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Abstract− Intensive care units (ICUs) are divisions where critically ill patients are treated
by medical experts. The unmet and vital need for automated clinical decision-making mecha-
nisms is critical to maneuvering the large influx of patients. This became more apparent after
the COVID-19 pandemic. Existing studies focus on determining the probability of patients
dying in the ICUs and prioritizing patients in dire need. Only a few studies have calculated
the patient’s probability of returning to the ICUs after discharge. These studies reduce the
problem into a binary task of predicting mortality or re-admission only. However, this is
unrealistic since both outcomes are highly possible for each patient. In this interdisciplinary
study, two main contributions are proposed for the automated clinical decision-making state-
of-the-art: (1) using the real-life data collected from thousands of ICU patients by healthcare
professionals, three possibilities (recovery, mortality, and returning to the intensive care unit
within 30 days) are predicted for patients in intensive care instead of just one possibility. (2)
A novel feature extraction approach is proposed by the biomedical expert in our team. Four
machine learning algorithms are applied to the finalized feature set to understand the differ-
ence between the binary and the multi-class classification problems. Obtained results reach
78% success, proving the possibility of developing better clinical decision-making mechanisms
for ICUs.

Keywords − Clinical decision making, machine learning, intensive care units, mortality prediction, re-admission pre-
diction

1. Introduction

It is well recognized that many of the mortality cases in intensive care units (ICUs) were preventable
if and only if the deteriorating decline of the patient could have been noticed at the right time [1, 2].
However, there are too few healthcare professionals with ICU expertise in the hospitals. Furthermore,
since these professionals work for long hours, it becomes difficult to track the progress of every patient
24/7, non-stop. To overcome this challenge and reduce potentially dire consequences, healthcare
professionals developed scoring systems specifically for the ICU. These systems involve healthcare
professionals’ manually noting the patient’s condition obtained through measurements of vital signs
and laboratory test results under certain categories, where the professional is required to access the
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state of the patient and assign the correct score for each category, then obtaining a mathematical score
by summing the noted scores from all categories, named the Acute Physiology and Chronic Health
Evaluation (APACHE) scoring method. Based on 12 physiological parameters and the Glasglow coma
score (GSC), the total score is 71. Any patient with scoring greater than 25 is considered to be at a
higher risk for dying [3]. In real ICUs, this scoring is used for clinical decision-making - prioritizing
care, intervention needs, monitoring trends over time, and resource and staff allocation [4].

Although still used today, methods like manual APACHE scoring have numerous drawbacks. It is
difficult for healthcare employees under an intense workload to frequently visit every ICU patient,
assign accurate scores, and repeat this process every 24 hrs or as the patients’ conditions alter. More-
over, a statistical study found that scoring methods can make incorrect decisions depending on the
patient’s ethnicity [5]. Another study reports that these manual methods often calculate the patient’s
risk scores higher than the actual states [6], which means the patients received higher mortality scores,
causing a shift of attention and workload from the actual high-risk patients towards less risky ones.
This results in more frequent visits to less critical patients, thus wasting precious time that could have
been dedicated to another, more risky patient. Such an error in the ICU can cause preventable deaths.
This resource allocation and management issue in the ICUs became especially evident in early 2020
during the COVID-19 pandemic.

The in-hospital mortality rates in the United States published by the Centers for Disease Control and
Prevention (CDC) [7] shows that in the United States alone, there was an unprecedented increase in
in-hospital mortality rates in 2020, 2021, and 2022, while the rates started lowering in 2023 (Figure 1).
Studies indicate that these mortality rate increases are not because of the coronavirus alone but are
also due to the overcrowded ICUs, the inadequacy of the number of healthcare professionals, and their
inability to allocate attention and time to the excessive number of ICU patients [8]. These rates only
highlight the urgent need for the real-life use of automated clinical decision-making systems in this
technology-driven century.

Figure 1. Annual hospital mortality rates in the United States of America.

To progress towards developing automated clinical decision-making systems, a team of researchers from
interdisciplinary fields conducted various studies focusing on predicting specific pressing problems that
can cause critical patients suffering from diseases such as circulatory failure, sepsis (blood poisoning),
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or kidney failure [9–12] in ICUs to lose their lives. Meanwhile, some studies showed that even small
errors in dosages can be fatal for ICU patients [13, 14]. For example, if the circulatory failure is
correctly predicted and intervened immediately, many lives can be saved. The machine learning
methods these studies used to span from Logistic Regression (LR) to Support Vector Machines (SVM),
LightGBM (LGB), and XGBoost (XGB). In addition to these specific predictive studies, researchers
also attempted to model the general risk of ICU patients’ mortality. For example, a study modeled
the probability of patient deaths within 48 hours of ICU admission using a deep learning model called
Long Short-Term Memory (LSTM) on doctor’s notes [15]. These studies reached up to 80% success
rates in predicting mortality in ICU.

Potential dire outcomes in an ICU environment are not restricted by patient mortality. Another
critical problem is discharging ICU patients early. When an ICU patient is discharged early, before
completing the treatment, or without following their progress a little longer, the condition of the
patient can worsen without the care or attention of professionals, which might cause death to the
patient. Alternatively, suppose the patient’s condition is not as dire but has worsened after discharge.
In that case, the patient will need to be re-admitted to the ICU; certain mandatory and expensive
measurements will have to be repeated, and the treatments will need to be restarted in addition to
handling the patient’s worsened condition. This situation causes high financial losses and excessive
use of medical resources [16]. To overcome this predicament and prevent follow-up and subsequent
re-admissions, a few studies attempted to predict the likelihood of returning to the ICU within 30 days
after getting discharged [17–19]. They used machine learning methods including LR, Naive Bayes,
Random Forest (RF), SVM, Convolutional Neural Networks (CNN), and LSTMs and reported up to
75% success rates in predicting re-admission risk.

Thanks to the developments in artificial intelligence (AI) technology and the digitization of healthcare
data, developing automated clinical decision-making systems is possible. However, existing studies
show that there is still much more to achieve before the real-life use of these systems. First, they
mainly rely on a binary classification task. Most studies focus on the easier task of mortality prediction,
ignoring the re-admission risk. The same is true for the vice versa; re-admission prediction studies
do not consider mortality prediction. Yet, a real-life clinical decision-making system for ICUs should
be able to predict both risks at the same time. Second, existing studies do not conduct feature
engineering, which is essential for obtaining explainable predictive systems. In this study, both issues
are addressed.

The proposed study – to develop an improved and standardized clinical decision-making system for
use in the ICU – introduces a novel feature extraction approach informed by biomedical expertise.
Following a thorough feature engineering process, the study addresses the challenging multi-class
classification problem of predicting mortality, re-admission, and survival risks together. Furthermore,
the study accounts for data imbalance, which is how these cases are distributed in real life. Also,
rather than deep learning techniques, the study used conventional machine learning methods and a
few complex methods for several reasons. Considering the real-life application, lightweight methods
such as traditional machine learning are preferable to heavy, data-demanding models. Plus, traditional
methods perform as well as more complex methods in some scenarios [20,21]. By focusing on feature
engineering and leveraging domain expertise, the study maximizes the utility of conventional methods,
proving them highly effective for this application.

In the next sections, the dataset and the selected methods are explained. Then, experiments and the
obtained results are demonstrated, and discussions are conducted on the findings. Finally, conclusions
are provided.
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2. Materials and Methods

Figure 2. Work-flow of the present study.

The main workflow of the current study is present in Figure 2. Details of each step are explained in
the following sections.

2.1. Data

This study uses the publicly available and popular Medical Information Mart for Intensive Care-III
(MIMIC-III) dataset. This dataset contains various types of patient measurements collected from the
ICU patients of Beth Israel Deaconess Medical Center in Boston, Massachusetts, between the years of
2001 and 2012 [22–24]. It contains information on each ICU patient, including demographics such as
age, gender, and marital status. The entries were de-identified to protect the patients’ identities, and
information such as date of admission or date of birth was coded as a dummy number in the dataset.

For this study, patients outside the age range of 18 and 75 are excluded to develop a model for adults.
After selecting only the adult patients, the number decreased from 47805 to 34969. This choice
is made considering the possibility that older and younger age groups might need different clinical
decision-making systems [25, 26]. There were also many erroneous data within the dataset. The
most important problem among the whole dataset is the number of missing data. Some patients lack
demographic information such as gender, some measurements were never obtained for some patients
such as height or weight. Another critical issue is the lack of mortality and discharge dates for some
patients altogether. After removing all these errors, the dataset contains 4253 ICU mortality, 2806
ICU re-admissions, and 30057 survivors who were discharged and did not get re-admitted to the ICU
within 30 days after the discharge. Then, the complete dataset is divided into training and test sets
following the common 80-20% division rate within a 5-fold cross-validation framework. Within each
fold, to fine-tune the parameters of the complex machine learning methods, the training set of each
fold is split into training and validation sets with the 80-20% division.
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Figure 3. Age distributions in the training and test sets.

The age distributions of the remaining adult patients in the training and test sets are present in
Figure 3. Distributions are similar between training and test sets, which shows the success of random
sampling when dividing the dataset into these sets. Another visual finding from the age distributions
is the higher number of elderly patients in the dataset compared to fewer young adults. Therefore, the
number of deaths and re-admissions will be determined more heavily based on the conditions most
older adults have in the ICUs.

Table 1. Sample size of the MIMIC-III dataset used in the experiments. (0: re-admission, 1:
survival, 2: mortality)

Re-admission (0) Survival (1) Mortality (2)

Training 2311 24006 3375
Test 495 6051 878

Another distribution obtained from the data is in Table 1. The table shows the high imbalance present
in the training and test sets. Label 1 represents the dominant class, which is the recovery class. The
remaining classes, 0 and 2, represent the re-admission and mortality classes, respectively. The number
of patients in these two classes is similar. Therefore, the machine learning experiments will need to
focus on not letting the dominant class (survival) overpower the decision-making process so that the
system will predict the two rare classes: mortality and re-admission.

The distributions of the remaining demographics from the dataset are not shown in this study due
to the large number of NULL values. For the rest of the study, to handle the NULL values, they are
filled with the averages of the columns as was done in the previous literature that used the MIMIC-III
dataset [27,28].

2.2. Feature Extraction

The MIMIC-III dataset has 26 tables full of different data that can be used as features for training
machine learning models. However, selecting the correct set of features is key to achieving good perfor-
mance from machine learning [29,30]. The biomedical collaborator brought knowledge and hard work
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to accomplish this good performance to the feature engineering task. Influenced by the aforementioned
scoring method actively used in the ICUs in the United States, which requires healthcare professionals
to manually score various conditions of the patients and develop a final mortality risk score, known as
APACHE scoring, is selected as a valid basis. Leveraging this manual scoring approach, the following
measurements are selected as the initial set of features:

i. Age (years) computed from the dataset after subtracting the date of birth from the date of admission,
both de-identified.

ii. Temperature (C) of the patient.

iii. Mean arterial pressure (mmHg) of the patient.

iv. pH measurement.

v. Heart rate (beats per min).

vi. Respiratory rate (breaths per minute).

vii. Serum sodium (mEq/L), potassium (mEq/L), creatinine (mg/dL) measurements.

viii. Hematocrit.

ix. WBC (cells/ul).

x. Glasgow-coma-scale points.

xi. A - a gradient (if FiO2 ≥ 0.5) (mmHg)

xii. PaO2 (if FiO2 < 0.5) (mmHg)

xiii. History of organ insufficiency.

xiv. History of immunocompromise.

In addition to the above APACHE features, available demographics are included in the features such
as gender, marital status, height, weight, etc. It is necessary to note that except for the constant
features such as age or gender, the other measurement values are prone to change over the patient’s
progress during the ICU stay. Thus, for each patient, there are many measurements for most of the
above features. To best express the range of measurements per patient, this study uses the range
information, including minimum, maximum, and mean. Hence, in total, 165 features per patient are
obtained.

2.3. Machine Learning Methods

Reducing the numerical difference between real-life patient feature values is essential before applying
machine learning methods.

To overcome this problem, scaling the feature values in the data collection has become a standard
approach. Scaling is achieved through the following:

xi = xi − ν

ρ

where xi represents the feature’s value i, ν is the mean value of the feature column in the training set,
and ρ shows the standard deviation of the same column. Through this operation, feature values present
in the dataset are scaled to a smaller version of itself. Within the same features, their mathematical
relations are preserved, meanwhile between the features, high differences are scaled down.

Machine learning methods have been popular in the biomedical research domain for many years [31].
To achieve comparability with the ICU mortality and re-admission prediction studies summarized
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in the introduction section, the same machine learning methods commonly used in interdisciplinary
ICU-related research are selected: LR, XGB, and LGBM. In addition, RF is also selected.

LR is considered the baseline approach since it has the simplest methodology within its algorithmic
structure. LR returns the correct classification result by combining selected attributes with a linear
mathematical formula [20]. This method focuses on separating data from one class at a time in the
most successful way. L2 was used as the loss function. This simple approach becomes the baseline.

The other approach, RF, is an ensemble method that constructs multiple decision trees and averages
their decisions into one decision. As a more complex variant of an RF method, another approach used
in the experiments is XGB. It is perhaps the most popular method among the ensemble methods in
recent years. It is an optimized distributed gradient boosting method designed to be highly efficient,
flexible, and portable. It applies machine learning algorithms under the Gradient Boosting framework.
XGB provides a parallel tree-boosting solution that solves many data science problems quickly and
accurately [32]. Unfortunately, its disadvantage is that it is highly parametric, meaning that it becomes
difficult to achieve a good performance if the correct parameters are not selected.

Next, the LGBM method is included in the experiments. It combines multiple decision trees, each
focusing on improving the predictions of the previous ones within a gradient-boosting framework, just
like the XGB method. However, unlike XGB, this method creates histograms for each feature and
uses them to approximate the best-split point [33]. LGBM has other algorithmic differences, such as
allowing leaf-wise growth rather than depth-wise growth in the trees.

2.4. Optimization

Despite their success in performing accurate predictions, one disadvantage shared by most machine
learning methods is the number of parameters they need to be tuned. It is unrealistic to expect to find
the perfect parameters for each model. However, with the help of methods such as a grid or a random
search, it is possible to search over a set of possible parameters and find an optimal combination. In
the present study, a library named Optuna is used to find optimal parameters for each method [34].

For each method, ten trials are conducted within every fold of the 5-fold cross-validation framework,
where each trial tried a different parameter subset. The Optuna library moves towards the parameters
that returned high performance in the previous trials, thus ensuring an optimal parameter set. The
highest average macro F1 scores are selected and used in the tests as the performance criteria. Also,
since all classification tasks have high-class imbalance problems, the class weights are provided inside
all machine learning methods, considering the class imbalance.

3. Results and Discussion

As stated earlier, studies in the literature mainly focus on the binary classification task of detecting
mortality risk among ICU patients. A few studies follow the same binary classification task for de-
tecting the re-admission risk. However, no studies have conducted a multi-class classification task and
provided a deep comparison with the binary tasks. To complete this lack of comparative information,
this study performs three distinct experiments:

i. Conducting a binary classification task for mortality risk detection.

ii. Conducting a binary classification task for re-admission detection.

iii. Conducting a multi-class classification task to identify the likelihood of an ICU patient dying,
recovering during the current ICU stay, or getting re-admitted after discharge.
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For comparability, the same four machine learning methods and the same set of 165 features (APACHE
and demographics) are used in the above experiments. Considering the data imbalance in the test
set, among the possible performance scoring methods, Area under the curve (AUC) is selected for
its ability to provide fair scoring [35], and its popularity as a scoring method in the mortality and
re-admission prediction tasks as seen in Table 3. Meanwhile, macro F1 and recall (sensitivity) scores
are also utilized to overcome possible overestimations AUC may return. Thanks to the macro setting
of the F1 and recall metrics, class imbalance in the test set is handled fairly.

Table 2. AUC, macro F1, and macro recall scores of the proposed novel feature space used with
four machine learning methods.

Goal Metric LR RF LGBM XGB

Mortality
AUC 89.40 91.51 92.43 91.51
F1 70.13 80.39 79.17 82.65
Recall 80.75 78.78 83.63 79.36

Re-admission (30 days)
AUC 65.03 64.67 61.77 58.31
F1 48.81 53.12 53.15 49.11
Recall 60.52 52.75 54.71 50.58

Multiclass
AUC 75.54 77.94 76.98 76.50
F1 48.92 53.49 54.19 54.03
Recall 57.33 52.68 58.26 51.77

(a) LR (b) LGBM
Figure 4. Confusion matrices of the mortality prediction task obtained from the baseline and the

best-performing methods.

According to the results presented in Table 2, the mortality prediction task returned AUC scores
around 90% with each method. Meanwhile, the highest F1 score is from the XGB method, and the
highest sensitivity belongs to the LGBM. Compared to the mortality prediction results in the literature
in Table 3, mortality prediction performance in the current study outperformed the past. Because the
studies in the literature focused on specific disease mortality, which is more straightforward than a
general mortality prediction, the current results are significant. This finding shows that including all
the APACHE metrics as features, computing their statistical changes over the ICU stay of the patients
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through min, max, mean, and median operations, among others, provide more robust outcomes for
mortality prediction. Also, by including the demographics in the feature set, mortality prediction
can be achieved with better performance. This is particularly interesting as it points to the genetic
variability and risk factors of the patients and shows the importance of considering demographics for
clinical decision-making. Another finding is regarding the choice of methods. Figure 4 highlights that
the choice of machine learning method does not affect the mortality prediction task thanks to the
novel feature space introduced in the current study.

Table 3. Some prediction objectives and scores from the literature that used the MIMIC-III
dataset, excluding the clinical notes. Each re-admission study performs a 30-day prediction.

Objective Features Method Score Study

Mortality
(heart failure)

Patient measures (overlap with
APACHE), demographics

LR, XGB 84.16 AUC [28]

Mortality
(ventilated)

Patient measures (overlap with
APACHE), demographics, his-
tory

KNN, LR,
DT, RF,
XGB, ANN

82.1 AUC [27]

Mortality
(pancreatitis)

Patient measures (overlap with
APACHE), demographics

LR, Ran-
son, ANN

76.9 AUC [36]

Re-admission 17 APACHE measures, demo-
graphics, ICD-9 embeddings

LSTM 74.2 recall, 79.1
AUC

[17]

Re-admission Patient measures (overlap with
APACHE), demographics, ICD-
9 embeddings

LR, RF,
SVM, ANN

65 accuracy, 60
AUC

[19]

Re-admission Patient measures (overlap with
APACHE), demographics, ICD-
9 code

LR, RF,
XGB

37 F1, 75 AUC [37]

Re-admission prediction within the 30 days after discharge proves to be more complex than the
mortality prediction according to the results in Table 2, which is validated by the scores in the
literature Table 3. F1 score of 37% obtained in the literature [37] proves the difficulty of re-admission
prediction even in a binary classification setting. In the current study, LR returned the highest AUC
score of 65% for re-admission. Compared to the readmission AUC scores in Table 3, this score falls in
the middle of the range in the literature. The F1 rate of 53% reported in the current study is higher
than that of the literature. In Figure 5, two confusion matrices show that the LR method misclassified
the survived patients as re-admission, and the XGB method did the opposite and misclassified the
re-admissions as survived. One must decide based on the trade-off between high false positives and
false negatives. Creating a model that returns high false positives would cause too much money and
attention to be given to patients who are well, and high false negatives would cause patients who will be
re-admitted within 30 days to be released early, which also causes a waste of money and resources. One
conclusion from these findings is that, although APACHE features and demographics are successful at
identifying mortality, they are not enough to predict ICU re-admission. Therefore, the current feature
space needs to be enriched further for a higher re-admission prediction performance.
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(a) LR (b) XGB
Figure 5. Confusion matrices of the 30 days re-admission prediction task obtained from the

baseline and the worst performing methods

The last experiment tackles the challenge of performing multi-class classification to determine if a
patient in the ICU will die, recover, or get re-admitted 30 days after getting discharged from the ICU.
Table 2 shows that each method returned around 77% AUC for multi-class classification. Meanwhile,
the F1 and recall scores show a distinction between the results. The confusion matrices in Figure 6
display the similarities and differences between the selected methods. The matrices of the RF and
XGB methods appear too similar. For example, both methods failed to capture re-admissions, which
is explainable considering the similarities between their algorithms - using decision trees within. The
remaining two methods, LR and LGBM, returned more acceptable confusion matrices by success-
fully capturing re-admission cases. Among the two, LGBM has the best performance. For a 3-class
classification problem, an F1 score of 54% is acceptably good compared to the random chance of
33%. LGBM’s capability to capture complex non-linear relationships between a mix of numerical and
categorical variables proves it to be better than the remaining models in the current context.

(a) LR (b) RF

(c) LGBM (d) XGB
Figure 6. Confusion matrices of the three-class classification framework obtained from the baseline

and the best-performing methods (Re-admission=0, survival=1, mortality=2)

828



JARNAS / 2024, Vol. 10, Issue 4, Pages: 819-832 / Machine Learning and Medical Data: Predicting ICU Mortality · · ·

4. Conclusion

The study carried out in this paper showed the simplicity of mortality prediction tasks in the ICU
setting, using the APACHE measures together with the demographics, which explains the reasoning
behind the vast number of available studies that focus only on mortality prediction. In parallel, the
study showed the difficulty of the 30-day re-admission prediction task. The state-of-the-art machine
learning methods that win various imbalanced data classification competitions failed the re-admission
prediction task, while the simple baseline method outperformed the rest. This finding shows the
difficulty of the re-admission prediction task and the failure of the APACHE and demographics data
in providing predictive power. Because real-life expert healthcare providers signed off on the discharge
forms of these patients during the data collection process, it is possible to conclude that machine
learning methods still performed better than the actual human experts, with a 65% success rate. Yet,
there is still room for improvement. Furthermore, the multi-class classification performance showed
77% success at differentiating recovery, mortality, and returning to the intensive care unit in 30 days,
which are highly acceptable results to be used in real-life automated clinical decision-making systems.
The proposed system with a simple baseline approach can help healthcare professionals save more
lives and reduce the risk of early discharges without adding features - since APACHE features and
demographics are mandatory to collect already. Finally, our dataset was limited to MIMIC III, which
contains the medical history and data of all patients admitted to Beth Israel Deaconess Medical Center
in Boston, Massachusetts, between 2001 and 2012. Thus, while predicting re-admission, our study
could not consider the possibility of the patients being re-admitted to another hospital.

The overloaded ICUs during the COVID-19 pandemic before vaccines were available showed the unmet
need for automated clinical decision-making systems. While the proposed system has demonstrated
acceptable performance, in the rework, more features that are also mandatory to collect in an ICU
setting will be included in the experiments to increase the re-admission prediction performance. Future
work will also consist of evaluating different real-life ICU data collections.
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