Co-Coatomically Ps-Supplemented Modules

İrfan Soydan^{1*}, Ergül Türkmen²

¹ Departments of Mathematics, Institute of Science, Amasya University, Amasya, Turkey ²Departments of Mathematics, Faculty of Science and Arts, Amasya University, Amasya, Turkey

Received: 16/08/2024, Revised: 02/11/2024, Accepted: 21/11/2024, Published: 28/03/2025

Abstract

In this manuscript, we introduce and study co-coatomically ps-supplemented modules. On condition that each co-coatomic submodule of an *T*-module *A* has a ps-supplement within *A*, then *A* is termed co-coatomically ps-supplemented. Each radical module is co-coatomically ps-supplemented module. On condition that each left *T*-module is *PS*-coinjective, then each left *T*-module is co-coatomically ps-supplemented. We show that on condition that *A* is semilocal and $Rad(A) \ll A$, for *A*, being a co-coatomically ps-supplemented module is equivalent to being ps-supplemented. If *A* is co-coatomically ps-supplemented *T*-module, at that case the module $\frac{A}{Soc_P(A)}$ has each of its coatomic submodules as direct summands. Assuming *T* to be a left *SI*-ring with an essential socle, it implies that each left *T*-module is co-coatomically ps-supplemented.

Keywords: Ps-supplement submodule, co-coatomically ps-supplemented module, projective semisimple module.

Eş-Eşatomik Ps-Tümlenmiş Modüller

Öz

Bu makalede eş-eşatomik ps-tümlenmiş modülleri tanımlıyor ve çalışıyoruz. Bir *A T*-modülünün her eşeşatomik alt modülü *A*'da bir ps-tümleyene sahipse bu takdirde *A T*-modülü, eş-eşatomik ps-tümlenmiş modül olarak adlandırılır. Her radikal modül eş-eşatomik ps-tümlenmiş modüldür. Her sol *T*-modül *PS*-koinjektif ise bu takdirde her sol *T*-modül eş-eşatomik ps-tümlenmiştir. Biz gösterdik ki, *A* yarıyerel ve $Rad(A) \ll A$ ise *A*'nın eş-eşatomik ps-tümlenmiş modül olması icin gerek ve yeter şart *A*'nın ps-tümlenmiş olmasıdır. Eğer *A* eş-eşatomik ps-tümlenmiş *T*-modül ise bu durumda $\frac{A}{Soc_P(A)}$ 'nın her eşatom alt modülü direkt toplam terimidir. *T* halkasının büyük desteğe sahip bir sol *SI*-halka olduğunu varsayarsak her sol *T*-modül eş-eşatomik pstümlenmiş *T*-modül olur.

Anahtar Kelimeler: Ps-tümlenmiş modül, eş-eşatomik ps-tümlenmiş modül, projektif yarıbasit modül.

1. Introduction

In this paper, *T* signify an associative ring having an identity element, and assuming that all the modules being considered are unital left *T*-modules. The notation $U \le A$ ($U \le A$) is employed to signify that *U* is a (proper) submodule of *A*. Assuming *A* be an *T*-module. The module *A* is termed semisimple if it is a direct sum of simple submodules. This is equivalent to the property that every submodule of *A* is a direct summand (see [4], [9] and [12]). Assume *T* denote a ring and *A* denote a left *T*-module. The notation Soc(A) represents the socle of *A*, $Soc_P(A)$ represents the sum of the projective simple submodules of *A*, and Z(A) represents the singular submodule of *A*, it is denoted as essential in *A* and written as $U \le A$. The singular submodule of a module *A* is the set Z(A) of these members $a \in A$ for which the annihilator { $s \in T \mid sa = 0$ } is an essential left ideal of *T*. Alternatively, $Z(A) = \{a \in A \mid Ia = 0 \text{ for } I \le T\}$. The property of being singular (respectively, nonsingular) is attributed to a module A when it meets the condition of Z(A) being equal to *A* (respectively, Z(A) = 0 [6].

Assume *A* be an *T*-module and $B \le A$. If C = A for each submodule *C* of *A* such that A = B + C, at that case *B* is termed a small submodule of *A* together with denoted by $B \ll A$. Assume *C* and *B* be submodules of *A*, *C* is termed a supplement of *B* within *A* if A = B + C and *C* is minimal with respect to this property, or equivalently, A = B + C and $B \cap C \ll C$. *A* is termed a supplemented module if for each submodule *B* of *A* there exists a submodule *C* of *A* such that A = B + C and $B \cap C \ll C$ (see [4] and [12]). It is clear that supplemented modules are a generalization of semisimple modules. It follow from [12, 43.9] a ring *R* is left perfect if and only if every left *R*-module is supplemented.

In [10], we introduce and study ps-supplement submodules. A submodule *B* of a module *A* is termed ps-supplement within *A* on condition that there exists a submodule *C* of *A* such that A = C + B together with $C \cap B$ is projective semisimple. The module *A* is termed ps-supplemented on the condition that each submodule of *A* owns a ps-supplement within *A*. For a module *A*, they denote by $Soc_P(A)$ the sum of all projective simple submodules of *A*, that is, $Soc_P(A) = \sum \{S \subseteq A \mid S \text{ is simple and projective}\}$. Then $Soc_P(A) \subseteq Soc(A)$ and $Soc_P(A)$ is the largest projective semisimple submodule of *A* (see [10]).

Authors, explore particular modules characterized by maximal submodules with supplements and introduce the concept of cofinitely supplemented modules. When the factor module $\frac{A}{L}$ satisfies the property of being finitely generated, then within module *A*, a submodule *L* is termed as cofinite. *A* is termed a cofinitely supplemented module on the condition that each cofinite submodule of *A* possesses a supplement within *A*. It is evident that each module that is supplemented is also cofinitely supplemented, although the converse is not necessarily true in all cases (see [1]). A module A is identified as coatomic if all its proper submodules are included in maximal submodules (see [14]). In [2] and [7], authors introduced co-coatomically supplemented modules. Assume L becomes a submodule of a module A. They state that L is a co-coatomic submodule within A on the condition that $\frac{A}{L}$ is coatomic. It is clear that modules which are semisimple, local, together with finitely generated are coatomic. Due to fact that each factor module of a coatomic module is coatomic, each submodule of semisimple, local together with finitely generated module of semisimple, local together with finitely supplemented to becomes co-coatomically supplemented module on the condition that each co-coatomic submodule of A owns a supplement within A. They prove that so long as a submodule L of A is co-coatomically supplemented together with $\frac{A}{L}$ lacks of maximal submodule, following that A is co-coatomically supplemented together with a coatomic module is co-coatomically supplemented if and only if it is a supplemented module (for detailed information about this modules, see [2]).

In [11], authors studied and introduced cofinitely ps-supplemented modules. According to their definition, a module A is termed cofinitely ps-supplemented when each cofinite submodule of A possesses a ps-supplement within A. They obtain some properties of these modules.

If in a ring T, each singular left T-module possesses the property of being injective, T is referred to as a left SI-ring (for detailed information about SI-ring, see [5] and [6]). In [13], researchers describe a left T-module A as an SI-module when each singular left T-module is A-injective.

Motivated by the above results, it is of interest to investigate a new type of co-coatomically supplemented.

2. Prelimneries

The aim of the current essay is to present the concept of co-coatomically ps-supplemented modules. A submodule B of a module A is termed co-coatomically ps-supplemented or briefly ccps-supplemented on the condition that each co-coatomic submodule of A owns a ps-supplement within A. Consider A as a module. Clearly, each ps-supplemented module is ccps-supplemented. We show that on condition that each left T-module PS-coinjective, then each left T-module is ccps-supplemented. Also, each ccps-supplemented module is cofinitely ps-supplemented.

3. Main Theorem and Proof

In this part of the text, we analyze the essential properties of ccps-supplemented modules. We begin with the definition below.

Definition 3.1. If each co-coatomic submodule of an T-module A possess a ps-supplement within A, at that case A is termed co-coatomically ps-supplemented or briefly ccps-supplemented.

Lemma 3.2. Let A remain a module together with A = Rad(A). Then A is ccps-supplemented.

Proof. Due to *A* being radical, the only co-coatomic submodule of *A* is *A*. Therefore the trivial submodule 0 of *A* is a ps-supplement of *A*. Hence *A* is ccps-supplemented.

While a ps-supplemented module undoubtedly qualifies as ccps-supplemented, the reverse doesn't hold true, as evidenced in the example that follows.

Example 3.3. Given the left \mathbb{Z} -module \mathbb{Q} . According to Lemma 3.2, \mathbb{Q} is identified as ccps-supplemented, while in contrast, *A* does not possess ps-supplemented due to the fact that $Soc(\mathbb{Z}\mathbb{Q}) = 0$.

Proposition 3.4. Assume *T* be a ring, and if $\frac{T}{Soc_P(T)}$ qualifies as a semisimple module, then it follows that each left *T*-module is ccps-supplemented.

Proof. Due to fact that each left *T*-module is ps-supplemented by [10, Theorem 4.2.6], the proof is clear.

In [10], the author introduced the *PS* class, which is the class of all short sequences $0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$ such that Im(f) is a ps-supplement submodule in *B*. A module *A* is *PS*-coinjective, if each short sequence of left *T*-modules, starting with *A*, is in the class *PS*, where $0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$.

Corollary 3.5. Assuming that each left *T*-module is *PS*-coinjective, then each of them also becomes ccps-supplemented.

Proof. Due to fact that each left *T*-module is ps-supplemented, the proof is clear.

Proposition 3.6. Let A becomes a semilocal module together with $Rad(A) \ll A$. Then A is ccps-supplemented if and only if A is ps-supplemented.

Proof. Assume *C* becomes a submodule within *A*. Due to fact that *A* is semilocal, $\frac{A}{Rad(A)}$ is semisimple, that is, $\frac{A}{Rad(A)}$ is coatomic. In this situation, we have the capability to write the following isomorphism: $\frac{A}{C+Rad(A)} \cong \frac{\frac{A}{Rad(A)}}{\frac{C+Rad(A)}{Rad(A)}}$. Since the factor modules of coatomic modules are also coatomic, $\frac{A}{C+Rad(A)}$ is coatomic. On account of this C + Rad(A) owns a ps-supplement in *A*, say *L*. Then A = C + Rad(A) + L together with $(C + Rad(A)) \cap L$ is projective semisimple. Since $Rad(A) \ll A$, A = C + L becomes and $C \cap L \leq (C + Rad(A)) \cap L$ is projective semisimple. Thereby *A* is ps-supplemented. The converse is obvious.

Suppose *T* is a ring. It is termed as a left max ring if $Rad(A) \ll A$ for each left *T*-module *A*. Put another way, *T* is termed a left max ring if each nonzero left *T*-module includes a maximal submodule. Also, a ring *T* is termed a perfect ring if it satisfies the conditions of being a left

max ring and $\frac{T}{Rad(T)}$ is semisimple when considered as a left *T*-module. For each module *A* over a left perfect ring $\frac{A}{Rad(A)}$ is semisimple (see [3]).

Proposition 3.7. Assume T becomes a left max ring together with A becomes a ccps-supplemented module. At that case A is ps-supplemented.

Proof. In accordance with the assumption, it is posited that each non-zero left T-module is coatomic. Thus, all submodules of A demonstrate coatomic properties, leading to the conclusion that A is ps-supplemented.

Let *T* becomes a ring. *T* is defined as a left *V*-ring on the condition that each simple left *T*-module is injective. As a generalization of left *V*-rings, a ring *T* is termed a left weakly *V*-ring (for short *WV*-ring) on the condition that each simple left *T*-module is $\frac{T}{I}$ –injective for every left ideal such that $\frac{T}{I}$ is proper. A *WV*-ring is also a left max ring. For detailed information about left *WV*-rings, we refer to [8]. The next outcome is of paramount importance.

Corollary 3.8. Assume *T* becomes a *WV*-ring. Then each ccps-supplemented *T*-module is ps-supplemented.

Proposition 3.9. Assume *T* becomes a left perfect ring together with *A* be an *T*-module. At that case *A* is ccps-supplemented if and only if *A* is ps-supplemented.

Proof. The proof can becomes executed similarly to Proposition 3.6.

Proposition 3.10. On conduction that a module is ccps-supplemented, by then its homomorphic images are also ccps-supplemented.

Proof. Assume A becomes a ccps-supplemented T-module together with B a submodule of A. At that case arbitrary co-coatomic submodule of $\frac{A}{L}$ is of the format $\frac{B}{L}$ such that the B is cocoatomic submodule of A together with $L \leq B$. Due to fact that A is ccps-supplemented, A = B + K together with $B \cap K$ is projective semisimple for some $K \leq A$. In that case $\frac{A}{L} = \frac{B+K}{L} = \frac{B}{L} + \frac{K+L}{L}$. Using the canonical epimorphism $\pi: A \to \frac{A}{L}$, consequently, we ascertain that $\pi(B \cap K) = \frac{(B \cap K) + L}{L} = \frac{B \cap (K+L)}{L} = \frac{B}{L} \cap \frac{K+L}{L}$ is projective semisimple by [10, Lemma 4.1.3]. Thereby $\frac{A}{L}$ is ccps-supplemented.

Proposition 3.11. Assume *A* becomes a ccps-supplemented *T*-module. At that case each cocoatomic submodule of the module $\frac{A}{Soc_P(A)}$ is a direct summand.

Proof. Assume $\frac{B}{Soc_P(A)}$ becomes a co-coatomic submodule of $\frac{A}{Soc_P(A)}$. At that case *B* is also cocoatomic submodule of *A* such that the $Rad(A) \leq B$. Due to fact that *A* is ccps-supplemented, there exists a submodule *Y* of *A* such that the A = B + Y together with $B \cap Y$ is projective semisimple. That's why $B \cap Y \leq Soc_P(A)$. Hence $\frac{A}{Soc_P(A)} = \frac{B+Y}{Soc_P(A)} = \frac{B}{Soc_P(A)} + \frac{Y+Soc_P(A)}{Soc_P(A)}$ together with $\frac{B}{Soc_P(A)} \cap \frac{Y+Soc_P(A)}{Soc_P(A)} = \frac{B \cap (Y+Soc_P(A))}{Soc_P(A)} = \frac{(B \cap Y)+Soc_P(A)}{Soc_P(A)} = \frac{Soc_P(A)}{Soc_P(A)} = 0$. Thereby $\frac{A}{Soc_P(A)} = \frac{B}{Soc_P(A)} \bigoplus \frac{Y+Soc_P(A)}{Soc_P(A)}$.

Lemma 3.12. Let A be an T-module, B together with C submodules of A such that B is ccpssupplemented, C is co-coatomic together with B + C has a ps-supplement D within A. At that case $B \cap (C + D)$ has a ps-supplement U within B together with D + U is a ps-supplement of C within A.

Proof. Due to fact that *D* is ps-supplement of B + C in *A*, at that case A = B + C + D together with $(B + C) \cap D$ is projective semisimple. Due to fact that $\frac{A}{C}$ is coatomic, $\frac{B}{BO(C+D)} \cong \frac{B+C+D}{C+D} =$

 $\frac{A}{C+D} \cong \frac{\frac{A}{C}}{\frac{C+D}{C}}$ is coatomic. Thereby $B \cap (C+D)$ is cocoatomic submodule of B. Due to fact that B is cops-supplemented, $B \cap (C+D)$ has a ps-supplement U in B, that is, $B \cap (C+D) + U = B$ and $U \cap (C+D)$ is projective semisimple. Then $A = B + C + D = B \cap (C+D) + U + C + D = C + D + U$. Additionally $C \cap (U+D) \leq (D \cap (C+U)) + (U \cap (C+D)) \leq (D \cap (C+B)) + (U \cap (C+D))$ is projective semisimple, that is, $C \cap (U+D)$ is projective semisimple. Hence U + D is a ps-supplement of C within A.

Corollary 3.13. Assume *B* together with *K* becomes submodules of an *T*-module *A* such that *B* is co-coatomic, *K* is ccps-supplemented together with B + K owns a ps-supplement within *A*. At that case *B* owns a ps-supplement within *A*.

Proposition 3.14. Let A_1 besides A_2 be arbitrary submodules contained within module A, with A being expressible as the sum of A_1 together with A_2 . If A_1 and A_2 are ccps-supplemented, at that case A is ccps-supplemented.

Proof. Assume *B* denote an arbitrary co-coatomic submodule of *A*. Then $A = A_1 + A_2 + B$. Due to fact that $A_2 + B$ is co-coatomic submodule of *A*, A_1 is ccps-supplemented besides the submodule 0, which is self-evident, serves as a ps-supplement of $A = A_1 + A_2 + B$ in A, $A_2 + B$ owns a ps-supplement in *A* by Corollary 3.13. Due to fact that A_2 is ccps-supplemented besides *B* is co-coatomic, once again in that situation by Corollary 3.13, *B* owns a ps-supplement within *A*. Thereby *A* is ccps-supplemented.

Corollary 3.15. Finitely sums of modules that are ccps-supplemented are also ccps-supplemented.

Suppose *A* and *B* are *T*-modules. If an epimorphism $\psi: A^{(I)} \to B$ exists for a finite set *I*, at that case *B* is known as a finitely *A*-generated module. The subsequent corollary is deduced from Proposition 3.10 and Corollary 3.15.

Corollary 3.16. If *A* is ccps-supplemented module, at that case arbitrary finitely *A*-generated module is a ccps-supplemented module.

Corollary 3.17. Finitely direct sums of modules that are ccps-supplemented are also ccps-supplemented.

Theorem 3.18. Let *K* denote a ccps-supplemented submodule contained in the *T*-module *A* and let $\frac{A}{K}$ lacks of maximal submodule. At that case *A* is a ccps-supplemented module.

Proof. Assume *B* becomes a co-coatomic submodule of *A*. In that case $\frac{A}{B}$ is coatomic and also $\frac{A}{K+B}$ is coatomic. Due to fact that $\frac{A}{K}$ has no maximal submodule, $\frac{A}{K+B}$ has no maximal submodule, that's why A = K + B. From Corollary 3.13, *B* owns a ps-supplement in *A*. Thereby *A* is a ccps-supplemented module.

Corollary 3.19. Assume *A* becomes a module and $\frac{A}{Soc_P(A)}$ lacks of maximal submodule. At that case *A* is a ccps-supplemented module.

Note that a module A is classified as a co-coatomically supplemented module when each cocoatomic submodule of A owns a supplement within A (see [2]). As illustrated in the example to follow, there is instances where a module being co-coatomically supplemented does not imply it is ccps-supplemented.

Example 3.20. Let $T = \mathbb{Z}_{p^n}$, where $p \in P$ together with for values of *n* equal to or exceeding 2. Therefore *T* is a local ring and so $_TT$ is co-coatomically supplemented. Hovewer, $_TT$ isn't ccps-supplemented since all simple *T*-modules are singular.

The proposition to follow delineates how co-coatomically supplemented modules relate to ccpssupplemented modules.

Proposition 3.21. Assume A becomes a co-coatomically supplemented T-module. On condition that $Rad(A) \leq Soc_P(A)$, at that case A is ccps-supplemented.

Proof. Assume *B* becomes any a co-coatomic submodule of *A*. Due to fact that *A* is cocoatomically supplemented module, there exists a submodule *D* within *A* such that A = B + Dtogether with $B \cap D \ll D$, that is, $B \cap D \leq Rad(D) \leq Rad(A) \leq Soc_P(A)$. Thereby *A* is ccpssupplemented.

Proposition 3.22. Assume T a V-ring and A becomes a module over T. If A is a co-coatomically supplemented module, at that case A is also a ccps-supplemented module.

Proof. Given that *A* is a co-coatomically supplemented module, it follows from [2, Theorem 2.1] that $\frac{A}{Soc(A)}$ has no maximal submodule. Additionally, since *T* is a *V*-ring, we have from [12, 23.1] that $\frac{A}{Soc_P(A)} \subseteq \frac{A}{Soc(A)} = Rad\left(\frac{A}{Soc(A)}\right) = 0$. Consequently, *A* is projective-semisimple, meaning *A* is a ccps-supplemented module.

Proposition 3.23. Every ccps-supplemented module is cofinitely ps-supplemented.

Proof. Assume *A* becomes a ccps-supplemented *T*-module besides *B* be any cofinite submodule of *A*. At that case $\frac{A}{B}$ is finitely generated, that is, $\frac{A}{B}$ is coatomic. That's why *B* is co-coatomic submodule of *A*. Due to fact that *A* is ccps-supplemented module, *B* possesses a ps-supplement in *A*. Thereby *A* cofinitely ps-supplemented.

The ring T is called an SI-ring if each singular left T -module is injective (see [5] and [6]).

Corollary 3.24. If T is a left *SI*-ring with an essential socle, then each left T-module is ccps-supplemented.

Proof. In accordance with [11, Corollary 2.3].

4. Conclusion

In this paper, we discuss the idea of ccps-supplemented modules and analyze their basic characteristics using ps-supplemented submodules and co-coatomically supplemented modules. We have given the relation between the concepts of ccps-supplemented, ps-supplemented, ps-supplemented submodule, co-coatomic submodule and projective-semisimple module. In addition, ps-supplemented of ccps-supplemented modules could be achieved with left max rings and also WV-rings. An important result in Corollary 3.24 has been reached with the help of left SI-rings.

Ethics in Publishing

There are no ethical issues regarding the publication of this study.

Author Contributions

All authors contributed equally to the study.

Acknowledgements

The authors gratefully acknowledge the support they have received from TUBITAK (the scientific and technological research council of Turkey) with Grant No. 123F236.

References

[1] Alizade, R., Bilhan, G., Smith, P. F., (2001) Modules whose maximal submodules have supplements. Communications in Algebra, 29(6), 2389–2405.

[2] Alizade, R., Güngör, S., (2017) Co-coatomically supplemented modules, Ukrainian Mathematical, 69, 1007–1018.

[3] Anderson, F. W., Fuller, K. R., (1992) Rings and categories of modules. Springer Science & Business Media.

[4] Clark, J., Lomp, C., Vanaja, N., Wisbauer, R., (2006) Lifting modules. Birkhauser, Verlag-Basel: Frontiers In Mathematics.

[5] Dung, N. V., Huynh, D. V., Smith, P. F., Wisbauer, R., (1994) Extending modules. Longman Harlow.

[6] Goodearl, K. R., (1972) Singular torsion and the splitting properties. American Mathematical Soc.

[7] Güngör, S., (2013) Co-coatomically supplemented modules (Doctoral dissertation). İzmir Institute of Technology, İzmir.

[8] Jain, S. K., Srivastava, A. K., Tuganbaev, A. A., (2012) Cyclic modules and the structure of rings. Oxford Mathematical Monographs.

[9] Kasch, F., (1982) Modules and rings. Teubner: Published for the London Mathematical Society by Academic Press.

[10] Soydan, İ. and Türkmen, E., (2024, Eylül 09-12). Ps-tümlenmiş modüller. 36. Ulusal Matematik Sempozyumu. Amasya Türkiye: <u>https://ums2024.amasya.edu.tr/event/2/</u>

[11] Soydan, İ. and Türkmen, E., (2023, january 14-17). Cofinitely ps-supplemented submodules. In U. Özkaya (Ed.), The 3rd International Conference on Engineering and Applied Natural Sciences Proceeding Book (pp. 724-729). Konya Turkey: <u>https://www.iceans.org</u>.

[12] Wisbauer, R., (1991) Foundations of Module and Ring Theory (A handbook for study and research), Gordon and Breach Science Publishers.

[13] Yousif, M. F., (1986) SI-modules. Mathematical Journal of Okayama University, 28(1), 133–146.

[14] Zoschinger, H., and Rosenberg, F., (1980) Koatomare moduln. Math Zeitschrift, 170, 221–232.