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1. INTRODUCTION  
 

Recently, the reduction in fossil fuel reserves and the 

impact of global warming have driven a greater focus on 

sustainable, clean, and renewable energy (RE) sources such as 

geothermal energy, hydroelectric, solar, and wind [1,2]. 

Among RE sources, solar energy is one of the most powerful 

and is being used increasingly often [3]. Solar panels (SPs) are 

key to producing solar energy efficiently [4]. The performance 

and durability of SPs are closely connected to identifying and 

fixing potential issues. Therefore, early detection of faults in 

SPs is crucial for ensuring uninterrupted energy production and 

reducing maintenance costs [5-8]. 

The SP faults result from a combination of electrical 

irregularities and environmental factors. Various issues, such 

as pyhsical damage, electrical damage, hot spots, bird 

droppings, dust, and panel deformation due to external 

conditions, can cause disruptions in energy production [9-12]. 

Traditional machine learning methods for detecting these faults 

tend to be both costly and time-consuming. However, fault 

detection methods based on manual inspections and remote 

monitoring tools have been significantly improved recently 

with the advent of deep learning (DL) models [1,6]. The DL 

involves artificial intelligence techniques capable of 

recognizing and learning complex patterns from large datasets 

[13]. Convolutional neural networks (CNNs) and DL-based 

feature extractors are particularly effective in extracting precise 

information from image data and identifying faults [11,14]. 

Using DL methods to detect faults in SPs provides several 

advantages. Early fault detection can extend the lifespan of 

panels, reduce energy production losses, and make 

maintenance processes more efficient, thereby increasing the 

reliability of solar energy systems [15,17]. 

In the literature, there are various studies on fault detection 

from SP images using DL models. Some of these studies are as 

follows. Espinosa et al. [5] introduced an automated technique 

for classifying faults in SP images by employing CNNs for 

both classification and semantic segmentation based on RGB 

images. The method achieved an average accuracy 70% for 

categorizing four classes: dust, shadows, cracks, no-fault, and 

75% for distinguishing between no-fault and fault categories. 

Le et al. [6] introduced a CNN framework that combines a 

residual network method with ensemble method to identify 

faults in photovoltaic modules. Following the method, they 

applied various transformations to augment the dataset, aiming 

to achieve the highest classification performance. Additionally, 
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they determined the optimal number of filters by evaluating 

both the augmented datasets and raw with different filter 

configurations. The ensemble method achieved an accuracy of 

94.40% for the 2-class problem and 85.90% for the 12-class 

problem. Duranay [11] examines using infrared images of solar 

modules for detecting defects via DL, aiming to improve solar 

energy system efficiency. The dataset included 20,000 images 

across 12 classes, with classification performed using an 

EfficientNetB0 model and SVM classifier. The method 

achieved strong results, with average accuracy of 93.93%, F1-

score of 89.82%, precision of 91.50%, and sensitivity of 

88.28%. Mahmud et al. [12] conducted fault detection on SP 

images using the VGG16 and VGG19 models. Their dataset, 

besides clean panels, included five additional classes: Snow-

Covered, Physical damage, Electrical damage, Bird-drops, and 

Dusty. Their experimental results showed a prediction 

accuracy of 72.88% with VGG16 and 86.44% with VGG19. 

Alves et al. [18] introduced a CNN architecture for classifying 

faults in photovoltaic modules. They created a balanced dataset 

by applying oversampling and undersampling techniques. To 

analyze the classification effectiveness of their proposed 

approach, they examined different scenarios. The overall 

classification criterias for the 2-class problem were reported as 

92.50% for accuracy (Acc), 92.00% for F1-score (F1s), recall 

(R), and precision (P). Additionally, They noted that the 

proposed approach acquired an Acc of 66.43% for the 11-class 

problem. Lee et al. [19] introduces LIRNet, a lightweight 

inception residual convolutional network designed for 

detecting faults in SPs. LIRNet leverages DL and hierarchical 

learning, consisting of two phases: data preprocessing using K-

means clustering to refine the dataset, followed by model 

training to enhance fault detection accuracy and processing 

speed. 

In this study, we propose concatenating ResNet and 

EfficientNet models to classify faults in SP images. ResNet is 

known for its ability to effectively train deep neural networks 

using residual connections, which help prevent issues like 

vanishing gradients. EfficientNet, on the other hand, optimizes 

accuracy and efficiency by scaling depth, width, and resolution 

systematically. By concatenating these models, the proposed 

approach benefits from ResNet's depth and learning 

capabilities and EfficientNet's balanced performance, resulting 

in improved fault classification accuracy. To test the 

effectiveness of the proposed model, a dataset containing 

images of SPs with six classes was used. Experimental results 

on this dataset showed that among the ResNet models, 

ResNet152 acquired the best performance with an Acc of 

84.15%, P of 85.72%, R of 82.84%, and F1s of 83.97%. For the 

EfficientNet models, the best results were obtained with 

EfficientNetB2, achieving an Acc of 82.64%, P of 83.96%, R 

of 83.54%, and F1s of 83.67%, and with EfficientNetB4, 

achieving an Acc of 83.40%, P of 83.68%, R of 83.45%, and 

F1s of 83.41%. The concatenation of different versions of the 

two models resulted in the best performance with the 

ResNet101 + EfficientNetB1 model, achieving an Acc of 

87.55%, P of 87.92%, R of 88.75%, and F1s of 88.13%. This 

concatenation showed improvements in classification metrics 

compared to the closest models by 3.4% in Acc, 2.2% in P, 

5.21% in R, and 4.16% in F1s. 

In the other sections of the paper, Section 2 covers the 

dataset containing solar panel images, the proposed model, and 

the models that make up the proposed model. Section 3 

discusses the experimental setup, evaluation metrics, and 

experimental results in detail. The final section, Section 4, 

provides a general summary of the study's findings. 

 

2. MATERIALS AND METHODS 
 

2.1. Solar Panel (SP) Dataset  
The presence of bird drops, snow, dust etc. on SP surfaces 

decreases their efficiency and the energy they generate. Thus, 

it is essential to monitor and clean these panels regularly. 

Creating an effective process for monitoring and cleaning SPs 

is crucial to enhance their efficiency, lower maintenance costs, 

and minimize resource usage. 

In this study, a dataset containing publicly available SP 

images from the Kaggle platform was used [20]. This dataset 

consists of images of clean, dusty, and various damaged panels, 

categorized into six different classes. The classes are as 

follows: snow-covered, physical damage, electrical damage, 

bird drops, dusty, and clean. The original dataset includes a 

total of 885 SP images. Among these images, 193 are clean, 

190 are dusty, 103 have electrical damage, 69 have physical 

damage, 123 are snow-covered, and 207 contain bird drops. 

The sample panel images in the dataset are shown in Figure 1. 

The aim of utilizing this dataset is to evaluate the 

effectiveness of various machine learning classifiers in 

accurately classifying bird drops, snow, dust, as well as 

electrical and physical damage on the surfaces of SPs. 

 

 
Clean (C) 

 
Bird-drops (BD) 

 
Dusty (D) 

 
Electrical-damage 

(ED) 

 
Physical-damage (PD) 

 
Snow-covered (SC) 

Figure 1.  Sample images of solar panels 

 

2.2. Transfer Learning 
Transfer learning (TL) is an effective method in DL that 

involves utilizing a model trained for one specific task as the 
foundation for a model aimed at a different but related task 
[21]. This approach is particularly beneficial in DL, as it allows 
models to leverage features learned from large datasets, 
reducing the amount of data and training time required for new 
tasks [22]. The primary concept involves transferring 
knowledge from one domain (source) to another (target), where 
the source domain contains a large amount of data, while the 
target domain has only a small amount of data available. 

The TL involves utilizing feature extraction from a model 
that has already been pre-trained, thereby avoiding the 
necessity for developers to train a model from scratch [21]. 
Typically, a TL model is trained on a large dataset such as 
ImageNet [23]. The learned parameters from this model can 
then be applied to a CNN-based model for a different but 
related application. Such models can be directly employed for 

165



EUROPEAN JOURNAL OF TECHNIQUE, Vol.14, No.2, 2024 

 

Copyright © European Journal of Technique (EJT)                  ISSN 2536-5010 | e-ISSN 2536-5134                                    https://dergipark.org.tr/en/pub/ejt 

  

making predictions on new tasks or integrated into the training 
processes of related applications [21,22]. 

In summary, the TL is a versatile and efficient approach to 
developing deep learning models, allowing the reuse of 
existing knowledge to solve new problems. It accelerates the 
training process, improves performance, and is particularly 
useful when working with limited data. By leveraging pre-
trained models and applying techniques like feature extraction 
and fine-tuning, transfer learning can effectively address a wide 
range of tasks across different domains. 

In this study, EfficientNet [24] and Residual Network 
(ResNet) [25], two important pre-trained models available in 
the Keras library, are used for classifying faults in solar panels. 

2.3. Residual Network (ResNet) Model 
Residual networks, or ResNets, are a type of deep CNN 

architecture introduced to address the challenges associated 

with training very deep networks. The key innovation of 

ResNets is the concept of residual learning (RL), which helps 

overcome issues like vanishing gradients and difficulty in 

training deep models [25]. 

The RL is a technique in deep learning designed to address 

the difficulties associated with training very deep CNN. Instead 

of learning the entire transformation directly from input to 

output, the RL focuses on learning the residual, or the 

difference between the desired output and the input [25]. 

In practice, this means that if the aim of the network is to 

learn a mapping 𝐻(𝑥), it learns 𝐹(𝑥)=𝐻(𝑥)−𝑥 instead. Here, 

𝐻(𝑥) is the desired mapping, 𝑥 is input, and 𝐹(𝑥) represents the 

residual function. The final output of the network is then 

obtained by adding this residual to the original input, resulting 

in 𝐹(𝑥)+𝑥 (Figure 2). This method simplifies the learning 

process by allowing the network to concentrate on the 

residuals, which are often easier to model than the complete 

transformation [25]. 

The RL is implemented through residual blocks, which are 

the core components of ResNets. Each block consists of several 

convolutional layers followed by a skip connection that adds 

the input of the block directly to its output (Figure 2). These 

shortcut or skip connections, ensure that the learning focuses 

on the residuals and help maintain the flow of gradients during 

training, thus mitigating the vanishing gradient problem. In 

addition, the benefits of the RL are substantial. It makes the 

training of very deep networks more manageable by 

simplifying the optimization process. By enabling the effective 

training of deeper models, the RL enhances feature extraction 

capabilities and overall model accuracy [25]. 

 

 
Figure 2.  Block of residual learning 

 

ResNets can be quite deep, with common variants including 

ResNet50, ResNet101, and ResNet152 where the number 

indicates the number of layers. This depth enables the network 

to learn more complex features and achieve high accuracy in 

various tasks [25]. ResNet50 model has 50 layers and is known 

for its balance between performance and computational 

efficiency. It is commonly used for various image recognition 

tasks. Suitable for applications where computational resources 

are limited, and real-time performance is needed. With 101 

layers, ResNet101 model provides increased depth compared 

to ResNet50, allowing it to capture more complex features and 

achieve higher accuracy on image classification tasks. Ideal for 

tasks requiring more detailed feature extraction and where 

additional computational resources are available. It can be a 

good choice for medium to large-scale image classification 

tasks. The deepest among the three, with 152 layers, 

ResNet152 offers even greater accuracy, making it suitable for 

more demanding image recognition tasks. However, it requires 

more computational resources and longer training times.Best 

for high-performance applications that require the utmost 

accuracy, such as medical imaging and large-scale visual 

recognition [25]. 

2.4. EfficientNet Model 
EfficientNet is a family of CNNs designed for image 

classification tasks, introduced by Google researchers. The key 

innovation in EfficientNet is its use of a compound scaling 

approach that uniformly scales all dimensions of resolution, 

width, and depth. This approach ensures EfficientNet models 

to acquire higher accuracy and efficiency compared to previous 

models [24]. 

The EfficientNet family comprises models named from 

EfficientNetB0 to EfficientNetB7, each increasing in size and 

complexity. EfficientNetB0 is the smallest and simplest model 

in the family, serving as the base model. It has approximately 

5.3 million parameters and performs about 0.39 billion 

floating-point operations (FLOPs). EfficientNetB1 is slightly 

larger than EfficientNetB0, with around 7.9 million parameters 

and approximately 0.70 billion FLOPs. EfficientNetB2 

continues this trend, being larger than EfficientNetB1, with 

roughly 9.2 million parameters and about 1.0 billion FLOPs. 

EfficientNetB3 increases the size and complexity even further, 

containing around 12 million parameters and performing 

approximately 1.8 billion FLOPs. EfficientNetB4, significantly 

larger than B3, has around 19 million parameters and about 4.2 

billion FLOPs. EfficientNetB5 is larger still, with 

approximately 30 million parameters and 9.9 billion FLOPs, 

offering very high accuracy suitable for high-end applications 

with substantial computational resources. EfficientNetB6, 

larger than B5, contains around 43 million parameters and 

performs approximately 19 billion FLOPs. It provides 

extremely high accuracy, making it suitable for applications 

demanding the highest performance and having ample 

computational power. At the top of the scale is EfficientNetB7, 

the largest model in the family, with around 66 million 

parameters and approximately 37 billion FLOPs [24]. 

The fundamental building block used in EfficientNet 

models is the MBConv block, which stands for Mobile Inverted 

Bottleneck Convolution [26]. This block is optimized for both 

performance and efficiency, making it well-suited for deep 

neural networks used in mobile and resource-constrained 

environments. EfficientNet models use a varying number of 

MBConv blocks in their models, depending on the specific 
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model variant (B0 to B7). The number of MBConv blocks 

increases with the model size, contributing to the depth and 

complexity of the network [24,26].  

The MBConv block combines several methods to achieve 

high computational efficiency and powerful feature extraction, 

as shown in Figure 3. These methods in the structure of the 

MBConv block are as follows. 
Inverted Bottleneck: Traditional bottleneck layers in neural 

networks reduce the dimensionality of the data before 
processing it further. In contrast, the inverted bottleneck layer 
in MBConv expands the dimensionality of the input features 
(i.e., increases the number of channels) before applying further 
convolutions. This expansion allows the network to capture 
more complex features and then compress them back to a 
lower-dimensional space efficiently [27]. 

Depthwise Convolution (DC): This convolution operation 
applies a single filter to each input channel separately, as 
opposed to using multiple filters across all channels. This 
significantly reduces the computational complexity and the 
number of parameters required [28]. 

Pointwise Convolution (PC) (1x1 Convolution): After the 
DC, a PC is used to combine the outputs of the DC. This step 
effectively mixes information across different channels and 
compensates for the reduced computational complexity of the 
DC [28]. 

Squeeze-and-Excitation (SE) Block: The SE block is 
integrated within the MBConv block to enhance the 
representational power of the network. It consists of two main 
steps: Squeeze: Global average pooling is applied to each 
channel of the feature map to produce a channel descriptor, 
reducing each feature map to a single value. Excitation: These 
descriptors are passed through two fully connected (FC) layers 
with a Swish activation in between, generating a set of weights 
that are used to scale the original input channels. This process 
helps the network focus on the most important features by re-
calibrating the feature maps [29]. 

Residual Connections: Residual connections are used to 
add the input of the MBConv block directly to its output. This 
skip connection helps in mitigating the vanishing gradient 
problem, making it easier to train deeper networks. It also 
enables the network to learn residual mappings, which are often 
more straightforward to optimize than learning the complete 
transformation [25]. 

The working steps of the MBConv block given in Figure 3 

are as follows: 

 The process starts with an input tensor, which is a set of 
features with a certain number of channels. The first step 
is to expand this input tensor by increasing the number of 
channels. This is done using a pointwise convolution (1x1 
convolution). This expansion allows the network to 
capture more detailed and complex features from the input 
data. 

 After expanding the number of channels, the next step is 
to apply a DC. Unlike a regular convolution that operates 
across all channels, a DC applies a separate filter to each 
channel. This means that each channel is processed 
independently. This step is computationally efficient 
because it decreases the number of parameters and 
operations compared to a full convolution. 

 The output from the DC is then passed through a squeeze-
and-excitation block. 

 After the SE block has re-weighted the channels, another 
PC (1x1 convolution) is implemented to decrease the 
number of channels back to the original count. This step 

compresses the expanded and processed features back to a 
manageable number of channels, making the output tensor 
easier to handle. 

 Dropout is used in MBConv blocks to prevent overfitting 
and improve generalization by randomly deactivating a 
subset of neurons during training. 

 If the dimensions of the input tensor and the output tensor 
after the compression phase (second PC) are the same, a 
residual connection is used. This means the original input 
tensor is added to the output tensor, helping the network 
learn better by preserving the original input information. 

 Batch normalization (BN) is performed after each 
convolution operation in the network. BN is used to 
stabilize and speed up the training process of deep neural 
networks in MBConv blocks. In addition, the activation 
function used in this network is Swish. The EfficientNet 
model uses the Swish activation function, which has been 
shown to improve performance compared to traditional 
activation functions like ReLU (Rectified Linear Unit). 
 

Input

1x1 Convolution

(increases the number 

of channels)

BN

Swish

3x3 or 5x5 

Depthwise 

Convolution

BN

Swish

SE block

1x1 Convolution

(reduced the number 

of channels)

BN

+

Output

Global average 

pooling

Fully Connected 1

Swish

Fully Connected 2

Sigmoid

X

Dropout

(reducing overfitting)

 
Figure 3.  Structure of MBConv 

 

2.5. Proposed Model 
In this study, a concatenation of ResNet and EfficientNet 

models is proposed for automated classification of faults in 

solar panels. The proposed model is a concatenation of 

ResNet101 and EfficientNetB1 models as shown in Figure 4. 

The reasons for using ResNet101 in the proposed model are as 

follows: (1) ResNet101’s depth allows it to capture more 

detailed features than ResNet50, making it more effective for 

tasks that require distinguishing between fine-grained classes. 

(2) ResNet101 strikes a balance between the number of layers 

and computational efficiency, making it suitable for tasks that 

are not too simple but also not extremely complex. (3) 

Compared to ResNet152, ResNet101 is less prone to overfitting 
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on small datasets, which is crucial for maintaining good 

generalization performance. In summary, ResNet101 

outperformed ResNet50 and ResNet152 because it provides the 

right depth and complexity for the task at hand. It is deep 

enough to capture complex patterns in the solar panel images, 

but not so deep that it overfits on the relatively small dataset, 

making it the best choice for achieving high accuracy. The 

reasons for using the EfficientNetB1 model in the proposed 

model are as follows: (1) EfficientNetB1 has more parameters 

and a higher resolution input size compared to EfficientNetB0, 

allowing it to capture more detailed features and improve 

classification accuracy. (2) Compared to EfficientNetB0, The 

additional layers and width in EfficientNetB1 help in learning 

more complex patterns and subtle differences, which is crucial 

for tasks like fault detection in solar panels where fine details 

matter. (3) EfficientNetB1 has significantly fewer parameters 

and FLOPs compared to larger models (EfficientNetB2 to B7), 

making it more efficient and suitable for environments with 

limited computational resources. 

The proposed model starts with an input image. The size of 

the input solar panel image is 224 x 224 x 3. Then, this input 

image is given to the input of ResNet101 and EfficientNetB1 

models separately and feature extraction is performed. A 

detailed description of the layer steps of the ResNet101 model 

when performing feature extraction on the 224x224x3 input 

image is as follows. Following the input layer, the image is 

passed through the first convolutional layer, which applies 64 

filters, each of size 7x7, with a stride of 2. This operation 

increases the depth of the feature maps and reduces the spatial 

dimensions, resulting in an output of size 112x112x64. This 

initial convolutional layer is crucial for capturing low-level 

features, such as edges and textures, in the input image. The 

output from the convolutional layer is then normalized using a 

batch normalization layer, which stabilizes and accelerates the 

training process by normalizing the inputs to each layer. After 

batch normalization, a ReLU activation function is 

implemented to introduce non-linearity into the model, 

enabling it to learn more complex representations. Next, a max 

pooling layer with a filter size of 3x3 and a stride of 2 further 

reduces the spatial dimensions, yielding an output of size 

56x56x64. This pooling operation helps to down-sample the 

feature maps and reduce computational complexity, while also 

retaining important features. ResNet101 is primarily built using 

bottleneck residual blocks, each consisting of three 

convolutional layers: 1x1, 3x3, and 1x1. The network contains 

several groups of these blocks, organized to gradually reduce 

the spatial dimensions while increasing the depth, allowing the 

network to learn increasingly abstract features. The bottleneck 

residual blocks in the ResNet101 model are as follows: 
Conv2x Stage (3 Blocks): The first set of residual blocks, 

known as Conv2x, begins with a bottleneck block that 
comprises three key layers: 1x1 Convolution Layer uses 64 
filters to reduce the dimensionality of the input, making the 
computation more efficient. 3x3 Convolution Layer (the main 
processing layer), which employs 64 filters to perform 
convolutions and extract features. 1x1 Convolution Layer 
restores the dimensionality using 256 filters, preparing the 
output for the next stage. Within each bottleneck block, a 
residual connection adds the input to the output, creating a 
shortcut path that enables gradients to flow more easily during 

backpropagation. This mechanism is central to the success of 
residual networks, as it alleviates the vanishing gradient 
problem. The Conv2_x stage contains three of these bottleneck 
blocks, each maintaining an output size of 56x56x256. 

Conv3x Stage (4 Blocks): The next stage, Conv3x, 
introduces the first bottleneck block with downsampling, 
which reduces the spatial dimensions while increasing the 
depth. 1x1 Convolution Layer utilizes 128 filters to reduce 
dimensions. 3x3 Convolution Layer continues processing with 
128 filters. 1x1 Convolution Layer increases dimensions using 
512 filters. The Conv3_x stage consists of four bottleneck 
blocks, resulting in an output size of 28x28x512. 

Conv4x Stage (23 Blocks): The Conv4x stage is the deepest 
stage, consisting of 23 bottleneck blocks, each further refining 
the feature maps. 1x1 Convolution Layer employs 256 filters 
for dimensionality reduction. 3x3 Convolution Layer applies 
256 filters for feature extraction. 1x1 Convolution Layer 
restores dimensions with 1024 filters. The Conv4x stage 
maintains an output size of 14x14x1024. 

Conv5x Stage (3 Blocks): The final set of blocks, Conv5x, 
consists of three bottleneck blocks that further distill the 
features. 1x1 Convolution Layer uses 512 filters for 
dimensionality reduction. 3x3 Convolution Layer processes 
with 512 filters. 1x1 Convolution Layer expands dimensions 
with 2048 filters. The output from this stage has a size of 
7x7x2048. After the final convolutional stage, ResNet101 
employs a global average pooling (GAP) layer. This layer 
reduces each feature map to a single value by averaging, 
resulting in a 2048-dimensional feature vector. This vector 
effectively summarizes the learned features from the input 
image. 

A detailed description of the layer steps of the 
EfficientNetB1 model when performing feature extraction on 
the 224x224x3 input image is as follows. Following the input 
layer, the image is passed through the first convolutional layer, 
which applies 32 filters, each of size 3x3, with a stride of 2. The 
output size obtained at the end of this process is 112x112x32. 
MBConv blocks in the EfficientNetB1 model are applied to the 
obtained output feature map. EfficientNetB1 consists of seven 
MBConv blocks. These are depth separable convolutions that 
are efficient and help to decrease the number of parameters and 
computations while maintaining performance. The blocks are 
organised as follows: Block 1 includes two MBConv 3x3 
layers. Block 2 includes three MBConv 3x3 layers. Block 3 
includes three MBConv 5x5 layers. Block 4 includes four 
MBConv 3x3 layers. Block 5 includes four MBConv 5x5 
layers. Block 6 includes five MBConv 5x5 layers. Block 7 
includes two MBConv 3x3 layers. The output from all 
MBConv block has a size of 7x7x2560. After the final 
MBConv block, EfficientNetB1 employs the GAP layer. This 
layer reduces each feature map to a single value by averaging, 
resulting in a 2560-dimensional feature vector. After 
performing feature extraction using both ResNet101 and 
EfficientNetB1 models, the obtained feature maps are passed 
through a GAP layer, and then the two models are 
concatenated. The concatenated model results in a 4608-
dimensional feature vector. Subsequently, a FC layer with 128 
neurons is applied. After the FC layer, batch normalization is 
applied, followed by a dropout layer with a dropout rate of 0.3. 
Finally, classification is performed using a softmax classifier. 
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Figure 4.  Structure of proposed model 
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3. EXPERIMENTS 
 

3.1. Experimental Setup 
In the experimental studies, the python programming 

language and Keras-TensorFlow libraries were used. All 

python code was written on the Kaggle notebook platform. For 

training the proposed model on the Kaggle platform, a GPU 

P100 was used as the execution environment. The 

hyperparameters used are as follows: batch size 64, learning 

rate 0.0001, and the number of epochs was set to 150. The 

Adam optimization method was used. The input image 

dimensions were set to 224x224x3. The dataset containing 885 

solar panel images was split into training and test datasets as 

70% and 30%, respectively. That is, 620 images were used for 

training and 265 images for testing. Sparse Categorical 

Crossentropy (SCC) loss function is used to train the proposed 

model. The SCC is a loss function that is particularly 

advantageous for multi-class classification problems where 

labels are available as integers rather than one-hot encoded 

vectors. This loss function is efficient because it directly uses 

integer labels, reducing memory and computational overhead 

compared to Categorical Crossentropy, which requires one-hot 

encoded labels. It is well-suited for tasks where each instance 

belongs to a single class among many, providing a 

straightforward probabilistic interpretation of predictions 

through integration with the softmax activation function. This 

efficiency and compatibility make the SCC an ideal choice for 

training models with a significant number of classes, as in our 

solar panel image classification task [30-32]. 

 

3.2. Evaluation Metrics  
Different evaluation metrics were used to compare the 

performance of the proposed model. The following four 

metrics are commonly used when observing various criteria of 

a classifier. 

Accuracy represents the ratio of correct predictions to the 

total number of predictions made by the model. Accuracy is 

calculated as in Equation (1) [33]. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝑐𝑐) =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
                     (1) 

 

In the context of multi-class classification, precision is a 

metric that evaluates the accuracy of positive predictions made 

by a model for each class. Precision measures how many of the 

examples predicted as positive actually belong to the class. It is 

defined as shown in Equation (2) [33]. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃)  =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                             (2) 

 

Recall is a metric used in classification to evaluate a model's 

ability to correctly identify all relevant examples (true 

positives) from the total actual positive examples (true 

positives + false negatives). In other words, it measures the 

percentage of true positive examples correctly identified by the 

model. It is defined as shown in Equation (3) [33]. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅)  =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                             (3) 

 

The F1-score is a metric used in multi-class classification 

to balance precision and recall. By combining both precision 

and recall into a single value, it becomes a useful metric for 

evaluating the overall performance of a method. The F1-score 

is calculated as the harmonic mean of precision and recall, and 

it is particularly valuable when a balance between false 

positives and false negatives is desired. It is calculated as 

shown in Equation (4) [33]. 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 (𝐹1𝑠) = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
                    (4) 

 

The terms TN, TP, FN, and FP in Equations (1)-(4) are 

derived from the confusion matrix. True Negatives (TN) 

represent the number of examples that the model correctly 

predicts as belonging to the negative class (e.g., "0" or "no"). 

These are cases where the model correctly identifies examples 

as not belonging to the positive class when they truly don't. 

True Positives (TP) represent the number of examples that the 

model correctly predicts as belonging to the positive class (e.g., 

"1" or "yes"). These are cases where the model correctly 

identifies examples as belonging to the positive class when they 

truly do. False Positives (FP) represent the number of examples 

that are actually in the negative class but are incorrectly 

predicted by the model as belonging to the positive class. These 

are situations where the model makes a positive prediction 

when it should have made a negative one. False Negatives (FN) 

represent the number of examples that are actually in the 

positive class but are incorrectly predicted by the model as 

belonging to the negative class. These are situations where the 

model makes a negative prediction when it should have made 

a positive one [33,34]. 

 

3.3. Experimental Results and Discussion 
The proposed model is a concatenation of ResNet and 

EfficientNet models. In the proposed model, the best 

classification result is obtained with the concatenation of 

ResNet101 and EfficientNetB1 models. The confusion matrix 

of the proposed model (ResNet101 + EfficientNetB1) is given 

in Figure 5. When examining Figure 5, it can be seen that 48 

out of a total of 57 panel images in class Bird-drops (BD) are 

correctly classified. Similarly, 51 out of a total of 55 images in 

class Clean (C), 44 out of 57 images in class Dusty (D), 28 out 

of 34 images in class Electrical-damage (ED), 24 out of 25 

images in class Physical-damage (PD), and finally, all 37 

Snow-covered (SC) images are correctly classified. Out of a 

total of 265 test images, 232 are correctly classified. In this 

case, the test accuracy is (232/265) * 100 = 87.55%. 

 

 
Figure 5.  The confusion matrix of proposed model 
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In this study, comparisons were made with various pre-

trained deep learning models including EfficientNetB0-B7 

[24], ResNet50-101-152 [25], VGG16-19 [35], MobileNet 

[36], MobileNetV2 [27], DenseNet121-169-201 [37] to 

classify faults in solar panel images. The results of the 

comparison are given in Table 1. When Table 1 is analyzed, it 

is clearly seen that the best results are obtained with ResNet 

and EfficientNet models. Table 1 also shows the classification 

results obtained by combining ResNet50-101-201 and 

EfficientNetB0-B7 models. A detailed analysis of all the 

models in Table 1 is as follows: 

The VGG16 and VGG19 models, known for their 

simplicity and depth, achieved moderate performance with 

VGG16 slightly outperforming VGG19. VGG16 achieves an 

Acc of 66.79%, with P of 69.12%, R of 67.82%, and an F1s of 

68.24%. VGG19, on the other hand, has slightly lower metrics 

across the board, with an Acc of 65.28%, P of 67.50%, R of 

65.96%, and an F1s of 66.20%. The marginally better 

performance of VGG16 suggests that, for this dataset, the 

additional depth of VGG19 does not translate into improved 

results. This may be due to the increased complexity and 

overfitting associated with deeper networks. 

MobileNet models are designed for efficiency, balancing 

performance with computational cost. The original MobileNet 

achieves an Acc of 66.42%, with P, R, and F1s around 65%. 

MobileNet performed similarly to VGG16 with an Acc of 

66.42%. However, MobileNetV2 shows a notable drop in 

performance, with all metrics hovering around 59-60%. This 

decline suggests that the architectural changes in 

MobileNetV2, which aim to improve efficiency, may have 

compromised its ability to capture relevant features in this 

specific dataset. 

DenseNet models, known for their dense connectivity, 

generally outperform VGG and MobileNet models. 

DenseNet121, DenseNet169, and DenseNet201 exhibit 

accuracies of 69.43%, 69.06%, and 68.30%, respectively. P, R, 

and F1s for these models are also consistently high, can 

indicating reliable performance. These results show that 

DenseNet architectures are more capable of capturing complex 

images in data than VGG and MobileNet models. The 

improvement over VGG and MobileNet models can be 

attributed to the enhanced feature propagation and reduced 

vanishing-gradient problem inherent in DenseNet 

architectures. 

ResNet models significantly outperform the previously 

discussed models (VGG, MobileNet, and DenseNet). 

ResNet50 achieves an Acc of 79.62%, with P and F1s both at 

80.40%, and a R of 80.50% [38]. Larger ResNet models, such 

as ResNet101 and ResNet152, further enhance performance, 

with ResNet152 achieving the highest individual model Acc of 

84.15%, P of 85.72%, R of 82.84%, and an F1s of 83.97% [38]. 

In addition, ResNet101 achieving individual model Acc of 

83.40%, P of 84.37%, R of 84.04%, and an F1s of 84.07% [38].  

The success of ResNet architectures can be attributed to their 

ability to mitigate the vanishing gradient problem through skip 

connections, allowing them to maintain high performance even 

with increased depth. 

EfficientNet models also exhibit strong performance, with 

several variants outperforming most other EfficientNet models. 

EfficientNetB2 and EfficientNetB4 stand out with accuracies 

of 82.64% and 83.40%, respectively. These models also 

maintain high precision, recall, and F1-scores, indicating 

balanced performance across different metrics. The 

EfficientNet model scales depth, width, and resolution in a 

compound manner, optimizing performance while maintaining 

computational efficiency. 

The concatenation of ResNet and EfficientNet models 

yields the highest performance metrics. Notably, the 

concatenation of ResNet101 and EfficientNetB1 (proposed 

model) achieves the highest overall performance, with an Acc 

of 87.55%, P of 87.92%, R of 88.75%, and F1s of 88.13%. This 

concatenation leverages the strengths of both models—

ResNet's robust feature learning and EfficientNet's balanced 

scaling—resulting in superior classification capabilities. Other 

successful concatenation include ResNet101 with 

EfficientNetB3,  ResNet101 with EfficientNetB4, ResNet101 

with EfficientNetB6, and ResNet152 with EfficientNetB5, all 

of which show high accuracies and balanced metric scores. 

These results suggest that model ensembling, particularly 

concatenating different models, can effectively enhance 

performance by capturing diverse feature representations. 

 
TABLE I 

COMPARISON WITH DIFFERENT DEEP LEARNING MODELS 

Models Acc(%) P(%) R(%) F1s(%) 

VGG16 66.79 69.12 67.82 68.24 

VGG19 65.28 67.50 65.96 66.20 

MobileNet 66.42 65.56 65.84 65.64 

MobileNetV2 59.62 59.54 59.59 59.27 

DenseNet121 69.43 70.99 68.17 69.19 

DenseNet169 69.06 69.91 69.47 69.49 

DenseNet201 68.30 70.38 66.85 67.86 

ResNet50 79.62 80.40 80.50 80.40 

ResNet101 83.40 84.37 84.04 84.07 

ResNet152 84.15 85.72 82.84 83.97 

EfficientNetB0 81.13 82.39 82.16 82.07 

EfficientNetB1 81.89 83.39 81.36 82.06 

EfficientNetB2 82.64 83.96 83.54 83.67 

EfficientNetB3 80.00 81.76 80.70 81.09 

EfficientNetB4 83.40 83.68 83.45 83.41 

EfficientNetB5 81.89 82.81 81.96 82.26 

EfficientNetB6 77.74 78.75 78.56 78.50 

EfficientNetB7 76.60 78.02 76.90 77.31 

ResNet50 + EfficientNetB0 83.02 83.11 84.13 83.53 

ResNet50 + EfficientNetB1 82.64 84.17 83.87 83.96 

ResNet50 + EfficientNetB2 83.02 83.64 83.41 83.37 

ResNet50 + EfficientNetB3 80.76 81.47 81.06 81.12 

ResNet50 + EfficientNetB4 81.51 81.71 82.60 82.10 

ResNet50 + EfficientNetB5 83.77 85.37 85.47 85.28 

ResNet50 + EfficientNetB6 82.26 83.55 82.25 82.71 

ResNet50 + EfficientNetB7 83.02 84.18 84.51 84.29 

ResNet101 + EfficientNetB0 83.40 84.37 84.62 84.28 

ResNet101 + EfficientNetB1 87.55 87.92 88.75 88.13 

ResNet101 + EfficientNetB2 86.42 86.24 86.11 86.11 

ResNet101 + EfficientNetB3 87.17 88.49 87.58 87.86 

ResNet101 + EfficientNetB4 87.17 87.24 87.23 87.21 

ResNet101 + EfficientNetB5 85.28 85.82 86.09 85.76 

ResNet101 + EfficientNetB6 87.17 88.03 86.87 87.32 

ResNet101 + EfficientNetB7 84.53 85.13 84.40 84.53 

ResNet152 + EfficientNetB0 86.04 87.23 86.47 86.78 

ResNet152 + EfficientNetB1 83.77 86.32 84.12 84.89 

ResNet152 + EfficientNetB2 83.77 84.23 83.06 83.50 

ResNet152 + EfficientNetB3 85.66 87.76 86.71 87.12 

ResNet152 + EfficientNetB4 85.28 85.64 85.30 85.44 

ResNet152 + EfficientNetB5 86.79 87.02 87.02 86.96 

ResNet152 + EfficientNetB6 81.51 82.15 80.96 81.40 

ResNet152 + EfficientNetB7 84.15 85.42 84.80 85.07 

 

4. CONCLUSION 
SPs play a crucial role in the global transition to renewable 

energy, offering a sustainable solution to meet the world's 

energy demands. As a clean and abundant energy source, SPs 
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contribute to reducing carbon emissions and combating climate 

change. However, the effectiveness and reliability of solar 

energy systems can be significantly impacted by faults and 

defects in SPs. Common issues such as cracks, dusty, snow-

covered, soiling, and shading can reduce the efficiency of solar 

panels, leading to decreased energy output and increased 

maintenance costs. Therefore, accurate and timely detection of 

these faults is essential for maintaining the performance and 

longevity of solar energy systems. 

In this study, we propose a hybrid DL model using ResNet 

and EfficientNet models to classify faults in solar panels. 

ResNet is renowned for its ability to train very deep neural 

networks effectively, utilizing residual connections to prevent 

issues like vanishing gradients. This capability allows ResNet 

to capture intricate patterns and features in complex datasets, 

which is essential for detecting subtle defects in solar panels. 

On the other hand, EfficientNet is designed to achieve a 

balance between accuracy and computational efficiency by 

systematically scaling the network's resolution, width, and 

depth. By integrating ResNet and EfficientNet models, our 

approach benefits from the strengths of both architectures: the 

depth and learning capacity of ResNet and the optimized 

performance of EfficientNet. 
The experimental results demonstrate that the combined 

ResNet101 + EfficientNetB1 model significantly outperforms 
individual models in terms of Acc, P, R, and F1s. This hybrid 
model achieved an Acc of 87.55%, P of 87.92%, R of 88.75%, 
and F1s of 88.13%, marking notable improvements over the 
closest models. The synergistic use of ResNet and EfficientNet 
enables the proposed model to accurately identify and classify 
various faults in solar panels, thereby enhancing the reliability 
and efficiency of solar energy systems. 

In conclusion, the combination of ResNet and EfficientNet 
models offers a powerful solution for detecting and classifying 
faults in solar panels. This approach not only improves fault 
detection accuracy but also contributes to the overall 
performance and sustainability of solar energy systems. As the 
demand for solar energy continues to rise, implementing 
advanced deep learning models like the one proposed in this 
study will be essential for ensuring the long-term viability and 
efficiency of solar power installations. 

In future work, the primary aim is to further enhance the 
model's performance by experimenting with cutting-edge 
neural network models such as Vision Transformers and 
different ensemble methods. Additionally, research is planned 
to improve the model's ability to detect and classify faults by 
incorporating additional data sources, such as thermal imaging 
and real-time monitoring data. 
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