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A BST R AC T  

We studied some new findings on the sliding mode control, that have been derived for the chaos 

synchronization of memristor – based hyperchaotic Lorenz systems. Nonlinear property has shown 

that the memristor can be used in chaotic circuits and the latest memristor-based chaotic circuits 

with different nonlinear equations at times its design attracts quite a lot of attention. The reason why 

the sliding mode control method is preferred is due to the fact that it is a robust approach and thus 

less susceptible to the external disturbances. In fact it is affected in a very little range. Numerical 

simulations of the synchronization of the proposed control methods with the studied system here, 

have proved to be largely valid. 
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1 Introduction 

Inductors, resistors and capacitors are known as circuit elements. These elements are expressed in terms 

of the relationship between the four fundamental circuit variables: magnetic flux (φ), electric charge (q), 

current (i) and voltage (v). There are six possible combinations of these four fundamental circuit 

variables. Two of these combinations, (v-φ) and (i-q), are familiar from basic circuit theory. The other 

three relationships are represented by the inductor (L), which describes the relationship between current 

and magnetic flux (dφ = Ldi); the capacitor (C), which describes the relationship between voltage and 

charge  (dq = Cdv); and the resistor (R), which describes the relationship between voltage and current 

(dv = Rdi). As understood from these relationships, there are six different combinations of the 

fundamental circuit variables. However, according to these definitions, only five combinations are 

specified.  
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In 1971, Leon Chua came with a new definition of a fourth circuit element to represent the recently 

undefined relationship between charge and magnetic flux, thus completing the sixth combination. Chua 

named this proposed element the memristor [1]. In 2008, researchers at HP Labs discovered the 

fundamental i-v characteristics of the memristor in a nanoscale device [2]. Memristors, which appear as 

two-terminal passive circuit elements, exhibit a nonlinear relationship between charge and flux. Due to 

their characteristic properties resembling synaptic actions, memristors are frequently seen in studies of 

synapses and artificial neural networks. Other applications include analog circuits, memory elements 

and sensors [3-8]. 

 

 

 

Figure 1. Relationship between current, voltage and electrical charge [2] 

The HP memristor, defined by a nonlinear constitutive relation, is expressed in terms of voltage and 

current as follows [9]: 

( )v M q i=              (1) 

or  

( )i W v=            (2) 

Here, vdt =   terminal voltage refers to the relationship between v and i terminal current. The 

memristance 𝑀(𝑞) is expressed as a piecewise function as follows:  

Memristance: 

, 1( )
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One of the most common applications of chaos theory lies in secure communication, where chaos 

synchronization plays a critical role. Synchronization, in this context, involves the matching and 

overlaying of two distinct chaotic signals, enabling the synchronization of a chaotic receiver and 

transmitter system. If we can use a chaotic signal in the form of a large masked chaotic signal, we can 

resend it using a chaotic mask. Because chaotic systems are highly sensitive to initial conditions, even 

a slight change in initial conditions can lead to completely different trajectories. The first study on 

synchronization was conducted by Pecora and Carroll, who proposed that it is possible to synchronize 

two chaotic systems with different initial conditions under certain conditions [10]. In this paper, we 

present new control results for memristor-based hyperchaotic Lorenz systems using the sliding mode 

control method. This method is widely favored due to its inherent advantages, including insensitivity to 

parameter uncertainties and external disturbances, ease of implementation, fast response, and strong 

transient performance. 

2 Memristor-based Hyperchaotic Lorenz System 

The state equations of a new type of memristor-based Lorenz system are provided below. The 

memristor-based Lorenz system can be defined as follows [11]:      

1 1 1 4 1 2 2

2 3 1 2 1 3

3 1 2 4 3

4 1

( )W      

     

    

 

= − − +


= − −


= −
 = −

                         (4) 

Here 1 2 3 4, , ,     are the state variables and 1 2 3 4, , ,      are the constant parameters of the 

system. We can define the piecewise linear function 
4( )W   as follows: 

4

4

4

, 1;
( )

, 1.
W










 
= 

              (5) 

As shown in Figure 2, when the parameters are chosen as 1 2 3 48, 15, 28, 8 / 3,   = = = =

5 8and = =  the system Equation (4) exhibits chaotic behaviour under the initial conditions of 

4(10 ,0,0,0) . 

                                             

                                       (a)                                                                                        (b) 

Figure 2. Memristor attractor: (a) State trajectories of memristor-based hyperchaotic lorenz system 

and dynamical behaviors: (b) Phase portraits of memristor-based hyperchaotic lorenz system 
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The Lyapunov exponents of the system, whose temporal variations are presented in Figure 3, have 

been calculated as 
1 2 3 41.768023, 0.004860, 0.005835, 25.789058L L L L= = − = = − . The presence 

of at least two positive exponents (𝐿1𝑎𝑛𝑑 𝐿3) indicates that the system is hyperchaotic.  

The Lyapunov fractal dimension (Kaplan-Yorke) of the memristor-based hyperchaotic Lorenz system 

has been calculated using Equation (6). 

1 1 2 3

41

3 3.07

j

i

i
KY

j

L
L L L

D j
LL

=

+

+ +
= + = + =



                      (6) 

As can be seen, the fact that the result is fractional indicates that the system exhibits chaotic 

behaviour. 

 

 
Figure 3. Graph of lyapunov exponents of the system 

 

3 Results and Discussion 

In this section, we will examine the synchronization of two identical memristor-based hyperchaotic 

Lorenz systems. 

Taking Equation (4) as the master system [11],  
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 the slave system is given as follows, 

1 1 1 4 1 2 2 1

2 3 1 2 1 3 2
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4 1 4
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W u

u

u
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 

= − − + +

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
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                                                                                   (7)

     

Here, 
1 2 3 4, , ,     are the state variables and 

1 2 3 4, , ,u u u u   are the controllers. 

The chaos synchronization error is defined as follows, 

e  = −                  (8) 

The error dynamics equations can be easily obtained as follows, 

1 1 1 2 2 4 1 4 1 1

2 3 1 2 1 3 1 3 2

3 4 3 1 2 1 2 3

4 1 4

( ) ( )e e e W W u

e e e u
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e e u
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
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          (9) 

We write the matrix representations of the error dynamics Equation (9) as follows. 

( , )e Ke u  = + +                  (10) 

here 
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 Firstly, we set u as follows, 

( , )u Lv  = − +               (12) 

Here, L is chosen such that (K, L) is controllable. 
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We select L as follows: 

1

1

1

1

L

 
 
 =
 
 
              (13)

                  

When the sliding mode variable is chosen as follows: 

  1 2 3 42 3 1 4 2 3 4s Ce e e e e e= = − − − = − − − +
                                                                               (14)                                        

And when the sliding mode variable is chosen as follows. Here C is a constant vector.  

We choose the sliding mode gains as 5k = ve 0.2q = . 

According to the sliding mode control method's characteristic, the control signal is given as follows   

[12-18]. 

 1( ) ( ) ( ) si ( )v t CL C kI K e q gn s−= − + +
                                                             (15)                                                                

Here, k and q are the sliding mode control parameters. A high value of k tends to create problems which 

resut in chattering. An acceptable value of q suppresses chattering and shortens the time to reach the 

sliding surface. In this paper, the constants k and q for sliding mode control are determined by the author. 

Now, the control signal v(t) becomes as follows, 

1 2 3 4( ) 41 21 1.1670 10 0.10s ( )v t e e e e ign s= − − − + −
                    (16) 

Therefore, the sliding mode controller is as follows: 

( , )u Lv  = − +              (17) 

Here, ( , )   , L and v(t) are written as in equations Equations (11), (13) and (16). 

The initial values for the master system Equation (4) are taken as follows: 

1 2 3 4(0) 5, (0) 30, (0) 8, (0) 20.   = − = = =  

The initial values for the slave system Equation (7) are taken as follows:  

1 2 3 4(0) 8, (0) 12, (0) 38, (0) 16.   = − = = − =       
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Figure 4 illustrates the complete synchronization of two identical memristor-based hyperchaotic Lorenz 

systems Equations (4) and (7). 

Figure 5 shows the error states approaching zero for 
1 2 3 4( ), ( ), ( ), ( )e t e t e t e t  , t → . 

 

 

 

 

 

 

 

 

 

 

Figure 4 Synchronization of memristor-based hyperchaotic lorenz system 

 

 

 

 

 

 

 

 

 

 

 

                          Figure 5. The error responses of the state variables 
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4 Conclusions  

This study aims to explore chaos synchronization in memristor-based hyperchaotic Lorenz systems. The 

synchronization process for a memristor-based Lorenz system has been introduced, and its effectiveness 

has been validated through MATLAB simulations. The results of the simulations for the controlled 

memristor-based Lorenz circuit are presented to demonstrate the efficacy of the proposed 

synchronization method. Simulation results of the controlled memristor-based Lorenz circuit are 

provided to demonstrate the effectiveness of the proposed method. The simulation results demonstrate 

that 
1 1 2 2 3 3 4 4( , ), ( , ), ( , ), ( , )         synchronize in as short as 2 seconds. The error parameters 

approach zero in the 
1 2 3 4( ), ( ), ( ), ( )e t e t e t e t  formula within 2 seconds. Sliding mode control is a robust 

approach that is less affected by external disturbances, enabling the system to operate with successful 

performance, as evidenced in various studies. It provides a strong defence against external influences, 

ensuring minimal impact and system effectiveness. In this paper, the effectiveness of synchronization 

results achieved using sliding mode control for memristor-based hyperchaotic Lorenz systems is 

demonstrated through numerical simulations. The Lyapunov exponents of the system have been 

examined, showing the presence of two positive exponents. 
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