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ABSTRACT 
 

   Hammerstein model is formed by cascade of linear and nonlinear parts. In literature, memoryless polynomial 

nonlinear (MPN) model for nonlinear part and finite impulse response (FIR) model or infinite impulse response 

(IIR) model for linear part are mostly preferred for Hammerstein models. This paper different from the studies in 

literature, focuses on the success of Hammerstein block model that Second Order Volterra (SOV) is preferred 

instead of MPN as nonlinear part. In this context, a new Hammerstein model is presented which is obtained by 

cascade form of a nonlinear SOV and a linear FIR model. In simulations, different types of system are identified 

by proposed Hammerstein model which is optimized with ABC (artificial bee colony) algorithm. The simulation 

results reveal effectiveness and robustness of the proposed model with ABC algorithm. 

 

   Keywords: System identification, Hammerstein model, artificial bee colony algorithm, clonal selection 

algorithm, recursive least square algorithm 

 

 

YAPAY ARI KOLONİSİ ALGORİTMASI İLE OPTİMİZE EDİLEN 

HAMMERSTEIN MODEL KULLANARAK SİSTEMLERİN 

KİMLİKLENDİRİLMESİ 
 

 

ÖZ 
 

   Hammerstein model, doğrusal olmayan alt model çıkışının doğrusal olan bir alt modelin girişine seri 

bağlanması ile oluşan bir blok model yapısıdır. Literatürde, Hammerstein modellerde çoğunlukla doğrusal 

olmayan bölümler için doğrusal olmayan hafızasız polinom (MPN - memoryless polynomial nonlinear) model ve 

doğrusal bölümler için sonlu darbe cevaplı (FIR- finite impulse response) ya da sonsuz darbe cevaplı (IIR- 

infinite impulse response) model tercih edilmektedir. Literatürden farklı olarak bu çalışmada doğrusal olmayan 

bölüm için MPN yerine ikinci derece volterra (SOV - Second Order Volterra) model tercih edilmiştir. Bu açıdan 

doğrusal olmayan SOV ve doğrusal FIR modelin kaskat bağlanmasından oluşan yeni bir Hammerstein model 

sunulmuştur. Simulasyonlarda, yapay arı kolonisi (ABC- artificial bee colony) algoritmasıyla optimize edilen 

Hammerstein model ile farklı sistemler kimliklendirilmiştir. Simulasyon sonuçlarında ABC algoritması ile 

önerilen modelin etkili ve güçlü olduğu görülmüştür. 

 

   Anahtar Kelimeler: Sistem kimliklendirme, Hammerstein model, yapay arı koloni algoritması, klonal seçim 

algoritması, yenilemeli en küçük kareler algoritması 

 

 

 

                                                           
*
Corresponding author / Sorumlu yazar. Tel.: +90 532 523 87 22; e-mail / e-posta: hzorlu@erciyes.edu.tr 



ÖHÜ Müh. Bilim. Derg. / OHU J. Eng. Sci., 2018, 7(1): 83-98 

 

S. METE, H. ZORLU, Ş. ÖZER 

84 

1. INTRODUCTION  
 

   In system identification, the model of the system is achieved by utilizing data obtained from experimental or 

mathematical way. System identification is preceded through linear and nonlinear models through the linearity of 

the system [1-13]. Linear system identification that the input and the output of the system are stated with linear 

equations is mostly used because of its advanced theoretical background [1-6]. However, many systems in real 

life have nonlinear behaviours. Linear methods can be inadequate in identification of such systems and nonlinear 

methods are used [6-13]. In nonlinear system identification, the input-output relation of the system is provided 

through nonlinear mathematical assertions as differential equations, exponential and logarithmic functions [14-

18].
 
Autoregressive, Autoregressive Moving Average (ARMA) models or finite impulse response (FIR) and 

infinite impulse response (IIR) models are used for linear system identification in literature. Also Volterra, 

Bilinear and polynomial autoregressive (PAR) models are used for nonlinear system identification [15-25]. 

   Also, many researchers preferred to use block-oriented models for system identification in literature. 

Hammerstein model is a class of block oriented model [13, 26-33]. This model consists of a series connection of 

a nonlinear sub model followed by a linear sub model. It’s because this model is useful in simple effective 

control systems. Besides the usefulness in applications, this model is also preferred because of the effective 

predict of a wide nonlinear process [34, 35]. Hammerstein model is firstly suggested by Narendra and Gallman 

in 1966 and various models are tested to improve the model [36-39].
 
Generally, Memoryless Polynomial 

Nonlinear (MPN) model for nonlinear part and FIR or IIR model for linear part are preferred in Hammerstein 

models in literature [26-40]. In this kind of cascade models, the polynomial representation has advantage of 

more flexibility and of a simpler use. Naturally, the nonlinearity can be approximated by a single polynomial. 

Also the other benefit of these structures is to introduce less parameters to be estimated [39, 40]. To describe a 

polynomial nonlinear system with memory, the Volterra series expansion has been the most popular model in 

use for the last three decades. Although very comprehensive, this model involves a large number of parameters, 

which make it difficult to identify and use. For simplicity, the truncated Volterra series is most often considered 

in literature [19, 20, 41]. 

   The Hammerstein model studies in literature shows; classical algorithms, such as Recursive Least Squares 

(RLS), are used to optimize Hammerstein models [42-45]. These algorithms present better solutions when the 

model structure and some statistical data (model degree, input and noise distribution etc.) are known. Classical 

techniques are mostly used because of their features such as lower hardware costs, convergent structure, and 

error analysis performance [18, 45]. The evolutionary and swarm intelligence based algorithms such as Clonal 

Selection (CS), Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC) algorithm are recently 

become more popular and are mostly used in system identification. These algorithms are developed especially to 

solve parameter optimization problem. In literature, CS and PSO algorithms [36, 46] are used to optimize 

Hammerstein models. But the ABC wasn’t used to optimize Hammerstein models for system identification in 

literature. The ABC [47-56] was proposed by Karaboga and it simulates the intelligent foraging behavior of 

honey bees [48]. This algorithm is simple to implement and also quite robust. Therefore, many tests were made 

to demonstrate the success of the algorithm [49-52]. The ABC has been applied to solve various problems such 

as adaptive filtering [53], system identification [54-56], noise cancellation [53], digital filter design [54].  

   The main motivation of this study is to suggest a successful model different from the structures in literature. In 

this paper, the performance of Hammerstein block model is focused in the case that Second Order Volterra 

(SOV) Model is preferred instead of MPN as nonlinear part. In this context a Hammerstein model consists of a 

series connection of a nonlinear SOV model followed by a linear FIR model is presented. In addition, the ABC 

algorithm is firstly used for Hammerstein model optimization. This proposed model is used to identify three 

different types of system. Also, its performances are compared with different models and different algorithms in 

simulations.  

 

 

2. HAMMERSTEIN MODEL COMPONENTS 
 
   Hammerstein model structure in Figure 1 is formed by cascade of linear and nonlinear models [13, 26-33]. 

Hammerstein model structure can easily model practical applications such as heat exchangers, electric drives, 

thermal microsystems, sticky control valves, solid oxide fuel cells [27]. In Hammerstein model structure in 

Figure 1, x(n) is nonlinear block input, z(n) is linear block input and y(n) is linear block output. 
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Figure 1. Hammerstein model structure 

 

2.1. Linear Finite Impulse Response (FIR) Model 
 

   Linear FIR structure is a simple and practical model. Therefore, it is widely used for filtering, system 

identification [25]. In FIR model, output is dependent on the current and previous value of input, not dependent 

on the output value. This model is expressed as follows: 
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   In above equation x(n) is input and y(n) is model output. Here m is the memory length and bk is the parameter 

of FIR model
 
[16]. Although a simple model structure is not preferred in the Hammerstein model [24-35]. 

 

2.2. Memoryless Polynomial Nonlinear (MPN) Model 
 

   MPN is a polynomial structure. It can be converged quickly since it has a memoryless structure. Therefore, it 

is frequently used in the block oriented model [26-40]. A polynomial of a known p order in the input, can be 

expressed as follows: 
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where cl is the coefficient of the polynomial, p is order of polynomial, and p > 0 [36]. The polynomial 

representation has advantage of more flexibility and of a simpler use. The nonlinearity can be defined by a single 

polynomial. Also the other benefit of these structures is their advantage of introducing less parameters to be 

estimated [39, 40]. Therefore, it is mostly preferred for filtering and system identification [26-40]. 

 

2.3. Second Order Volterra (SOV) Model 
 

   SOV model is mostly preferred in identification of the nonlinear system [16, 17, 19, 20]. 
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   Here y(n) represents output, x(n) represents input index, hi represents linear and qi,j represents nonlinear 

parameters, (n-i) (n-j) represents delayed values of input, r represents model length. In literature, SOV structures, 

mostly only hi and qi,j parameters are taken into consideration, are used in system identification [16, 17, 19, 20]. 

Because wider structure can be more complex, many researchers study on the block and adaptive applications of 

Volterra model [17]. 

 

2.4. Hammerstein Model with MPN-FIR 
 

   In this structure in Figure 2, MPN model is used as nonlinear part and FIR model is used as linear part. The 

nonlinear part is approximated by a polynomial function [32]. x(n): block model input, y(n): block model output 

and z(n): unavailable internal data.  

 

 

 

 

 

Figure 2. Hammerstein model with MPN-FIR 
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   The internal signal z(n) is expressed as follows: 
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   Also z(n) is the MPN model output and p is order of polynomial. The FIR model output is defined as; 
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   Here m is the memory length and Hammerstein model output is defined as: 
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where bk and cl are the coefficients of the FIR and the MPN model respectively [32]. 

 

2.5. Hammerstein Model with SOV-FIR 
 

   In this structure, SOV model is used as nonlinear block and FIR model is used as linear block. Cascade 

structure is shown in Figure 3 [57]. 

 

 

  

 

 

Figure 3. Hammerstein model with SOV-FIR 

 

   SOV model is defined as: 
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where r shows SOV model length and linear FIR model output is defined as: 
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where m shows FIR model length and Hammerstein model output is defined as [57]: 
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3. ARTIFICIAL BEE COLONY (ABC) ALGORITHM 
 

   ABC, swarm intelligence based algorithm, firstly suggested by Karaboga is a new algorithm based swarm 

intelligence that is developed through foraging behaviour of honey bees [58]. ABC algorithm is recently become 

more popular and is mostly used in optimization problems. This algorithm is simple to implement and also quite 

robust. Therefore, many tests were made to demonstrate the success of the algorithm [49-52]. To apply ABC, the 

considered optimization problem is first converted to the problem of finding the best parameter vector which 

minimizes an objective function. Then, the artificial bees randomly discover a population of initial solution 

vectors and then iteratively improve them by employing the strategies: moving towards better solutions by 

means of a neighbour search mechanism while abandoning poor solutions [48]. Flowchart of the ABC is 

presented in Figure 4 [53]. Three different bee types are foreseen in this algorithm: employed, onlooker and 

y(n) x(n) z(n) SOV 

model 

FIR 

model 
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scout bees [48, 58]. There is an employed bee for each food source. Food amount in food source determines the 

quality degree of solution. Employed bees determine the food amount in each source. Scout bees randomly 

explore for new food sources [58].  

   Quantity of determined food source of the new one is higher than the previous one, the bee stores the new 

position and forgets the old one and its employed bee becomes a scout. So a new and more qualified source is 

researched even if low probability. In ABC algorithm each possible solution that determines each source is 

foreseen as a food source and defined as a vector with real valued and n dimensional [49]. 

   In ABC algorithm wi is the position of the i
th

 food source which is i
th

 solution to the problem and f(wi) 

represents its nectar amount that is the quality of solution. The population of food source is [54];
 

 

),....,2,1|({)( SNimwmp i                          (10) 

 

   In equality m is cycle and SN is food source around the hive which is represent the employed or onlooker bees. 

Pi  probability of food source  which is chosen by onlooker bee is calculated through the following equality [58]. 
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   If a better food source is defined according to old one, the following equality is written for ABC algorithm: 

 

))()(()()1( mwmwmwmw kiiii                                       (12) 

 

   In equality, φi is a random number between [+1, -1], k is determined randomly but it has to be different from i. 

In this equality, solution defines a food source.This equality is developed till the limit [58, 59].  

 

 
 

Figure 4. Flow chart of the ABC algorithm 
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   The main steps of the ABC algorithm are given below [60]: 

(1) Initialization 

(2) Evaluate the population 

        Repeat 

(3) Employed Bees Phase 

(4) Onlooker Bees Phase 

(5) Scout Bees Phase 

(6) Memorize the best food source detected so far 

        Until Stopping criteria is satisfied 
 

 

4. DEFINITION OF PROBLEM 
 

   In general identification process as seen in Figure 5, model parameters vector, w, are defined by minimizing 

the error value between adapted algorithm and desired output and model output with the help of a cost function 

[15, 61]. The cost function is defined as; (13) [15]; 
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   Optimization problem is presented as cost function defined as )(min wJ
Ww

. In Equation (13), d(n) is desired 

response and ym(n) is model response. N is the length of the J(w) and the training set pattern number. The aim of 

the cost function J(w) is minimized by adjusting w. The cost function, called mean square error (Mean Squared 

Error, MSE), is usually expressed as the time averaged of function defined by Equation (13). MSE is a 

commonly used criterion of performance for model testing purposes. 

 

 
 

Figure 5. General structure of system identification 

 

 

5. VARIOUS  SYSTEM TYPES FOR COMPARING THE PERFORMANCE OF ABC 
 

   In this study, system identification structure using Hammerstein model is given in Figure 6. d(n) is desired 

system output, ym(n) is model output and e(n) is error value. In identification process, model parameters are 

defined by minimizing the error (MSE) value between adapted algorithm and system output and model output 

with the help of a cost function in Equation (13). 

   In simulation studies x(n) noiseless input data is used both system and model input. Input is White Gaussian 

sequence of 250 data samples and its variance is 0.9108. The identification process is performed on three 

different type of systems that are all unknown; linear (ARMA), nonlinear (Bilinear) and Wing Flutter (real data) 

systems. These systems are identified with four different types of models. These models are given in Equation 

(14), (15), (16), (17). Hammerstein model with SOV-FIR in Equation (14) is obtained from Equation (9) with 

r=1 and m=1. Hammerstein model with MPN-FIR in Equation (15) is obtained from Equation (6) with p=3 and 

m=1. SOV model in Equation (16) is obtained from Equation (3) with r=1. FIR model in Equation (17) is 

obtained from Equation (1) with m=1. The memory length of the used FIR and Volterra model memories are 

chosen same as the FIR and Volterra models in Hammerstein model block. In our studies, it is aimed to have 

better results in proposed Hammerstein structure than the sub models (FIR and SOV) that made up the block 

structure.  



ÖHÜ Müh. Bilim. Derg. / OHU J. Eng. Sci., 2018, 7(1): 83-98 

 

SYSTEM IDENTIFICATION USING HAMMERSTEIN MODEL OPTIMIZED WITH ARTIFICIAL BEE 

COLONY ALGORITHM 

89 

 
 

Figure 6. System identification structure using Hammerstein model 

 

 ym1(n) = a0h0x(n)+ a0h1x(n-1)+a0q0,0 x
2
(n)  a0q0,1x(n)x(n-1) + a0q1,0x(n-1)x(n)+ a0q1,1x

2
(n-

1)+a1h0x(n-1)+a1h1x(n-2)+a1q0,0x
2
(n-1)+ a1q0,1x(n-1)x(n-2) +a1q1,0x(n-2)x(n-1)+a1q1,1x

2
(n-2)    

(14) 

 

ym2(n) = b0c1x(n) + b0c2x
2
(n)+ b0c3x

3
(n)+ b1c1x(n-1) + b1c2x

2
(n-1)+b1c3x

3
(n-1)                   (15) 

 

ym3(n)= h0x(n) + h1x(n-1)+q0,0x
2
(n) + q0,1x(n) x(n-1)+ q1,0x(n-1) x(n)+ q1,1x

2
(n-1)                    (16) 

 

ym4(n)= a0x(n) + a1x(n-1)                                                                                                        (17) 
 

   In these studies, all models are optimized till the error between the model output and system output is 

minimized by ABC, CS and RLS algorithm. Simulation tests were performed in MATLAB platform. Also tests 

were performed on a computer with Intel Core i7 Q740 1.73 Ghz CPU and 4 GB RAM. 
 

5.1. Example-I 
 

   In this example, considering the structure given in Figure 6, nonlinear system, which is a Bilinear [57, 62, 63], 

is chosen as in Equation (18). It is identified with four different types of model. 
 

d(n)=0.25d(n-1)-0.5d(n-1)x(n)+0.05d(n-1)x(n-1)-0.5x(n)+0.5x(n-1)                                    (18) 
 

   It is identified with four different type models. All models are trained by ABC, CS, RLS algorithm and 

obtained MSE, correlation and time values are presented in Table 2. Control parameters of ABC, CS and RLS 

are given in Table 1 for this example. RLS algorithm has only one control parameter called forgetting factor (λ).  

 

 Table 1. Control parameters of ABC, CS and RLS for all models 
 

Parameters 
Model Structure 

Algorithm Eq.(14) Eq.(15) Eq.(16) Eq.(17) 

Population Size CS/ ABC 80 50 60 20 

Low-Upper 

Bound Range 

CS 1.5 1.5 1.5 1.5 

ABC 20 20 20 20 

Generation Number CS/ ABC 500 500 500 500 

Forgetting Factor RLS 
λ1=0.1260 

λ2=0.7110 

λ1=0.063 

λ2=0.336 
λ=1 λ=1 

 

Table 2. MSE, correlation and time values for Example-I 
 

 

Algorithm 

Model Structure 

Hammerstein 

with SOV-FIR 

Hammerstein 

with MPN-FIR 
Volterra FIR 

MSE 

RLS 0.06169 0.15384 0.06615 0.13115 

CS 0.05172 0.12724 0.06631 0.13115 

ABC 0.05096 0.12710 0.06615 0.13115 

Correlation 

RLS 0.9348 0.8257 0.9232 0.8425 

CS 0.9403 0.8476 0.9231 0.8425 

ABC 0.9415 0.8477 0.9232 0.8425 

Run Time(s) 

RLS 0.24 0.10 0.12 0.06 

CS 394.35 150.50 191.26 27.36 

ABC 86.36 54.03 64.69 22.39 
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   The above results indicate that ABC is suitable for use in bilinear system identification problem. ABC 

produced better results than CS and RLS. However, other algorithms have not been successful in terms of run 

times. Also Hammerstein with SOV-FIR is the most successful in terms of model types.  

   The variation of MSE-Generation has also been presented in Figure 7 as graphically for 500 generation 

number. It is clearly seen from Figure 7 that ABC is faster than CS. Also Testing model outputs are shown for 

30 data points in Figure 8. 

   Parameters of model are estimated with ABC, CS and RLS and these are given in Table 3 for this example.  

 

 

 
 

Figure 7. Evolution of the MSE values of example-I [(a) Hammerstein model with SOV-FIR, (b) 

Hammerstein model with MPN-FIR, (c) Volterra model, (d) FIR model] 

 

Table 3. Parameters of model 

 

Type of 

Algorithm 

Type of 

Model 

Parameters 

a0 a1 c1 c2 c3 h0 h1 q00 q01 q10 q11 

ABC Hammerstein 

with SOV-FIR 

-0.989 -0.250 --- --- --- 0.500 -0.477 0.019 -0.337 0.044 0.021 

Hammerstein 

with MPN-FIR 

-0.842 0.575 0.660 0.009 -0.032 --- --- --- --- --- --- 

Volterra --- --- --- --- --- -0.490 0.341 -0.014 0.249 0.039 -0.037 

FIR -0.488 0.328 --- --- --- --- --- --- --- --- --- 

CS Hammerstein 

with SOV-FIR 

0.351 0.082 --- --- --- -1.406 1.312 -0.046 -0.001 0.750 -0.075 

Hammerstein 
with MPN-FIR 

-0.750 0.562 0.748 -0.001 -0.046 --- --- --- --- --- --- 

Volterra --- --- --- --- --- -0.468 0.347 -0.013 1.397 -1.109 -0.046 

FIR -0.492 0.328 --- --- --- --- --- --- --- --- --- 

RLS Hammerstein 

with SOV-FIR 

-0.008 -0.001 --- --- --- 63.62

5 
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FIR -0.488 0.328 --- --- --- --- --- --- --- --- --- 
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Figure 8. Simulated response comparisons of example-I [(a) Hammerstein model with SOV-FIR, 

Hammerstein model with MPN-FIR, (c) Volterra model, (d) FIR model 

 

5.2. Example-II 
 

   In this example, considering the structure given in Figure 6, linear system, which is an ARMA [14, 62, 63], is 

chosen as in Equation (19). It is identified with four different types of model. 

 

d(n)=0.7x(n)-0.4x(n-1)-0.1x(n-2)+0.25d(n-1)-0.1d(n-2)+0.4d(n-3)                                                  (19) 

 

  The results achieved from simulations in the noiseless case have been presented in Table 4. It is clearly seen 

from Table 4 that ABC is more successful than CS and RLS. Also, better results are obtained from ABC based 

Hammerstein model with SOV-FIR. Control parameters of ABC, CS are given in Table 1 for this example.  

 

Table 4. MSE, correlation and time values for Example-II 

 

 

Algorithm 

Model Structure 

Hammerstein 

with SOV-FIR 

Hammerstein 

with MPN-FIR 
Volterra FIR 

MSE RLS 0.07612 0.11584 0.11313 0.11386 

CS 0.06646 0.11369 0.11320 0.11386 

ABC 0.06637 0.11356 0.11313 0.11386 

Correlation RLS 0.9344 0.8927 0.8947 0.8940 

CS 0.9396 0.8943 0.8948 0.8940 

ABC 0.9397 0.8944 0.8947 0.8940 

RunTime(s) RLS 0.23 0.09 0.11 0.06 

CS 443.18 142.20 232.71 29.07 

ABC 117.00 74.80 96.34 31.24 

 

   The variation of MSE-Generation has also been presented in Figure 9 as graphically for 500 generation 

number. It is clearly seen from Figure 9 that ABC is faster than CS. Parameters of model are estimated with 

ABC, CS and RLS and these are given in Table 5 for this example. 
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Table 5. Parameters of model 

 

Type of 

Algorithm 

Type of 

Model 

Parameters 

a0 a1 c1 c2 c3 h0 h1 q00 q01 q10 q11 

ABC Hammerstein 
with SOV-

FIR 

-0,712 0,538 --- --- --- -0,972 -0,437 -0,009 0,535 -0,544 -0,024 

Hammerstein 

with MPN-
FIR 

0,671 -0,197 0,993 -0,013 0,008 --- --- --- --- --- --- 

Volterra --- --- --- --- --- 0,682 -0,201 -0,008 0,177 -0,164 0,017 

FIR 0,681 -0,201 --- --- --- --- --- --- --- --- --- 

CS Hammerstein 

with SOV-
FIR 

-0,539 0,421 --- --- --- -1,274 -0,585 -0,013 0,750 -0,761 -0,032 

Hammerstein 

with MPN-
FIR 

0,499 -0,146 1,303 -0,018 0,023 --- --- --- --- --- --- 

Volterra --- --- --- --- --- 0,682 -0,201 -0,011 -0,750 0,750 0,023 

FIR 0,671 -0,199 --- --- --- --- --- --- --- --- --- 

RLS Hammerstein 

with SOV-

FIR 

-0,558 0,404 --- --- --- -1,136 -0,487 -0,088 -0,020 -0,020 -0,101 

Hammerstein 

with MPN-

FIR 

0,343 -0,114 1,872 _-0,108 0,017 --- --- --- --- --- --- 

Volterra --- --- --- --- --- 0,682 -0,201 -0,008 0,006 0,006 0,017 

FIR 0,681 -0,201 --- --- --- --- --- --- --- --- --- 

 

 

         
 

Figure 9. Evolution of the MSE values of example-II [(a) Hammerstein model with SOV-FIR, (b) 

Hammerstein model with MPN-FIR, (c) Volterra model (d), FIR model] 
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   In addition, the results obtained from ABC and CS algorithms have been found after 20 trials for examples. 

Testing model outputs are shown for 30 data points in Figure 10. 

 

 
 

Figure 10. Simulated response comparisons of example-II [(a) Hammerstein model with SOV-FIR, (b) 

Hammerstein model with MPN-FIR, (c) Volterra model, (d) FIR model] 

 

5.3. Example-III 
 

   In this example, considering the structure given in Figure 6, wing flutter data of Nasa’s air research tool F-18 is 

applied as nonlinear system. It is identified with four different types of model. The data used in this sample is 

real data and taken from Katholieke Universiteit Lauven, Signals, Identification, System Theory and 

Automation’s Identification Database [64, 65]. As seen in Table 7, ABC based Hammerstein model with SOV-

FIR produced better results than other algorithms and other model types. Control parameters of ABC, CS and 

RLS are given in Table 6 for this example. RLS algorithm has only one control parameter called forgetting 

factor. 

 

Table 6. Control parameters of ABC, CS and RLS for all models 

 

Parameters 
Model Structure 

Algorithm Eq.(22) Eq.(23) Eq.(24) Eq.(25) 

Population Size CS/ ABC 80 50 60 20 

Low-Upper Bound Range 
CS 1.5 1.5 1.5 1.5 

ABC 50 50 50 50 

Generation Number CS/ ABC 500 500 500 500 

Forgetting Factor RLS 
λ1=0.9720 

λ2=0.0720 

λ1=0.9840 

λ2=0.6630 
λ=1 λ=1 
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Table 7. MSE, correlation and time values for Example-III 

 

 

Algorithm 

Model Structure 

Hammerstein 

with SOV-FIR 

Hammerstein 

with MPN-FIR 
Volterra FIR 

MSE 

RLS 0.00249 0.00362 0.00329 0.00392 

CS 0.00329 0.00360 0.00475 0.00587 

ABC 0.00233 0.00360 0.00328 0.00392 

Correlation 

RLS 0.9763 0.9642 0.9674 0.9610 

CS 0.9673 0.9644 0.9603 0.9511 

ABC 0.9769 0.9644 0.9674 0.9610 

Run Time(s) 

RLS 0.12 0.06 0.09 0.04 

CS 1067.28 423.50 624.61 85.83 

ABC 152.45 94.89 115.16 38.55 

 

   The above results indicate that in terms of run times by ABC other algorithms have not been very successful. 

Testing model outputs are shown for 30 data points in Figure 11. Parameters of model are estimated with ABC, 

CS and RLS and these are given in Table 8 for this example. 

 

Table 8. Parameters of model 

 

Type of 

Algorithm 

Type of 

Model 

Parameters 

a0 a1 c1 c2 c3 h0 h1 q00 q01 q10 q11 

ABC 

Hammerstein 

with SOV-
FIR 

0,488 -0,428 --- --- --- 12,211 -10,666 0,836 0,657 -0,674 -0,543 

Hammerstein 

with MPN-

FIR 

-0,257 0,300 -6,001 -0,354 0,022 --- --- --- --- --- --- 

Volterra --- --- --- --- --- 1,537 -1,787 0,613 -23,548 22,565 0,352 

FIR 1,508 -1,758 --- --- --- --- --- --- --- --- --- 

CS 

Hammerstein 
with SOV-

FIR 

-1,451 0,023 --- --- --- -1,074 1,247 -0,492 0,778 0,001 -0,274 

Hammerstein 

with MPN-
FIR 

-1,043 1,217 -1,453 -0,093 -0,004 --- --- --- --- --- --- 

Volterra --- --- --- --- --- 1,253 -1,500 -0,001 0,269 -0,202 -0,070 

FIR 1,124 -1,388 --- --- --- --- --- --- --- --- --- 

RLS 

Hammerstein 

with SOV-

FIR 

-0,005 0,004 --- --- --- -1,087 0,982 -0,096 0,014 0,014 0,035 

Hammerstein 

with MPN-

FIR 

-0,002 0,002 -69,594 -33,840 2,302 --- --- --- --- --- --- 

Volterra --- --- --- --- --- 1,528 -1,778 0,552 -0,432 -0,432 0,296 

FIR 1,497 -1,748 --- --- --- --- --- --- --- --- --- 

 

   The variation of MSE-generation has also been presented in Figure 12 as graphically for 500 generation 

number. It is clearly seen from Figure 12 that ABC is faster than CS 

   In example I, II and III, it is aimed to model various type of linear (ARMA), nonlinear (Bilinear) and Wing 

Flutter (real data) system via proposed model. The MSE, correlation and time results obtained from simulations 

have been given in Table from 1 to 8 and Figure from 7 to 12. The results indicate that ABC, CS and RLS are 

suitable for use in Hammerstein model optimization problem. Terms of algorithms, ABC is faster than CS. Also, 

better results are obtained from ABC based Hammerstein model with SOV-FIR. 
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Figure 11 Simulated response comparisons of example-III [(a) Hammerstein model with SOV-FIR, (b) 

Hammerstein model with MPN-FIR, (c) Volterra model, (d) FIR model] 

 

 

 
 

Figure 12. Evolution of the MSE values of example-III [(a) Hammerstein model with SOV-FIR, (b) 

Hammerstein model with MPN-FIR, (c) Volterra model (d), FIR model] 
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6. CONCLUSIONS 
 
   This study aims to improve Hammerstein model for system identification area. In this context, a Hammerstein 

model consists of a series connection of a nonlinear SOV model followed by a linear FIR model is presented. 

System identification studies are carried out to determine the prosperity of the proposed model which is 

optimized by ABC, CS and RLS algorithm. So, different structure systems are identified with both proposed 

model and different type models. Proposed model has a complex structure as a disadvantage but has a successful 

identification tool as an advantage. According to the results, the systems can be identified with less error in 

proposed Hammerstein model with SOV-FIR compared to other model types although this model contains more 

parameters and is mathematically more complex. The performance comparison of algorithms has been realized, 

as well. As a result of this performance comparison, ABC has produced better results than others. Also ABC 

algorithm based Hammerstein model with SOV-FIR can successfully be used for system identification areas. 
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