USA, 2nd ed., pp: 546. 

Farhangfar A, Kurgan L, Dy J. 2008. Impact of imputation of 
missing values on classification error for discrete data. Pattern 
Recognit, 41(12): 3692-3705. 

Fawcett T. 2006. An introduction to ROC analysis. Pattern 
Recognit Lett, 27(8): 861-874. 

Friedman J, Hastie T, Tibshirani R. 2010. Regularization paths for 
generalized linear models via coordinate descent. J Stat 
Software, 33(1): 1-22. 

Hanley JA, McNeil BJ. 1982. The meaning and use of the area 
under a receiver operating characteristic (ROC) curve. 
Radiology, 143(1): 29-36. 

Hastie T, Tibshirani R, Friedman JH, Friedman JH. 2009. The 
elements of statistical learning: data mining, inference, and 
prediction. Springer, New York, USA, 2nd ed., pp: 737. 

Jadhav A, Pramod D, Ramanathan K. 2019. Comparison of 
performance of data imputation methods for numeric dataset. 
Appl Artif Intell, 33(10): 913-933. 

Lavanya K, Reddy L, Eswara Reddy B. 2019. A study of high-
dimensional data imputation using additive LASSO regression 
model. In: Behera HS, Nayak J, Naik B, Abraham A, editors. 
Computational intelligence in data mining. Springer, Singapore, 
pp: 19-30. 

Little RJ, Rubin DB. 2019. Statistical analysis with missing data. 
John Wiley & Sons, New York, USA, 3rd ed., pp: 449. 

Liu CH, Tsai CF, Sue KL, Huang MW. 2020. The feature selection 
effect on missing value imputation of medical datasets. Appl 
Sci, 10(7): 2344. 

Liu Y, De A. 2015. Multiple imputation by fully conditional 
specification for dealing with missing data in a large 
epidemiologic study. Int J Stat Med Res, 4(3): 287-295. 

Loh WY. 2011. Classification and regression trees. Interdiscip 
Rev Data Min Knowl Discov, 1(1): 14-23. 

Nawar S, Mouazen AM. 2017. Comparison between random 
forests, artificial neural networks and gradient boosted 
machines methods of on-line Vis-NIR spectroscopy 
measurements of soil total nitrogen and total carbon. Sensors, 
17(10): 2428. 

Patil AR, Kim S. 2020. Combination of ensembles of regularized 
regression models with resampling-based lasso feature 
selection in high dimensional data. Mathematics, 8(1): 110. 

Peña M, Ortega P, Orellana M. 2019. A novel imputation method 
for missing values in air pollutant time series data. In: 2019 
IEEE Latin American Conference on Computational Intelligence 
(LA-CCI), November 11-15, Guayaquil, Ecuador, pp: 1-6. 

Przednowek K, Wiktorowicz K. 2013. Prediction of the result in 
race walking using regularized regression models. J Theor Appl 
Comput Sci, 7(2): 45-58. 

Qin Y, Zhang S, Zhu X, Zhang J, Zhang C. 2007. Semi-parametric 
optimization for missing data imputation. Appl Intell, 27(1): 
79-88. 

Rubin DB. 1988. An overview of multiple imputation. Proc Surv 
Res methods Sect Am Stat Assoc, 16: 79-84. 

Schafer JL, Graham JW. 2002. Missing data: our view of the state 
of the art. Psychol methods, 7(2): 147-177. 

Schapire RE. 2003. The boosting approach to machine learning: 
An overview. In: Denison DD, Hansen MH, Holmes CC, Mallick 
M, Yu B, editors. Nonlinear estimation and classification. 
Springer, New York, 2023rd ed., pp: 149-171. 

Slade E, Naylor MG. 2020. A fair comparison of tree‐based and 
parametric methods in multiple imputation by chained 
equations. Stat Med, 39(8): 1156-1166. 

Stekhoven DJ, Bühlmann P. 2012. MissForest—non-parametric 
missing value imputation for mixed-type data. Bioinformatics, 
28(1): 112-118. 

Tharwat A. 2021. Classification assessment methods. Appl 
Comput Inform, 17(1): 168-192. 

Tian Z, Xiao J, Feng H, Wei Y. 2020. Credit risk assessment based 
on gradient boosting decision tree. Procedia Comput Sci, 174: 
150-160. 

Tibshirani R. 1996. Regression shrinkage and selection via the 
lasso. J R Stat Soc Series B Stat Methodol, 58(1): 267-288. 

Yin X, Levy D, Willinger C, Adourian A, Larson MG. 2016. Multiple 
imputation and analysis for high‐dimensional incomplete 
proteomics data. Stat Med, 35(8): 1315-1326. 

Zhang S, Gong L, Zeng Q, Li W, Xiao F, Lei J. 2021. Imputation of 
gps coordinate time series using missforest. Remote Sens, 
13(12): 2312. 

Zhang Z. 2016. Multiple imputation with multivariate imputation 
by chained equation (MICE) package. Ann Transl Med, 4(2): 30. 

Zhang Z, Zhao Y, Canes A, Steinberg D, Lyashevska O. 2019. 
Predictive analytics with gradient boosting in clinical medicine. 
Ann Transl Med, 7(7): 152. 

Zhao Y, Long Q. 2016. Multiple imputation in the presence of 
high-dimensional data. Stat Methods Med Res, 25(5): 2021-
2035. 

Zou H, Hastie T. 2005. Regularization and variable selection via 
the elastic net. J R Stat Soc Series B Stat Methodol, 67(2): 301-
320. 

 
 


	Buğra VAROL1*, İmran KURT ÖMÜRLÜ2, Mevlüt TÜRE2
	1Adnan Menderes University, Institute of Health Sciences, Division of Biostatistics, 09010, Aydın, Türkiye
	2Adnan Menderes University, Faculty of Medicine, Division of Biostatistics, 09010, Aydın, Türkiye

