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This paper extends the mapping properties of the general Hardy-type operators to the local
generalized Morrey spaces built on ball quasi-Banach function spaces.

The general Hardy-type operators [25, Definition 2.5] include a number of important op-
erators in analysis. The most important example is the Hardy operator. It also includes the
Riemann-Liouville integrals. The mapping properties of the general Hardy-type operators on
Lebesgue spaces and extensions of Lebesgue spaces were investigated in [1, 2, 4, 11, 12, 15, 16,
25, 26, 29, 31, 34, 35, 36, 37].

The local generalized Morrey spaces are extensions of the Lebesgue spaces and Morrey
spaces [28, 33]. The local generalized Morrey spaces are members of the ball quasi-Banach
function spaces introduced in [32]. A number of results from the harmonic analysis, such as
the mapping properties of the singular integral operators, the fractional integral operators,
the maximal Carleson operators, the geometric maximal functions, the minimal functions and
the spherical maximal functions had been extended to the local generalized Morrey spaces
[5, 6, 7, 8, 9, 13, 14, 19, 20, 30, 38, 40].

It motivates us to investigate the mapping properties of the general Hardy-type operators on
the local generalized Morrey spaces. We find that whenever a given general Hardy-type oper-
ator is bounded on a ball quasi-Banach function space, it can be extended to be a bounded op-
erator on the local generalized Morrey space built on this ball quasi-Banach function space. As
applications of this main result, we extend the mapping properties of the general Hardy-type
operators with Oinarov kernel on the weighted local generalized Morrey spaces, the Riemann-
Liouville integral on the local generalized Morrey spaces built on rearrangement-invariant
quasi-Banach function spaces. We also obtain the Hardy-type inequalities on the local gen-
eralized Morrey spaces with variable exponents.
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This paper is organized as follows. The definition of the general Hardy-type operator is
given in Section 1. This section also contains the mapping properties of the general Hardy-type
operators on weighted Lebesgue spaces. The main result is given in Section 2. The definitions
of the ball quasi-Banach function spaces and its corresponding local generalized Morrey spaces
are also presented in Section 2. The applications of the main result on the weighted local gen-
eralized Morrey spaces, the local generalized Morrey spaces built on rearrangement-invariant
quasi-Banach function spaces and the local generalized Morrey spaces with variable exponents
are given in Section 3.

1. PRELIMINARIES AND DEFINITIONS

Let M denote the class of Lebesgue measurable functions on (0,∞). For any Lebesgue
measurable set E on (0,∞), the Lebesgue measure of E is denoted by |E|. Define I0 = {(0, r) :
r > 0} and I = {(s, r) : r > s ≥ 0}.

Let p ∈ (0,∞) and v : (0,∞) → [0,∞), the weighted Lebesgue space Lp(v) consists of all
Lebesgue measurable functions f satisfying

∥f∥Lp(v) =

(∫ ∞

0

|f(x)|pv(x)dx
) 1

p

< ∞.

Let k : (0,∞) × (0,∞) → R be a Lebesgue measurable function satisfying k(x, y) ≥ 0 when
0 < y < x. The general Hardy-type operator with kernel k is defined as

Kf(x) =

∫ x

0

k(x, y)f(y)dy, x ∈ (0,∞),

see [25, Definition 2.5].
When k(x, y) ≡ 1, K is the Hardy operator Hf(x) =

∫ x

0
f(t)dt. When α ∈ [0,∞) and

k(x, y) = 1
Γ(α) (x−y)α−1, K is the Riemann-Liouville operator Rαf(x) =

1
Γ(α)

∫ x

0
(x−y)α−1f(y)dy,

see [2, 37].

Definition 1.1. Let k : (0,∞) × (0,∞) → (0,∞) be a Lebesgue measurable function. We say that k
is an Oinarov kernel if it satisfies

(1) k(x, y) ≥ 0 when 0 < y < x,
(2) k is non-decreasing in x or non-increasing in y,
(3) there is a constant D > 0 such that for any 0 < z < y < x,

D−1(k(x, y) + k(y, z)) ≤ k(x, z) ≤ D(k(x, y) + k(y, z)).

The reader is referred to [25, Example 2.7] for the examples of the Oinarov kernels.
We now recall some well known boundedness results for the general Hardy-type operators

with Oinarov kernels in the following. For any s ∈ [0,∞), we write

Ksf(x) =

∫ x

0

k(x, y)sf(y)dy, K̃sf(y) =

∫ ∞

y

k(x, y)sf(x)dx.

We have the following result for the boundedness of general Hardy-type operators on the
weighted Lebesgue space.
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Theorem 1.1. Let 1 < p ≤ q < ∞, u, v : (0,∞) → [0,∞) and k : (0,∞) × (0,∞) → R be an
Oinarov kernel. If K, u and v satisfy

sup
t>0

(K̃qu)
1/q(K0v

1−p′
)1/p

′
(t) < ∞(1.1)

sup
t>0

(K̃0u)
1/q(t)(Kp′v1−p′

)1/p
′
(t) < ∞,(1.2)

then there is a constant C > 0 such that for any f ∈ Lp(v)

∥Kf∥Lq(u) ≤ C∥f∥Lp(v).

For the proof of the above result, the reader is referred to [25, Theorem 2.10]. We have the
following results from [25, Theorem 2.15].

Theorem 1.2. Let 1 < q < p < ∞ and 1
r = 1

q − 1
p . If k is an Oinarov kernel and(∫ ∞

0

(
K̃qu)

1/q(t)(K0v
1−p′

)1/q
′
(t)

)r

v1−p′
(t)dt

) 1
r

< ∞,(1.3) (∫ ∞

0

(
(K̃0u)

1/p(t)(Kp′v1−p′
)1/p

′
(t)

)r

u(t)dt

) 1
r

< ∞,(1.4)

then there is a constant C > 0 such that for any f ∈ Lp(v)

∥Kf∥Lq(u) ≤ C∥f∥Lp(v).

The above theorems also give the results in [26] where K(x, y) = ϕ(y/x) and ϕ : (0, 1) →
(0,∞) is a Lebesgue measurable function. When k(x, y) = g(x − y) for some Lebesgue mea-
surable function g : (0,∞) → (0,∞), the above theorems extend the results in [36]. For the
mapping properties of the general Hardy-type operators on weighted Herz spaces, the reader
is referred to [24].

2. MAIN RESULTS

The main result of this paper is established in this section. We obtain the mapping properties
of the general Hardy-type operators on the local generalized Morrey spaces built on ball quasi-
Banach function spaces. Notice that the main result given in this section applies to a general
kernel k, not necessary restricted to the Oinarov kernel.

We begin with the definition of the ball quasi-Banach function spaces introduced in [32].

Definition 2.2. A quasi-Banach space X ⊂ M is a ball quasi-Banach function space if it satisfies
(1) there is a constant C > 0 such that for any f, g ∈ X , ∥f + g∥X ≤ C(∥f∥X + ∥g∥X),
(2) ∥f∥X = 0 if and only if f = 0 a.e. on (0,∞),
(3) 0 ≤ g ≤ f and f ∈ X implies g ∈ X and ∥g∥X ≤ ∥f∥X ,
(4) fn ↑ f and f ∈ X implies ∥fn∥X ↑ ∥f∥X ,
(5) for any E ∈ I , we have χE ∈ X .

Whenever ∥ · ∥X satisfies (1)-(3) and

(2.5) χE ∈ M, |E| < ∞ ⇒ χE ∈ X,

X is called as a quasi-Banach function space.
Whenever ∥ · ∥X is a norm and for any E ∈ I , we have a constant C > 0 such that for any f ∈ X ,

we have
∫
E
|f(x)|dx < ∞, X is a ball Banach function space.
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The family of the ball quasi-Banach function spaces includes a number of well known func-
tion spaces. The weighted Lebesgue spaces, the rearrangement-invariant quasi-Banach func-
tion spaces and the Lebesgue spaces with variable exponents are members of the ball quasi-
Banach function spaces.

We now give the definition of the local generalized Morrey spaces built on ball quasi-Banach
function spaces.

Definition 2.3. Let X be a ball quasi-Banach function space and ω : (0,∞) → (0,∞). The local
generalized Morrey space LMX

ω consists of all f ∈ M satisfying

∥f∥LMX
ω

= sup
r>0

1

ω(r)
∥χ(0,r)f∥X < ∞.

Whenever X is the Lebesgue space Lp, p ∈ (1,∞), LMX
ω becomes the classical local gener-

alized Morrey space.
The following results identify the conditions that ensure that LMX

ω is a ball quasi-Banach
function space.

Proposition 2.1. Let X be a ball quasi-Banach function space and ω : (0,∞) → (0,∞). If ω and X
satisfy

1 ≤ Cω(r), r ∈ (1,∞),(2.6)

∥χ(0,r)∥X ≤ Cω(r), r ∈ (0, 1)(2.7)

for some C > 0, then LMX
ω is a ball quasi-Banach function space.

Proof. It is easy to see that LMX
ω satisfies Items (1)-(3) in Definition 2.2. To obtain Item (4) of

Definition 2.2, it suffices to show that for any s > 0, we have χ(0,s) ∈ LMX
ω .

When r ∈ (1,∞), (2.6) guarantees that

1

ω(r)
∥χ(0,r)χ(0,s)∥X ≤ 1

ω(r)
∥χ(0,s)∥X ≤ C∥χ(0,s)∥X .

When r ∈ (0, 1), (2.7) yields

1

ω(r)
∥χ(0,r)χ(0,s)∥X ≤ 1

ω(r)
∥χ(0,r)∥X ≤ C.

The above inequalities assure that

sup
r>0

1

ω(r)
∥χ(0,r)χ(0,s)∥X ≤ C + C∥χ(0,s)∥X

and, hence, χ(0,r) ∈ LMX
ω . □

We also have the following result with the range for r replaced by ∥χ(0,r)∥X .

Proposition 2.2. Let X be a ball quasi-Banach function space and ω : (0,∞) → (0,∞). If ω and X
satisfy

1 ≤ Cω(r), 1 < ∥χ(0,r)∥X ,(2.8)

∥χ(0,r)∥X ≤ Cω(r), 1 ≥ ∥χ(0,r)∥X(2.9)

for some C > 0, then LMX
ω is a ball quasi-Banach function space.
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Proof. It suffices to show that for any s > 0, we have χ(0,s) ∈ LMX
ω .

When r satisfies 1 ≤ ∥χ(0,r)∥X , (2.8) guarantees that

1

ω(r)
∥χ(0,r)χ(0,s)∥X ≤ 1

ω(r)
∥χ(0,s)∥X ≤ C∥χ(0,s)∥X .

When r satisfies 1 ≥ ∥χ(0,r)∥X , (2.9) yields

1

ω(r)
∥χ(0,r)χ(0,s)∥X ≤ 1

ω(r)
∥χ(0,r)∥X ≤ C.

The above inequalities assure that

sup
r>0

1

ω(r)
∥χ(0,r)χ(0,s)∥X ≤ C + C∥χ(0,s)∥X

and, hence, χ(0,r) ∈ LMX
ω . □

We write (X,ω) ∈ N if LMX
ω is nontrivial. The above propositions assure that (X,ω) ∈ N

whenever X and ω satisfy (2.6)-(2.7) or (2.8)-(2.9).
We now present the main result, the mapping properties of the general Hardy-type opera-

tors on the local generalized Morrey space LMX
ω .

Theorem 2.3. Let X and Y be ball quasi-Banach function spaces and ω : (0,∞) → (0,∞). Let
k : (0,∞)× (0,∞) → R be a Lebesgue measurable function satisfying k(x, y) ≥ 0 when 0 < y < x. If
(X,ω) ∈ N and there is a constant C > 0 such that for any f ∈ X

∥Kf∥Y ≤ C∥f∥X ,

then for any f ∈ LMX
ω

(2.10) ∥Kf∥LMY
ω

≤ C∥f∥LMX
ω
.

Proof. Let r > 0 and f ∈ LMX
ω . When x > r, we have

(2.11) χ(0,r)(x)(K|f |)(x) = 0 ≤
∫ x

0

χ(0,r)(y)k(x, y)|f(y)|dy.

When x ∈ (0, r], we have

(2.12) χ(0,r)(x)(K|f |)(x) =
∫ x

0

k(x, y)|f(y)|dy =

∫ x

0

χ(0,r)(y)k(x, y)|f(y)|dy

because for any y ∈ (0, x), we have y ∈ (0, r). Hence, χ(0,r)(y) = 1.
Consequently, (2.11) and (2.12) give

(2.13) χ(0,r)(x)(K|f |)(x) ≤
∫ x

0

χ(0,r)(y)k(x, y)|f(y)|dy = K(χ(0,r)|f |)(x).

By applying the quasi-norm ∥ · ∥Y on both sides of (2.13), item (2) of Definition 2.2 yields

∥χ(0,r)K|f |∥Y ≤ ∥K(χ(0,r)|f |)∥Y .

The boundedness of K : X → Y and |Kf | ≤ K|f | guarantee that

∥χ(0,r)Kf∥Y ≤ C∥χ(0,r)f∥X .

By multiplying 1
ω(r) on both sides of the above inequality, we obtain

1

ω(r)
∥χ(0,r)Kf∥Y ≤ C

1

ω(r)
∥χ(0,r)f∥X ≤ C∥f∥LMX

ω
.
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Finally, by taking the supremum over r > 0, we have

∥Kf∥LMY
ω

= sup
r>0

1

ω(r)
∥χ(0,r)Kf∥Y ≤ C∥f∥LMX

ω
.

□

The condition (X,ω) ∈ N ensures that (2.10) is meaningful. In addition, the above result
asserts that

∥K∥LMX
ω →LMY

ω
≤ ∥K∥X→Y ,

where ∥K∥LMX
ω →LMY

ω
and ∥K∥X→Y are the operator norms of K : LMX

ω → LMY
ω and K :

X → Y , respectively.
Furthermore, the above result does not assume that k is an Oinarov kernel.

3. APPLICATIONS

We give applications for Theorem 2.3 on some concrete function spaces and general Hardy-
type operators in this section. We study the general Hardy-type operators with Oinarov kernel
on the weighted local generalized Morrey spaces, the Riemann-Liouville integral on the local
generalized Morrey spaces built on rearrangement-invariant quasi-Banach function spaces. We
also establish the Hardy-type inequalities on the local generalized Morrey spaces with variable
exponents.

3.1. Weighted local generalized Morrey spaces. We extend the mapping properties of the
general Hardy-type operators with Oinarov kernel on weighted local generalized Morrey spaces
in this section.

Definition 3.4. Let p ∈ (0,∞), v be a locally integrable function and ω : (0,∞) → (0,∞) be
a Lebesgue measurable function. The weighted local generalized Morrey space LMp

v,ω consists of all
f ∈ M satisfying

∥f∥LMp
v,ω

= sup
r>0

1

ω(r)
∥χ(0,r)f∥Lp(v) < ∞.

Proposition 3.3. Let p ∈ (0,∞), v be a locally integrable function and ω : (0,∞) → (0,∞) be a
Lebesgue measurable function. If ω satisfies (2.6) and(∫ r

0

v(x)dx

) 1
p

≤ Cω(r), r ∈ (0, 1)(3.14)

for some C > 0, then LMp
v,ω is a ball quasi-Banach function space.

Proof. As v is a local integrable function, for any E ∈ I ,
∫
I
v(x)dx < ∞, we see that Lp(v) is a

ball quasi-Banach function space. According to Proposition 2.1, as ω satisfies (2.6) and (3.14),
LMp

v,ω is also a ball quasi-Banach function space. □

Proposition 3.3 guarantees that when v and ω satisfy (2.6) and (3.14), the weighted local
generalized Morrey space LMp

v,ω is nontrivial.

In particular, if θ ∈ (0, 1) and ωθ(r) =
(∫ r

0
v(x)dx

) θ
p , then (3.14) is fulfilled and LMp

v,ωθ
is a

ball quasi-Banach function space.
Theorems 1.1, 1.2 and 2.3 give the mapping properties of the general Hardy-type operators

on the weighted local generalized Morrey spaces.

Theorem 3.4. Let p, q ∈ (1,∞), u, v : (0,∞) → [0,∞) be locally integrable functions, ω : (0,∞) →
(0,∞) satisfy (2.6) and (3.14) and k be a Oinarov kernel.
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(1) If p ≤ q and K, u and v satisfy (1.1) and (1.2), then there is a constant C > 0 such that for any
f ∈ LMp

v,ω, we have
∥Kf∥LMq

u,ω
≤ C∥f∥LMp

v,ω
.

(2) If q ≤ p, 1
r = 1

q −
1
p and K, u and v satisfy (1.3) and (1.4), then there is a constant C > 0 such

that for any f ∈ LMp
v,ω , we have

∥Kf∥LMq
u,ω

≤ C∥f∥LMp
v,ω

.

We now apply the above theorem to establish the mapping properties of the Hardy operator
H on the weighted local generalized Morrey spaces. Recall that

H̃f(x) =

∫ ∞

x

f(y)dy.

Theorem 3.5. Let p, q ∈ (1,∞), u, v : (0,∞) → [0,∞) be locally integrable functions and ω :
(0,∞) → (0,∞) satisfy (2.6) and (3.14).

(1) If p ≤ q and

(3.15) sup
t>0

(∫ ∞

t

u(y)dy

) 1
q
(∫ t

0

v(y)1−p′
dy

) 1
p′

< ∞,

then there is a constant C > 0 such that for any f ∈ LMp
v,ω , we have

∥Hf∥LMq
u,ω

≤ C∥f∥LMp
v,ω

.

(2) If q ≤ p, 1
r = 1

q − 1
p and(∫ ∞

0

(
H̃u)1/q(t)(Hv1−p′

)1/q
′
(t)

)r

v1−p′
(t)dt

) 1
r

< ∞,(3.16) (∫ ∞

0

(
(H̃u)1/p(t)(Hv1−p′

)1/p
′
(t)

)r

u(t)dt

) 1
r

< ∞,(3.17)

then there is a constant C > 0 such that for any f ∈ LMp
v,ω , we have

∥Hf∥LMq
u,ω

≤ C∥f∥LMp
v,ω

.

The above results are extensions of the two weight norm inequalities of the Hardy operator
to the local generalized Morrey spaces.

We consider the case q ∈ (0, 1) in the following. We first recall the mapping properties of H
on the weighted Lebesgue spaces from [35, Theorem 1 (3)].

Theorem 3.6. Let 0 < q < 1 < p < ∞ and u, v : (0,∞) → (0,∞) be Lebesgue measurable functions.
If u, v satisfy

(3.18)
∫ ∞

0

(∫ t

0

(u(y))1−p′
dy

) r
p′
(∫ ∞

t

v(y)dy

) r
p

dt < ∞,

where 1
r = 1

q − 1
p , then(∫ ∞

0

|Hf(t)|qv(t)dt
) 1

q

≤ C

(∫ ∞

0

|f(t)|pu(t)dt
) 1

p

.

We now have the mapping properties of operator H on the weighted local generalized Mor-
rey spaces.
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Theorem 3.7. Let 0 < q < 1 < p < ∞ and u, v, ω : (0,∞) → (0,∞) be Lebesgue measurable
functions. If u, v satisfy (3.18) and ω satisfies (2.6) and (3.14), then there is a constant C > 0 such that
for any f ∈ LMp

u,ω

(3.19) ∥Hf∥Lq
v,ω

≤ C∥f∥LMp
u,ω

.

Proof. As Hf(x) =
∫ x

0
f(y)dy, H is a general Hardy operator with kernel k(x, y) ≡ 1. The

preceding theorem asserts that H : Lp(u) → Lq(v) is bounded. Moreover, (Lp, ω) ∈ N because
Proposition 3.3 assures that LMp

u,ω is a ball quasi-Banach function space. Thus, Theorem 2.3
yields (3.19). □

The above result shows that our main result also applies to local generalized Morrey spaces
built on quasi-Banach function space X .

3.2. Local generalized Morrey spaces built on rearrangement-invariant quasi-Banach func-
tion spaces. In this section, we apply Theorem 2.3 to establish the mapping properties of the
Riemann-Liouville integral on the local generalized Morrey spaces built on rearrangement-
invariant quasi-Banach function spaces.

We first recall some notations for defining of the rearrangement-invariant quasi-Banach
function spaces. For any f ∈ M and s > 0, write

df (s) = |{x ∈ (0,∞) : |f(x)| > s}|

and
f∗(t) = inf{s > 0 : df (s) ≤ t}, t > 0.

We recall the definition of rearrangement-invariant quasi-Banach function space (r.i.q.B.f.s.)
from [17, Definition 2.1].

Definition 3.5. A quasi-Banach function space X is said to be a r.i.q.B.f.s. if there exists a quasi-norm
ρX satisfying Items (1)-(3) of Definition 2.2 and (2.5) such that for any f ∈ X , we have

∥f∥X = ρX(f∗).

Next, we recall the definition of the Boyd indices. For any s ≥ 0 and f ∈ M(0,∞), define
(Dsf)(t) = f(st), t ∈ (0,∞). Let ∥Ds∥X→X be the operator norm of Ds on X . We recall the
definition of Boyd indices for r.i.q.B.f.s. from [27].

Definition 3.6. Let X be a r.i.q.B.f.s. Define the lower Boyd index of X , pX , and the upper Boyd index
of X , qX , by

pX = sup{p > 0 : ∃C > 0 such that ∀ 0 ≤ s < 1, ∥Ds∥X→X ≤ Cs−1/p},

qX = inf{q > 0 : ∃C > 0 such that ∀ 1 ≤ s, ∥Ds∥X→X ≤ Cs−1/q},

respectively.

It is easy to see that the Boyd indices for the Lebesgue space Lp, 0 < p < ∞ is 1
p .

Proposition 3.4. Let X be a r.i.q.B.f.s. and ω : (0,∞) → (0,∞) be a Lebesgue measurable function. If
ω satisfies (2.6) and there exists a q > qX and C > 0 such that

(3.20) r
1
q < Cω(r), r ∈ (0, 1),

then LMX
ω is a ball quasi-Banach function space.
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Proof. As D1/rχ(0,1)(t) = χ(0,1)(t/r) = χ(0,r)(t), for any r ∈ (0, 1), we find that for any q > qX ,
we have a constant C > 0 such that

∥χ(0,r)∥X = ∥D1/rχ(0,1)∥X ≤ Cr1/q.

The above inequality and (3.20) guarantee that (2.7) is satisfied. Therefore, Proposition 2.1
asserts that LMX

ω is a ball quasi-Banach function space. □

We need the following function space for the studies of the Riemann-Liouville integral.

Definition 3.7. Let α ≥ 0 and X be a r.i.q.B.f.s. Xα consists of all f ∈ M satisfying

∥f∥Xα
= ρX(t−αf∗(t)) < ∞.

For instance, when X = Lp, Xα is the Lorentz spaces L
p

1−pα ,α, see [17, p.901]. Moreover, Xα

has been used in [17, 18] for the studies of the mapping properties of the convolution operators,
the Fourier integral operators and the k-plane transform on r.i.q.B.f.s.

We have the following result from [17, Proposition 3.1].

Proposition 3.5. Let α > 0 and X be a r.i.q.B.f.s. If 0 < pX ≤ qX < 1
α , then Xα is a r.i.q.B.f.s.

Theorem 3.8. Let α > 0, ω : (0,∞) → (0,∞) be a Lebesgue measurable function and X be a r.i.q.B.f.s.
If 0 < pX ≤ qX < 1

α and ω satisfies (2.6) and (3.20) for some q > qX , then there is a constant C > 0

such that for any f ∈ LMX
ω

∥Rαf∥LMXα
ω

≤ C∥f∥LMX
ω
.

Proof. It is well known that for any p ∈ (1, 1
α ), RαL

p → Lq is bounded where 1
q = 1

p − α.
By applying [18, Theorem 4.1], we find that Rα : X → Xα is bounded. Consequently, as
Riemann-Liouville integral is a member of general Hardy-type operator, Theorem 2.3 yields
the boundedness of Rα : LMX

ω → LMXα
ω . □

The above result is new even for the local generalized Morrey space LMp
ω . Notice that we

have the following inequality

|Rαf(x)| ≤
∫ ∞

0

|f(y)|
|x− y|1−α

dy = (Iα|f |)(x), x ∈ (0,∞),

where Iα is the fractional integral operator on (0,∞). Therefore, by using the idea in [21,
Theorem 3.1], we can obtain the mapping properties Iα and hence, the mapping properties
of Rα on LMX

ω . While by using the idea in [21, Theorem 3.1], we need to impose a stronger
condition on ω, a condition similar to [21, (2.10)].

We now give another concrete example for Theorem 3.8. A function Φ : [0,+∞] → [0,+∞] is
a Young function if there exists an increasing and left-continuous function ϕ satisfying ϕ(0) = 0
and that ϕ is neither identically zero nor identically infinite such that

Φ(s) =

∫ s

0

ϕ(u)du, s ≥ 0.

Let ϕ be a Young function. The Orlicz space LΦ consists of all Lebesgue measurable functions
f satisfying

∥f∥LΦ = inf

{
λ > 0 :

∫ ∞

0

Φ

(
|f(x)|
λ

)
dx ≤ 1

}
< ∞.

Let α ∈ R and Φ be a Young function. The Lorentz-Orlicz space LΦ,α consists of all Lebesgue
measurable functions f satisfying

∥f∥LΦ,α = inf

{
λ > 0 :

∫ ∞

0

Φ(t−α/nf∗(t)/λ)dt ≤ 1

}
< ∞.
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In view of [3, Chapter 4, Theorem 8.18], the Boyd indices of LΦ are given by

pLΦ
= lim

t→∞

log t

log g(t)
, and qLΦ

= lim
t→0+

log t

log g(t)
,

where

g(t) = lim sup
s→∞

Φ−1(s)

Φ−1(s/t)
.

Theorem 3.8 yields the following mapping properties of the Riemann-Liouville integral on the
local Orlicz-Morrey space MLΦ

ω .

Corollary 3.1. Let α > 0, ω : (0,∞) → (0,∞) be a Lebesgue measurable function and Φ be a Young
function. If 0 < pLΦ

≤ qLΦ
< 1

α and ω satisfies (2.6) and (3.20) for some q > qLΦ
, then there is a

constant C > 0 such that for any f ∈ LMX
ω

∥Rαf∥
LM

LΦ,α
ω

≤ C∥f∥
LM

LΦ
ω

.

For the studies of boundedness of the Calderón-Zygmund operators, the nonlinear com-
mutators of the Calderón-Zygmund operators, the oscillatory singular integral operators, the
singular integral operators with rough kernels and the Marcinkiewicz integrals on the local
Orlicz-Morrey spaces on the local Orlicz-Morrey spaces, the reader is referred to [39].

3.3. Local generalized Morrey spaces with variable exponents. In this section, we extend the
Hardy-type inequalities in [12] to the local generalized Morrey spaces with variable exponent.
Notice that the kernel for the operators studied in this section is not necessarily an Oinarov
kernel. Thus, the results in this section give examples for the use of Theorem 2.3 is not restricted
to the general Hardy-type operators with Oinarov kernels.

We begin with the definition of the Lebesgue space with variable exponent.

Definition 3.8. Let p(·) : (0,∞) → [1,∞) be a Lebesgue measurable function. The Lebesgue space
with variable exponent Lp(·) consists of all f ∈ M satisfying

∥f∥Lp(·) = inf

{
λ > 0 :

∫ ∞

0

∣∣∣∣f(x)λ

∣∣∣∣p(x) dx ≤ 1

}
< ∞.

For any Lebesgue measurable function p(·) : (0,∞) → (0,∞), define

p− = inf
x∈(0,∞)

p(x) and p+ = sup
x∈(0,∞)

p(x).

For any Lebesgue measurable function p(·) : (0,∞) → (0,∞), we write p(·) ∈ M0,∞ if there
exists a constant C > 0 such that

(1) 0 ≤ p− ≤ p+ < ∞,
(2) the limit limx→0 p(x) exists, p(0) = limx→0 p(x) and

|p(x)− p(0)| ≤ C

− lnx
, ∀x ∈ (0, 1/2],

(3) the limit limx→∞ p(x) = p∞ exists and

|p(x)− p∞| ≤ C

lnx
∀x ∈ [2,∞).
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We write p(·) ∈ P0,∞ if p(·) ∈ M0,∞ and p− ≥ 1.
We have the following result from [12, Theorems 3.1, 3.3 and Remark 3.2]. To simplify the

presentation of the results in the following, for any a ∈ R and Lebesgue measurable functions
α(·) and µ(·) on (0,∞), we write

Hα(·)f(x) = xα(x)−1

∫ x

0

f(y)

yα(y)
dy

Ha
µ(·)f(x) = xa+µ(x)−1

∫ x

0

f(y)

ya
dy,

respectively.

Theorem 3.9. Let p(·) ∈ P0,∞ and α(·) be a bounded function on (0,∞) such that the limit limx→∞ α(x) =
α∞ exists and satisfies

α(0) < 1− 1

p(0)
, α∞ < 1− 1

p∞
(3.21)

|α(x)− α(0)| ≤ C

| lnx|
, ∀x ∈ (0, 1/2],(3.22)

|α(x)− α∞| ≤ C

lnx
, ∀x ∈ (2,∞)(3.23)

for some C > 0, then there exists a constant D > 0 such that for any f ∈ Lp(·), we have

∥Hα(·)f∥Lp(·) ≤ D∥f∥Lp(·) .

Theorem 3.10. Let a ∈ R, p(·), µ(·) : (0,∞) → [1,∞) be Lebesgue measurable functions. If

(3.24) a < min

{
1− 1

p(0)
, 1− 1

p∞

}
,

p(·) ∈ P0,∞, µ(·) ∈ M0,∞,

(3.25) 0 ≤ µ(0) <
1

p(0)
and 0 ≤ µ∞ <

1

p∞
,

then for any q(·) ∈ P0,∞ satisfying

(3.26)
1

q(0)
=

1

p(0)
− µ(0) and

1

q∞
=

1

p∞
− µ∞,

we have a constant D > 0 such that for any f ∈ Lp(·)

∥Ha
µ(·)f∥Lq(·) ≤ D∥f∥Lp(·)

The above results are generalizations of the Hardy inequalities to the Lebesgue spaces with
variable exponents. For the proofs of the above theorems, the reader is referred to [12, Sections
5 and 6].

Notice that the kernels of the operators Hα(·) and Ha
µ(·) are

K1(x, y) =
xα(x)−1

yα(y)
and K2(x, y) =

xa+µ(x)−1

ya
,

respectively. In general, they are not non-decreasing in x nor non-increasing in y, therefore,
they do not satisfy Item (1) of Definition 1.1.

Even though the operators Hα(·) and Ha
µ(·) were not covered by the results in Theorems 1.1

and 1.2, our main result, Theorem 2.3 also yields the mapping properties of these operators on
the local generalized Morrey spaces with variable exponents.
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Definition 3.9. Let p(·) : (0,∞) → [1,∞) be a Lebesgue measurable function. The local generalized
Morrey space with variable exponent LMp(·)

ω consists of all f ∈ M satisfying

∥f∥
LM

p(·)
ω

= sup
r>0

1

ω(r)
∥χ(0,r)f∥Lp(·) < ∞.

When ω ≡ 1, LMp(·)
ω becomes the Lebesgue space with variable exponent Lp(·). Moreover,

the local generalized Morrey spaces with variable exponents are extensions of the local gener-
alized Morrey spaces.

For the mapping properties of the fractional integral operators, the maximal Carleson oper-
ator, the spherical maximal functions, the geometric maximal functions and the minimal func-
tions on the local generalized Morrey spaces with variable exponent and the Hardy local gen-
eralized Morrey spaces with variable exponents, the reader is referred to [19, 22, 23, 38, 40].

Let p(·) ∈ P0,∞. Whenever ω satisfies

1 ≤ Cω(r), ∥χ(0,r)∥Lp(·) > 1,(3.27)

r
1

p+ ≤ Cω(r), 1 ≥ ∥χ(0,r)∥Lp(·)(3.28)

for some C > 0, Proposition 2.2 and [10, Corollary 2.23] guarantee that LMX
ω is a ball quasi-

Banach function space.
We now present the boundedness of Hα(·) on the local generalized Morrey spaces with vari-

able exponents in the following.

Theorem 3.11. Let p(·) ∈ P0,∞, ω : (0,∞) → (0,∞) be Lebesgue measurable function and α(·) be a
bounded function. Suppose that ω satisfies (3.27) and (3.28). If α(·) satisfies (3.21), (3.22) and (3.23),
then there is a constant C > 0 such that for any f ∈ LM

p(·)
ω

∥Hα(·)f∥
LM

p(·)
ω

≤ C∥f∥
LM

p(·)
ω

.

The above result is a consequence of Theorems 2.3 and 3.9.
Next, we have the mapping properties of Ha

µ(·) in the local generalized Morrey spaces with
variable exponents. The following theorem is guaranteed by Theorems 2.3 and 3.10.

Theorem 3.12. Let a ∈ R, p(·) ∈ P0,∞, µ(·) ∈ M0,∞ and ω(·) : (0,∞) → (0,∞) be Lebesgue
measurable functions. If a, p(·), µ(·) and ω(·) satisfy (3.24), (3.25), (3.27) and (3.28), then for any
q(·) ∈ P0,∞ satisfying (3.26), there is a constant C > 0 such that for any f ∈ LM

p(·)
ω

∥Ha
µ(·)f∥LM

q(·)
ω

≤ C∥f∥
LM

p(·)
ω

.

Theorems 3.11 and 3.12 are extensions of [12, Theorems 3.1 and 3.3] from the Lebesgue
spaces with variable exponents to the local generalized Morrey spaces with variable exponents.

We now give some concrete examples on ω such that (3.27) and (3.28) are fulfilled. For any
θ ∈ (0, 1

p+
), define ωθ(r) = rθ. In view of [10, Corollary 2.23], we have limr→∞ ∥χ(0,r)∥Lp(·) =

∞, therefore, ωθ fulfills (3.27). Moreover, as p+ < ∞, [10, Theorems 2.58 and 2.62] assure that
∥ · ∥Lp(·) is an absolutely continuous norm. Thus, limr→0 ∥χ(0,r)∥Lp(·) = 0. Consequently, (3.28)
is fulfilled.

Whenever p(·) satisfies the conditions in Theorem 3.11, Hα(·) is bounded on LM
p(·)
ωθ . Simi-

larly, whenever a, p(·), q(·) and µ(·) satisfy the conditions in Theorem 3.12, Ha
µ(·) : LM

p(·)
ωθ →

LM
q(·)
ωθ is bounded.
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