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MACHINE LEARNING FOR CROSS-SECTIONAL RETURN 

PREDICTABILITY: EVIDENCE FROM GLOBAL STOCK 

MARKETS (*) 

MAKİNE ÖĞRENMESİ İLE YATAY KESİT HİSSE SENEDİ GETİRİLERİNİN 

TAHMİN EDİLEBİLİRLİĞİ: KÜRESEL PİYASALARDA AMPİRİK BİR 

ANALİZ 

Ahmet Salih KURUCAN(1), Ali HEPŞEN(2) 

Abstract: This work examines cross-sectional stock returns with machine learning 

models using global stock market data. By calculating 63 firm level characteristics, 

we find that our model outperforms linear models in terms of both economic and 

statistical performance. Shallow models, such as gradient boosted decision trees, 

provides more consistent and reliable performance compared to deeper ones in the 

context of asset pricing, likely due to a low signal-to-noise ratio and sensitivity to 

parameters. The results revealed that machine learning models can be developed into 

effective portfolios, complexity is welcomed when it enhances performance such as 

Sharpe ratios. Taken together, these results demonstrate the relative importance of 

machine learning for a modern financial system, and specifically, the ability to 

synthesize information from various characteristics that impact stock returns. This 

study challenges traditional notions of a preference for parsimony and, based on 

certain degrees of complexity, demonstrates strategic economic gains.  

Keywords: Machine Learning, Asset Pricing, Equity Risk Premium, Predictive 

Modeling, Return Predictability, Financial Analysis 

JEL: C52, C55, C58, C61, G0, G12, G17 

 

Öz: Bu çalışma, küresel hisse senedi piyasa verilerini kullanarak makine öğrenimi 

modelleriyle incelemektedir. 63 Firma karakteristiği hesaplayarak, makine öğrenme 

yöntemlerini uyguladığımızda modelimizin ekonomik kazanım ve performans 

açısından daha iyi sonuçlar göstermiştir. Derin öğrenme modelleriyle 

karşılaştırıldığında gradyan güçlendirmeli regresyon ağaçları, derin öğrenme 

modellerine kıyasla, büyük olasılıkla düşük sinyal-gürültü oranı, derin modellerinin 

hiper-parametrelere karşı yüksek hassasiyet göstermesi daha tutarlı ve güvenilir 

sonuçlar vermektedir. Sonuçlar makine öğrenmesi yöntemlerinin başarılı portföyler 

oluşturmak için de kullanılabileceğini göstermektedir. Ayrıca, model karmaşıklığını 

artırmanın Sharpe oranlarında iyileşmeler gibi ekonomik faydalar sağladığı 

gösterilmektedir. Sonuçlar, makine öğrenimi modellerinin tutarlılığını ve genelleme 

yeteneğini vurgulayarak, modern finansal sistemde makine öğreniminin önemini 

ortaya koymaktadır. Bu çalışma, sadelik ilkesine dair geleneksel anlayışları 
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sorgulamakta ve belirli bir karmaşıklık derecesine dayalı olarak stratejik ekonomik 

kazançlar gösterdiğini ortaya koymaktadır. 

Anahtar Kelimeler: Makine Öğrenimi, Varlık Fiyatlaması, Hisse Senedi Risk Primi, 

Tahminsel Modelleme, Getirilerin Tahmin Edilebilirliği, Finansal Analiz 

 

1. Introduction 

The ability to forecast returns on stocks has been one of the primary concerns in 

empirical asset pricing for some time. Traditional methods have conventionally 

focused on historical average excess returns and a restricted set of prespecified factors 

in generating forecasts. Seminal models, among them the Capital Asset Pricing Model 

and the Fama-French three-factor model, made some useful contributions, but their 

strong reliance on a highly constrained number of factors badly restricts their 

adaptability and explanatory power within dynamic market environments. The 

deficiencies of these methods are especially significant in their inability to adapt to 

changing market conditions and to capture complex, nonlinear relationships existing 

within financial data. 

The classical principle of parsimony, arguably most articulated for in the context of 

time series analysis by (Tukey, 1961), is to use no more parameters than is necessary 

to adequately represent a model. This worldview, rooted in avoiding overfitting and 

promoting generalization of models, appears quite starkly contrasted with the 

enormous parameterizations hall-marking modern ML models. While 

econometricians might view such massive parameterization as excessive and prone to 

poor out-of-sample performance, recent developments in ML challenge this notion. It 

has been found that in very high-dimensional domains like natural language 

processing and image recognition, models of extraordinarily high complexity often 

yield superior out-of-sample performance, thus reverting to the traditional paradigm 

of simplicity. The emerging consensus is that moving away from simplification, 

toward properly specified nonlinear models embracing complexity and all relevant 

predictors, will generally lead to improved predictability and portfolio performance. 

(Kelly & Malamud, 2021)  

The advent of ML techniques has opened a promising avenue that could leverage 

high-dimensional data to improve the accuracy and robustness in return predictions. 

This study focuses on another fast-growing area: using ML models to understand 

cross-sectional stock returns with a comprehensive dataset from global stock markets 

in the paper. Our core interest lies in assessing whether ML models that capture non-

linear interactions and complex relationships between an incredibly large array of 

predictors improve their economic and statistical performance relative to traditional 

linear models. Our dataset has global coverage; therefore, the findings derived are 

applicable across a wide spectrum, making our results relevant for investors operating 

in a wide variety of markets. 

With the application of machine-learning techniques, such as gradient boosted 

regression trees and neural networks, the possibility of unlocking some complex 

patterns in data often missed by linear models will arise. Such models perform well 

with large numbers of predictors and nonlinear interactions between them. This 

flexibility can let ML models adapt to the intricacies of financial markets and hence 

potentially lead to more accurate and most importantly reliable return forecasts. 
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Our study provides evidence that ML models not only bring improvements in terms 

of predictive accuracy for investors but also economic outcomes and reliability. It 

shows that there is substantial net performance and alpha (excess return) for the ML-

based return forecasts, therefore indicating their potential towards generating excess 

returns. This is distinctly meaningful for mean-variance investors for whom even 

modest improvements in out-of-sample explanatory power could result in meaningful 

economic gains. 

The paper reviews a literature of recent studies. It then describes how we conducted 

our study: the ML models used and the global dataset for the analysis. Next, it reveals 

our empirical findings by presenting evidence on the performance of the ML models 

vis-à-vis traditional linear models. 

2. Literature Overview 

There are two major strategies in stock return prediction: Namely, the one based on 

time-series analysis (Atsalakis & Valavanis, 2009) and the one based on cross-

sectional analysis (Subrahmanyam, 2010). 

One of the most significant interests in a cross-sectional analysis lies in finding factors 

that have strong predictive powers to the expected return in the cross-section. The 

Fama-French three-factor model (Fama & French, 1992) (Fama & French, 1993) is 

one of the nominal works in this field. They argued that the cross-sectional structure 

of the stock price can be explained by three factors: Namely, the beta, the size, and 

the value. (Fama & French, 2015) adds two additional factors-profitability and 

investment. The model's inability to fully capture the returns of small, high-

investment, and low-profitability firms remains a significant limitation. The 

inconsistent results across different regions suggest that the model may not be 

universally applicable, indicating a need for further research. (Fama & French, 2017) 

extends the five-factor asset pricing model to international markets specifically 

examining North America, Europe, Japan, and Asia Pacific. The model's 

underperformance in Japan and its failure to explain the low returns of certain small 

stocks suggest limitations in its current form. The study focuses heavily on regression-

based analysis without delving into potential economic reasons behind the observed 

anomalies, leaving some interpretive questions unanswered. 

In recent years, ML has been increasingly applied to the field of asset pricing and 

portfolio construction. (Heaton et al., 2016) develop a neural network for portfolio 

selection.(Harvey & Liu, 2021) study the multiple comparisons problem using a 

bootstrap procedure. (Giglio & Xiu, 2021) use dimension reduction methods to 

estimate and test factor pricing models. (Moritz & Zimmermann, 2016) apply tree 

based models to portfolio sorting, (Kozak, 2019) use shrinkage and selection methods 

for nonlinear function of expected stock returns. 

(Gu et al., 2020) stands out as a valuable contribution to the field by conducting a 

comprehensive comparative analysis of ML methods applied to empirical asset 

pricing, demonstrating that ML techniques, significantly enhance predictive accuracy 

and provide substantial economic gains over traditional regression-based approaches. 

(Rasekhschaffe & Jones, 2019), (Bryzgalova et al., 2020), (Drobetz & Otto, 2020),  

(Tobek & Hronec, 2021), (Bali et al., 2020), (Dillschneider, 2022) and (Leippold et 

al., 2022) also document that more complex ML models are superior to linear models. 
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(Swade et al., 2023) discuss the need for more stringent methodologies in the 

evaluation and acceptance of new factors within the "factor zoo" to ensure that they 

are truly robust and not the result of overfitting or other statistical anomalies. 

(Kelly & Xiu, 2023) reviewed the comprehensive integration of ML techniques into 

financial market analysis with a view to establishing their added value for empirical 

models. The overall purpose of the study is to provide a general review and 

comparison of performance in different models related to asset pricing, oriented 

toward shedding some light on the relative importance of different factors and how 

they impact predictive power for the models. 

3. Methodology 

Our study predicts cross-sectional stock returns using global stock market data, 

applying the advanced ML methods. The main body of the project is organized by 

enhancing the accuracy and robustness of return predictions. This section delineates 

how the dataset shall be prepared, along with various ML methods used for training 

purposes. 

There is an intensive phase of cleaning the dataset. In this study the target variable 

will be the 12-month return. This target variable is of importance since it expresses 

the financial metric that we would like our ML models to predict. This means that the 

data needs to be sorted, and the training data is organized by country, stock, and date. 

This way, we make sure to side-step the forward-looking bias by assuming monthly 

characteristics lagged by 1 month, quarterly at least 4 months, and annual at least 6 

months. 

We set up a train-test splitting strategy. We fix a start date for training, which is year 

2003, and then define a number of test periods. For each country, this predefined date 

range will cut the data into a training set and a test set avoiding possible data leakage 

to avoid overfitting in models. 

Feature engineering is one of the most critical steps in the process of data preparation. 

Handling missing data by replacing it with the column means is a strategy in which 

missing values are filled. This way, the models can be trained without interruptions 

because of missing values, and it helps to preserve the dataset's statistical properties. 

Following this, the focus is on firm-level characteristics only, putting aside 

macroeconomic attributes to research intrinsic drivers of stock returns at the level of 

single companies and hence to focus on return predictability in the cross-section of 

stocks. 

Following (Gu et al., 2020), we employ a general additive prediction model to 

describe the excess return of a stock, which can be written as: 

 𝑟𝑖,𝑡+𝑙 = 𝐸𝑡(𝑟𝑖,𝑡+𝑙) + 𝜀𝑖,𝑡+𝑙, (1) 

   

where (𝑟𝑖,𝑡+𝑙) is the forward 12-months excess stock return for stocks to represent ing 

a long-term investing perspective, which are indexed as as (𝑖 = 1, … , 𝑁𝑡) in month 

(𝑡 =  1, … , 𝑇).  

 𝐸𝑡(𝑟𝑖,𝑡+𝑙) = 𝑔∗(𝑧𝑖,𝑡), (2) 
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 (𝐸𝑡(𝑟𝑖,𝑡+𝑙)) as a function of predictor variables that maximizes the out-of-sample 

explanatory power for the return (𝑟𝑖,𝑡+𝑙) where in our case the forward 12-months 

expected stock return. We denote those predictors as the (𝑃) −dimensional vector 

(𝑧𝑖,𝑡), and assume the conditional expected cumulative return (𝑔∗(∙)) is a flexible 

function of these predictors. Despite its flexibility, this framework imposes some 

important restrictions. The function (𝑔∗(∙)) depends neither on (𝑖) nor (𝑡). This 

contrasts with standard asset pricing approaches that reestimate a cross-sectional 

model each time period or that independently estimate time-series models for each 

stock. Additionally, (𝑔∗(∙)) depends on (𝑧) only through (𝑧𝑖,𝑡). This means our 

prediction does not use information from the history prior to (𝑡), nor from individual 

stocks other than the (𝑖)𝑡ℎ. 

3.1.Models 

The algorithms we use are partial least squares, gradient boosted regression trees, and 

multilayer perceptron. We perform the usual methods from the machine learning 

literature (Gu et al., 2020) for estimating the models, choosing the hyperparameters, 

and evaluation of the prediction performance. We calculate the models separately for 

each market. The models are configured to predict by minimizing the root mean 

sqaured error on out-of-sample. 

 
RMSE𝑡+𝑙 = √

1

𝑁𝑡+𝑙
∑ ( 𝜀𝑖,𝑡+𝑙)̂ 2𝑁𝑡+1

𝑖=1  , 

 

(3) 

   

where 𝜀𝑖,𝑡+𝑙 is the individual prediction error for the stock i, and 𝑁𝑡+𝑙 is the number 

of stocks at t+1.  

3.1.1. Linear models 

Though simplistic, linear models like simple ordinary least squares regression can 

serve as a baseline to which other, more sophisticated approaches can be compared. 

Under this assumption, with respect to the predictors and their relationship considered 

to be linear with the stock returns, too often it misses the real complexity of data. In 

order to avoid possible overfitting issues intrinsic in linear models with a large number 

of predictors, we introduce penalized regression method of Ridge regression. It is in 

these method that regularization penalties are imposed to shrink coefficients of less 

important variables, hence leading to improved out-of-sample prediction 

performance. 

This naive linear model is certain to fail in the presence of many predictors. If the 

number of predictors, P, approaches the number of observations, T, then the linear 

model becomes quite inefficient or even inconsistent. It starts fitting noise instead of 

extracting signals. The problem with return prediction—the area where this signal-to-

noise ratio is notoriously low—is especially troubling. Ridge regression introduces an 

L2 penalty to the ordinary least square's regression. This allows techniques such as 

shrinking coefficients of less important predictors towards zero and handling of 

multicollinearity among predictors, hence improving the predictive power of the 

model. A model created by ridge regression will, in some cases, offer a base from 

which more complex models can be compared. 
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3.1.2. Gradient boosted regression trees 

Decision trees and their ensemble variants Random Forests and Gradient Boosted 

Trees are used for the capture of nonlinear interactions between predictors. These 

methods create recursive partitionings of the data, through which complex, nonlinear 

relationships may emerge without the explicit specification of interactions. 

Regression trees have become a popular ML approach for incorporating multiway 

predictor interactions and account for interactions among predictors. 

CatBoost is an advanced implementation of GBRT that works much more effectively 

with categorical variables and further reduces overfitting. It is designed as a robust, 

high-performance library that can capture complex patterns in data using ensembles 

of decision trees. CatBoost builds trees sequentially – each tree corrects the errors 

made by previous ones, which has improved model accuracy incrementally. 

Boosting Regression Trees, or just Boosting1— this is a case where we combine many 

decision trees into one ensemble model. While the process of bagging generated 

several models in parallel and then combined the results, boosting trains multiple 

models sequentially. Each model is trained based on the errors made by its 

predecessor. The weak learners used here are individual decision trees. All the trees 

are connected in series, and each tree tries to minimize the error of the previous tree. 

The following is an overview of the GBRT algorithm: First, initialization with a 

constant value; then, iteratively compute the residuals of the current model, fit a 

decision tree to the residuals, and update the model by adding the tree's predictions 

scaled by a learning rate. The final prediction has to be summed up from the 

contributions of all trees. GBRT is an extremely powerful tool, for it iteratively 

corrects the mistakes made by previous trees, hence progressively improving the 

model with higher accuracy. 

3.1.3. Neural networks 

We use neural networks, including deep learning architectures, to capture complex 

nonlinear relationships. The models have numerous layers of interconnected nodes 

that enable sophisticated hierarchical learning and intricate patterning of the data. 

Probably one of the most powerful modeling tool. This flexibility is derived from an 

ability to wrap within themselves many telescoping levels of nonlinear predictor 

interactions, earning the synonym "deep learning." All the same, their complexity 

places neural networks as among the least transparent, the least interpretable, and the 

most highly parameterized tools. 

Our analysis focuses on traditional "feed-forward" networks. An MLP neural 

network's objective function is to find the optimal weights and biases to help in 

minimizing the error between predictions of the model and the real target values. This 

would be through the use of a loss function quantifying the difference between the 

predicted and actual values, Mean Squared Error in the case of regression or Cross-

Entropy Loss for classification. Moreover, in the objective function, a regularization 

part is added to penalize the large weights and biases to avoid overfitting so that the 

 
1 Boosting is originally described in (Schapire, 1990) and (Freund, 1995) for classification 

problems to improve the performance of a set of weak learners. (Jerome H. Friedman, 2001) 

extend boosting to contexts beyond classification, eventually leading to the gradient boosted 

regression tree. 



 

 

 

 

 

 

 

 

 

CROSS-SECTIONAL STOCK RETURNS VIA MACHINE LEARNING 321 

 

 

model generalizes well to new data. This regularization thus goes on balancing the 

fitting of training data accurate enough and keeping the model simple. 

3.2.Model evaluation and validation 

Model performance will, however, be tested rigorously out-of-sample with techniques 

pertaining to cross-validation. Main attention in the realm of key performance metrics 

is accorded to R-squared, Mean Absolute Error, and Sharpe Ratio, along with both 

predictive accuracy and economic significance. What's more, we do robustness checks 

so that the predictions from our models are not sensitive to any particular assumptions 

or data partitioning. To assess predictive performance for individual excess stock 

return forecasts, we calculate the out-of-sample (𝑅2) as 

𝑅oos
2 = 1 −

∑ (𝑟𝑖,𝑡+𝑙 − 𝑟𝑖,𝑡+𝑙̂)
2

(𝑖,𝑡)∈𝒯3

∑ 𝑟𝑖,𝑡+𝑙
2

(𝑖,𝑡)∈𝒯3

, 

Our approach will be seeking predictive models that are guaranteed to be not only 

accurate but also generalizable across different market conditions and datasets by 

combining ML techniques and statistical methodologies. In the final step, evaluation 

of the trained models will be done with test data. Several of the more key performance 

metrics computed would be MAE and R-squared, through which one can evaluate 

model accuracy and the power of explanation. The MAE provides an average of the 

size of the errors in the predictions, while the R-squared measures how well a model 

explains the variability of the target variables. 

One-way pairwise comparison of methods is afforded by the (Diebold & Mariano, 

1995) test for differences in out-of-sample predictive accuracy between two models. 

The Diebold-Mariano test is a statistical test used to compare the predictive accuracy 

of two competing forecasts. The test's main advantage lies in the model-free property 

and does not ask for the generated forecasts from nested models. Specifically, this test 

statistic can be simply written as the difference between forecast errors from two 

models, adjusted for possible autocorrelation and heteroskedasticity in the differences 

between forecast errors. In particular, if e1,t and e2,t are the forecast errors from the 

two models at time $t$, then the test statistic is computed as: 

 
𝐷𝑀 =

𝑑̅

√σ2̂/𝑇

 
(4) 

 

where (𝑑̅) is the mean of the loss differential (𝑑𝑡 = 𝑒1,𝑡 − 𝑒2,𝑡), and (σ2̂) is an 

estimator of the variance of (𝑑𝑡), which can be consistently estimated using the 

Newey-West method to account for autocorrelation. Under the null hypothesis of 

equal predictive accuracy, the DM statistic is asymptotically standard normal. This 

methodology has been appropriately modified in a number of empirical contexts—

including stock-level prediction errors, where strong cross-sectional dependence may 

be present—by comparing the cross-sectional average of prediction errors rather than 

individual stock returns. It is important to emphasize that the model-free nature of the 
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Diebold-Mariano test means it should be interpreted as a comparison of forecasts and 

not as a comparison of fully articulated econometric models. 

3.2.1. Expanding-window validation 

To ensure meaningful evaluation, we adopted the expanding window approach for 

assessing our model's performance. This alone entailed fitting our model on data from 

a start date up to some point in the series, using the next year for prediction and 

calculation of an R2 score. We repeated this for all other consecutive years while also 

increasing the window of data used in training and making predictions with the model. 

This gave us a full insight into the model's capability to make correct predictions 

throughout our analysis period. We can in this way emulate use of the models in real 

scenarios where the investors add new data collected over time. 

Figure 1: Expanding-window validation train-test split 

 

Each test period is subsequent in time to the related training period. There is no futures 

information because the training data stops just before each test period begins. 

Running the performance of the model over multiple test periods can proxy an 

investor's learning curve. In this way, experimenters understand how an investor's 

predictive accuracy improves over time during many iterations when more data 

becomes available and the model is re-trained periodically. 

3.3.Factor importances 

The method we followed in order to use variables of major importance to our model 

was based on the panel predictive 𝑅2. For each predictor j, we computed the reduction 

in panel predictive 𝑅2.  obtained by setting all its values to zero while keeping all 

other model estimates fixed. If this score deteriorated appreciably, we decided that 

this factor was important for the predictive power of the model. 

Global performance across the multiple test periods confirms these will not be factors 

that the model uses that lose their predictive power over time. More importantly, this 

is integral to building a robust model that doesn't rely on transient patterns or 
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anomalies. We are to ascertain, looking at feature importance and consistency across 

test periods, that our model is leveraging stable and reliable predictors. 

This expanding window cross-validation approach will ensure that our models are 

evaluated very close to real-world applications; hence, it gives us a very good and 

reliable assessment of their predictive capabilities in financial markets. This 

evaluation will assess not only the generalization ability of the model on future data 

but also track improvement in investor learning and verify if the predicting factors are 

stable. 

In this study, the detailed analysis of the predictability of stock returns using proper 

cleaning of data, feature engineering, and implementation of ML techniques are duly 

attempted. 

4. An Empirical Study of Global Equities 

This analysis is well-grounded on a diverse dataset with global stock market data. Our 

sample comprises around 15 thousand companies, spanning 31 countries and 12 

sectors. The dataset begins in the year 2003, deliberately chosen despite the 

availability of earlier data for developed markets. This choice reflects our focus on 

capturing the nuances of emerging and frontier markets that have become more 

significant in the global perspective from this period onward with a dataset of 

balanced stocks. Such broad coverage is indispensable for tapping into the unique 

economic conditions, varied market structures, and diverse investor behaviors that 

characterize the global equity markets. 

The study uses firm-level and price-related features as predictor variables, including 

28 price-related features with rolling and other transformations, volume, momentum, 

volatility, along with sector-based features like industry dummies. It also includes 63 

pertinent financial ratios drawn from financial statements and 151 features engineered 

from the core dataset. Stocks are part of this dataset representing a corresponding 

uniquely existing publicly traded company.  

Figure 2. Number of stocks per country 
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Overall, the dataset's diversity in terms of geography, market size, and sectoral 

representation forms a robust basis for applying ML models to forecast stock returns.  

5. Emprical Results 

The empirical findings of this study provide several important insights into the 

predictability of cross-sectional stock returns across different global markets. In 

particular, we notice anomalies in the evolution of 𝑅2 over time. These crises have 

caused huge market volatility and disruptions, which could affect the relationships 

between variables in our models and the cross-sectional equity returns. During periods 

of economic uncertainty and financial distress, there can be huge changes in investor 

behavior, sentiments of the market, and risk aversion. 

5.1.Model performance and comparison 

Traditional linear models gave a baseline and showed something like limited 

predictive power against which to compare other methods in this high-dimensional 

setting. Correspondingly, the values of out-of-sample R-squared were relatively low 

for linear models, which explains that much variability in stock returns could not be 

explained by these models alone. 

Table 1. Monthly out-of-sample stock-level prediction performance of 

penalized linear model (percentage 𝑹𝟐) 
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1 2 3 4 5 6 7 8 9 10

2013-07 

2014-06

2014-07 

2015-06

2015-07 

2016-06

2016-07 

2017-06

2017-07  

2018-06

2018-07  

2019-06

2019-07 

2020-06

2020-07  

2021-06

2021-07  

2022-06

2022-07  

2023-04

CN 0,279 0,265 0,039 -0,486 -0,361 -0,09 -0,034 -0,048 -0,006 -0,02

JP 0,239 -0,035 0,059 0,277 -0,248 -0,09 0,017 -0,036 -0,013 0,202

US 0,159 -0,209 0,208 0,212 0,001 0,056 0,157 0,087 -0,246 0,118

IN 0,035 -0,019 0,044 0,004 -0,109 -0,033 -0,001 0,003 -0,008 0,007

EU 0,131 0,082 0,157 0,176 -0,212 0,012 0,141 0,079 -0,251 0,068

KR 0,026 -0,027 -0,032 0 -0,021 -0,015 -0,001 -0,003 0,001 0,002

HK -0,007 -0,035 -0,002 -0,003 0,003 0,047 0,063 0,055 0,118 0,119

TW 0,005 -0,106 0,008 0,028 -0,014 0,028 0,055 0,018 -0,028 0,091

ID -0,024 -0,14 0,006 -0,034 -0,04 -0,011 0,006 0,007 0,022 0,027

TH 0,219 -0,396 0,072 -0,132 -0,263 -0,196 -0,055 0,077 -0,131 -0,153

GB 0,164 0,103 0,266 0,366 -0,097 0,023 0,2 0,237 -0,565 -0,084

CA -0,009 -0,26 0,039 -0,06 -0,16 -0,053 0,034 0,021 -0,096 0,008

AU -0,022 -0,069 0,086 0,1 -0,019 -0,004 0,047 0,039 -0,144 0,079

BR -0,193 -0,233 0,062 0,139 0,001 0,149 0,092 -0,173 -0,096 0,12

CH 0,25 0,195 0,347 0,453 -0,469 -0,064 0,257 0,234 -0,482 -0,047

MY 0,065 -0,161 0,08 0,068 -0,131 -0,06 0,001 0,007 -0,082 0,081

NO -0,005 -0,159 0,074 0,065 -0,008 -0,002 0,111 0,016 -0,086 0,042

RU -0,035 -0,11 -0,07 0,015 0,029 -0,082 -0,08 -0,022 0,003 -0,053

SG 0,081 -0,609 0,052 0,233 -0,348 0,005 0,105 0,136 -0,304 -0,29

TR 0,371 -0,51 0,144 0,4 -0,552 0,352 0,305 0,215 0,37 0,395

MX 0,079 -0,202 -0,096 -0,221 -0,425 -0,315 -0,075 0,083 -0,133 0,136

Country

 

The neural network MLP model had better predictive power than a simple linear 

model because some of the nonlinearities or interactions among predictors were 

captured, which the linear model failed to do. However, while performing better than 

the linear approach, improvements were still modest and inadequate to handle the 

complexities of the data fully. Although MLP models are more powerful in capturing 

nonlinear relationships, they are not generally well-suited for tabular data, very 

common in financial datasets. Neural networks do a good reverse engineering in 

unstructured data like images or text but sometimes fail on structured data and 

relations inside of it that are present in tabular data. 

Furthermore, neural network models have hyperparameters that need tuning, such as 

the number of layers, number of neurons, and learning rate; this could turn out to be 

very complex and resource-intensive. This complexity often comes at the cost of 

interpretability paid in full. The lack of transparency possibly becomes a major 

limitation in areas like finance, where it is foremost to understand what factors drive 

model decisions.  
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Table 2. Monthly out-of-sample stock-level prediction performance of neural 

network model (percentage 𝑹𝟐) 

1 2 3 4 5 6 7 8 9 10

2013-07 

2014-06

2014-07 

2015-06

2015-07 

2016-06

2016-07 

2017-06

2017-07  

2018-06

2018-07  

2019-06

2019-07 

2020-06

2020-07  

2021-06

2021-07  

2022-06

2022-07  

2023-04

CN 0,324 0,236 0,031 -0,46 -0,364 -0,069 -0,048 -0,06 -0,013 0,001

JP 0,239 -0,028 0,03 0,369 -0,181 -0,069 0,016 -0,025 -0,009 0,231

US 0,154 -0,218 0,206 0,207 -0,024 0,049 0,152 0,088 -0,246 0,12

IN 0,024 -0,01 0,063 -0,001 -0,117 -0,004 -0,016 0,002 0,014 -0,013

EU 0,101 0,089 0,153 0,153 -0,218 0,024 0,159 0,077 -0,174 -0,001

KR 0,015 -0,036 -0,056 -0,001 -0,022 -0,046 0 0,008 -0,001 0,008

HK -0,001 0,054 0 -0,021 0,024 0,004 0,094 -0,305 0,08 0,122

TW -0,015 -0,34 0,057 0,058 -0,013 0,046 0,142 0,005 -0,024 0,061

ID -0,039 -0,097 0,008 0 -0,004 -0,029 0,029 0,013 0,026 0,017

TH 0,216 -0,677 0,076 -0,075 -0,13 -0,284 -0,066 0,089 -0,187 -0,388

GB 0,132 0,109 0,254 0,371 -0,172 -0,029 0,195 0,228 -0,518 -0,13

CA 0,003 -0,273 0,036 -0,075 -0,154 -0,045 0,034 0,02 -0,124 0,011

AU -0,301 -0,065 0,006 0,074 -0,074 -0,146 0,048 0,039 -0,012 0,038

BR -0,167 -0,182 0,025 0,063 0,039 0,219 0,046 -0,081 -0,041 0,094

CH 0,247 0,183 0,347 0,434 -0,397 -0,077 0,269 0,129 -0,547 -0,001

MY -3,136 -0,144 0,071 0,067 -3,797 -0,305 -0,099 -0,102 -0,191 0,097

NO -0,016 -0,131 0,074 0,089 -0,208 0,01 0,094 0,021 -0,053 0,048

RU -0,382 -0,177 -0,209 0,014 -0,009 -0,005 -0,219 -0,04 -0,014 0,139

SG -0,35 -0,894 0,027 0,161 -0,233 -0,001 -0,075 0,106 -0,402 -0,563

TR 0,354 -0,49 0,145 0,407 -0,478 0,357 0,292 0,227 0,288 0,404

MX 0,08 -0,38 -0,051 -0,055 -0,357 -0,471 -0,089 0,083 -0,205 0,131

Country

 

Among the primary advantages of GBRT is handling complex interactions between 

predictors through averaging across multiple decision trees. This ensemble approach 

greatly reduces variance, hence improving the stability of the model and making it 

more robust to overfitting. The shallow models outperform the deep ones, likely due 

to the fact that the data is sparse in nature and contains a low signal-to-noise ratio 

within asset pricing. Each tree in an ensemble adds incrementally to the final 

prediction—both additive and transparent—hence allowing clear understanding of 

how the model arrives at the conclusion. 

Compared to neural networks and other complex models, GBRT models are relatively 

light in terms of computational resources for training and do not require extensive 

hyperparameter tuning. One of the definite advantages of their transparency is that 

users can literally see how different predictors differ with respect to importance and 

how they contribute towards different outputs from the model. This type of 

interpretability is highly valued, particularly in the finance domain, where much is 

gained through interpretability in order to build trust and achieve regulatory 

compliance. 

Although GBRT models did bring slight improvement in out-of-sample R-squared 

values over the linear models, they do show a level of predictive accuracy. In general, 

the GBRT model represents that sweet spot among interpretability, resource 

efficiency, and predictive power, which makes it competitive in many predictive 

modeling tasks—most centrally, those in which clarity into the logic of decision-

making comes nearly as important as the accuracy of these predictions. 
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Table 3. Monthly out-of-sample stock-level prediction performance of GBRT 

model (percentage 𝑹𝟐) 

1 2 3 4 5 6 7 8 9 10

2013-07 

2014-06

2014-07 

2015-06

2015-07 

2016-06

2016-07 

2017-06

2017-07  

2018-06

2018-07  

2019-06

2019-07 

2020-06

2020-07  

2021-06

2021-07  

2022-06

2022-07  

2023-04

CN 0,19 0,217 -0,076 -0,201 0,149 -0,038 -0,014 -0,006 0,001 0,051

JP 0,373 0,004 0,085 0,327 -0,11 -0,088 0,07 0,154 0,081 0,259

US 0,222 -0,098 0,26 0,267 0,108 0,146 0,229 0,213 -0,163 0,159

IN 0,072 0,058 0,11 0,129 -0,025 0,114 0,058 0,05 0,039 0,088

EU 0,221 0,199 0,248 0,281 -0,072 0,159 0,184 0,207 -0,096 0,2

KR 0,09 0,022 -0,008 0,071 -0,005 0,048 0,09 0,057 0,023 0,111

HK 0,104 0,139 0,169 0,243 0,264 0,266 0,248 0,209 0,201 0,189

TW 0,061 -0,013 0,142 0,132 0,133 0,115 0,108 0,149 0,058 0,205

ID 0,032 -0,044 0,01 0,108 0,125 0,117 0,123 0,07 0,177 0,144

TH 0,269 -0,185 0,145 0,063 0,035 -0,02 -0,03 0,09 0,191 0,149

GB 0,212 0,227 0,308 0,419 0,033 0,131 0,285 0,35 -0,555 -0,027

CA 0,212 -0,115 0,207 0,146 0,169 0,089 0,203 0,276 0,09 0,114

AU 0,143 0,206 0,209 0,233 0,246 0,144 0,202 0,288 0,012 0,202

BR -0,109 0,027 0,172 0,245 0,079 0,223 0,158 -0,149 0,081 0,207

CH 0,262 0,232 0,458 0,468 -0,423 0,204 0,288 0,356 -0,373 0,066

MY 0,089 0,075 0,259 0,178 -0,032 0,037 0,109 0,065 0,088 0,139

NO 0,074 0,145 0,239 0,312 0,29 0,059 0,269 0,224 0,045 0,116

RU 0,095 0,084 0,09 0,218 0,105 0,049 0,113 0,123 -0,032 0,115

SG 0,255 -0,276 0,179 0,225 -0,03 0,122 0,214 0,282 -0,06 0,096

TR 0,346 -0,214 0,142 0,377 -0,164 0,406 0,419 0,26 0,395 0,575

MX 0,113 -0,129 0,065 -0,117 -0,232 -0,062 0,095 0,179 0,139 0,087

Country

 

Below is the boxplot comparing the R² out-of-sample for three models: Ridge 

Regression, CatBoost which is a GBRT model and MLP. Of these, the CatBoost 

model represented in black performed best. It had a higher median of R² values and a 

tighter interquartile range. This means it gives relatively more consistent predictions 

as compared with both the MLP and Ridge Regression models. That means that the 

rather simple and partially interpretable GBRT model was at least as good as the more 

complex MLP and the penalized linear model, which testifies to its efficiency in the 

grasping of underlying patterns in data. 

Figure 3. Summary of 𝑹𝟐 out-of-sample performance by model 

 

5.2. Diebold-Mariano tests 

A granular comparison of predictive accuracy between the GBRT model and 

penalized linear regression model for different countries and time periods is presented. 

Based on these results, evidence indicates that the GBRT model outperforms a 

penalized linear regression model. Moreover, the p-values corresponding to these 

results further confirm that the GBRT model has very high statistical significance 

superiority, hence contributing to its reliability in various contexts. There are periods 

and regions, specifically in China during certain time frames, when the GBRT model 
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fails to perform better than the penalized linear regression model; this is characterized 

by negative DM values. Notwithstanding these instances, the GBRT model attains an 

overall winning streak natured from the data. This trend underlines how important it 

is to have more advanced models, like GBRT, which are heavier on computation in 

exchange for better predictive accuracy and stability across different markets and time 

frames. 

Table 4. Diebold-Mariano tests per year and country 

1 2 3 4 5 6 7 8 9 10

2013-07 

2014-06

2014-07 

2015-06

2015-07 

2016-06

2016-07 

2017-06

2017-07  

2018-06

2018-07  

2019-06

2019-07 

2020-06

2020-07  

2021-06

2021-07  

2022-06

2022-07  

2023-04

CN -63,556 -30,189 -31,118 83,628 124,912 16,866 13,754 16,506 3,593 16,068

JP 35,137 6,764 5,532 26,289 25,629 0,482 12,752 39,175 22,011 29,328

US 9,537 13,614 10,201 11,584 19,249 19,389 21,823 30,188 16,775 9,729

IN 12,755 10,131 11,999 22,64 13,814 32,164 15,18 8,066 8,73 19,155

EU 10,294 13,102 12,683 15,585 12,525 16,371 7,176 16,433 16,712 15,169

KR 10,458 7,065 3,24 10,764 2,624 9,662 14,994 9,786 5,404 14,41

HK 12,349 16,54 17,973 28,423 31,175 27,049 22,127 18,362 9,06 6,468

TW 6,644 12,258 17,17 13,024 17,867 11,425 9,465 18,182 9,101 14,893

ID 4,349 6,692 0,472 10,942 11,623 11,48 9,511 7,356 11,591 8,985

TH 5,39 9,231 8,583 11,464 16,215 13,919 1,938 2,411 14,386 14,992

GB 2,537 8,007 4,72 6,046 5,883 7,048 10,209 10,705 0,604 5,575

CA 11,019 6,099 7,952 10,877 14,033 8,581 10,788 18,565 8,922 5,105

AU 9,918 11,488 8,088 5,82 11,886 9,094 9,148 14,224 6,204 5,036

BR 3,249 8,903 4,022 6,263 2,968 5,499 4,56 3,257 8,06 3,658

CH 0,495 1,338 3,864 0,864 1,31 7,183 2,179 7,708 3,503 3,453

MY 1,696 9,501 5,927 3,53 4,682 4,634 4,721 3,275 5,537 3,165

NO 3,067 7,618 6,186 6,69 6,871 1,767 5,189 9,89 4,336 1,706

RU 4,868 4,485 5,836 6,488 4,13 5,39 6,548 4,355 -0,268 6,175

SG 4,076 10,198 3,4 -0,667 6,211 5,054 4,86 5,296 5,032 6,784

TR -1,665 6,929 -0,101 -6,669 11,237 2,887 6,697 2,13 3,415 5,43

MX 1,579 2,709 3,985 2,162 5,553 9,59 5,207 3,813 6,455 -1,306

Country

 

The below table shows the p-values of DM test results. The statistically-significant 

results emphasize that the GBRT model not only performs better overall but also 

adapts more effectively to the complexities. 
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Table 5. P-values of Diebold-Mariano test per test period and country 

1 2 3 4 5 6 7 8 9 10

2013-07 

2014-06

2014-07 

2015-06

2015-07 

2016-06

2016-07 

2017-06

2017-07  

2018-06

2018-07  

2019-06

2019-07 

2020-06

2020-07  

2021-06

2021-07  

2022-06

2022-07  

2023-04

CN 0 0 0 0 0 0 0 0 0 0

JP 0 0 0 0 0 0,63 0 0 0 0

US 0 0 0 0 0 0 0 0 0 0

IN 0 0 0 0 0 0 0 0 0 0

EU 0 0 0 0 0 0 0 0 0 0

KR 0 0 0,001 0 0,009 0 0 0 0 0

HK 0 0 0 0 0 0 0 0 0 0

TW 0 0 0 0 0 0 0 0 0 0

ID 0 0 0,637 0 0 0 0 0 0 0

TH 0 0 0 0 0 0 0,053 0,016 0 0

GB 0,011 0 0 0 0 0 0 0 0,546 0

CA 0 0 0 0 0 0 0 0 0 0

AU 0 0 0 0 0 0 0 0 0 0

BR 0,001 0 0 0 0,003 0 0 0,001 0 0

CH 0,621 0,181 0 0,388 0,19 0 0,029 0 0 0,001

MY 0,09 0 0 0 0 0 0 0,001 0 0,002

NO 0,002 0 0 0 0 0,077 0 0 0 0,088

RU 0 0 0 0 0 0 0 0 0,789 0

SG 0 0 0,001 0,505 0 0 0 0 0 0

TR 0,096 0 0,92 0 0 0,004 0 0,033 0,001 0

MX 0,114 0,007 0 0,031 0 0 0 0 0 0,192

Country

 

5.3. Factor Importances 

Among other things, feature importance is an important aspect of ML that concerns 

model interpretability and decision-making. It is the method to identify and quantify 

the contribution of each feature in a predictive model, which allows us to interpret the 

variables most influential to model predictions. The literature uses terms such as 

"predictor," "feature,", "characteristics,", and "factor" synonymously to refer to these 

variables. Understanding feature importance lots not only refines the models by 

concentrating on the factors that most influence the outcome but also increases 

transparency and trust in model predictions, hereby making this component 

inseparable from model development and evaluation. 

In terms of model explainability, Tree 0 in figure below acts as an initialization step 

for this GBRT model, following an iterative process to minimize prediction errors 

using the most informative feature, as decided in a loss function/measure by which it 

will split data to generate its first set of predictions. These predictions are then added 

to the initial model—usually just the mean of the target variable—and scaled by a 

learning rate parameter, which determines to what extent Tree 0 will influence the 

final prediction. This process lays the base for the next trees, which further improve 

the predictions by learning from residual errors of previous rounds. The role of Tree 

0 is very important, as it gives an initial correction that guides further developments 

of the model, making sure each new tree contributes towards a more accurate and 

robust prediction. Moreover, ordered boosting, as in models like CatBoost, makes use 

of categorical factors both very effective and keeps off target leakage, improving 

predictive accuracy throughout the iterative process. 
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Figure 4. Section of the tree plot 0 of us country GBRT model 

 

Our analysis identified that volatility metrics are one of the most important factors 

which emerged as the top factors across all markets underpinning its critical role in 

capturing market uncertainty and risk. Maximum drawdown for the same period 

ranked highly as well, given its central role in assessing possible downside risks by 

measuring the largest loss from peak to trough within a year. 

Another central variable was enterprise value, even if it took on different meaningful 

levels across markets. It becomes, therefore, a very important metric that includes 

both debt and equity to represent a company's total value, particularly in regions with 

varied economic activities. At the sector level, the price-to-book ratio never moved 

from the top factors, indicating that relative valuation was very important in 

determining undervalued or overvalued sectors. This is further boosted by the high 

rating accorded to momentum, which captures trends in stock prices and reflects the 

momentum effect of past good performers continuing to be so in the short run; 

corresponding with rich empirical evidence (Asness et al., 2013) that picks value and 

momentum as the two most conspicuous and prevalent patterns in asset returns.  

Another very highly prominent factor that came into the picture is an equity multiplier, 

a financial leverage ratio describing the overall assessment of its financial structure 

and risk profile of the company as a whole. 
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Net current asset value measures a company's difference between the current assets 

and liabilities as an indicator of liquidity; it showed variable importance in different 

markets, most rampant in regions where this aspect was really important, like the 

emerging markets. Dividend consistency was rather insignificant when looked at 

universally, but featured centrally in markets characterized by mature companies 

because it relates to factors for stability and attraction of income-focused investors. 

Tangible asset value and large capitalization were also influential, especially in heavy 

industries and developed markets where large-cap firms dominate. 

Large-cap stocks, had greater influence in developed markets, where these companies 

often dominate indices and attract the most significant investor interest. While for 

small-cap stocks, against the backdrop of higher volatility and a risk level, local 

economic conditions and investor sentiment would be very critical to their reaction, 

hence of imperative consideration in explaining growth-oriented or more speculative 

investment dynamics. Not precisely sector-based, the large-cap/small-cap stock 

distinction is key to investment portfolio construction and risk management, as it does 

have an effect on the overall risk-return profile of investments within different market 

segments. 

The figure presents the rankings considered in the study regarding their average total 

model contribution aggregated within categories for each country. The factor 

importance is calculated as the reduction of the 𝑅oos
2 . In developed markets, quality, 

value and profitability factors rank highly. In developed markets, quality, value, and 

profitability factors rank highest, with quality being the most significant across the 

markets. Value remains significant, but its prominence has declined in developed 

markets. Profitability factors continue to play an important role in financial 

environments, while investment and dividend factors have the lowest importance for 

return predictability. 

The importance ranking for each feature is color-coded so that dark colors are 

assigned high importance and light colors represent low importance. 

Figure 5. Factor ranking by category for each country 

 

The figure below visualizes the relative importance of different financial metrics or 

factors in detail for countries about predicting stock returns.  
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Figure 6. Factor rankings by country 

 

5.4. Machine learning portfolios 

In this chapter, we will describe the construction and performance of portfolios that 

take advantage of the predictive power of a host of ML models. In particular, we will 

assess whether improved prediction capabilities of such models translate to better 

alpha. Construction of ML-driven portfolios begins with applying predictive models 

that estimate expected returns for a broad universe returns of individual stocks.. We 

take this comprehensive dataset to use the predicted returns as a key input for portfolio 

optimization. These steps are involved in the construction of these portfolios: 

It ranks stocks by their expected returns and then selects top-ranked stocks to include 

in a portfolio subject to some criteria. The basic strategy is to pick up the top 10% 

quantile with the highest predicted returns. The long-only constraint restricts the 

portfolio to only long positions, avoiding the additional risks and complexities 

associated with short selling. 



 

 

 

 

 

 

 

 

 

CROSS-SECTIONAL STOCK RETURNS VIA MACHINE LEARNING 333 

 

 

The portfolios are built yearly, rebalanced each July for the entire test period. This 

timing is based on the model's prediction of 12-month returns, allowing a portfolio to 

be held for an entire year before being reevaluated and rebalanced based on the latest 

predictions. This 12-month horizon typifies usual cycles of investments and gives 

sufficient time for the predictive models to pick up underlying market dynamics and 

trends. A view into the performance of ML-driven portfolios is gauged against 

traditional metrics such as cumulative returns, Sharpe ratios, and maximum 

drawdowns. The below table are the cumulative returns of long-only portfolios across 

different countries, indicating the relative efficacy of the linear models in matching 

ML approaches in portfolio construction. 

Table 6. Cumulative returns for portfolios by country 

Country Linear Model Portfolio Machine Learning Portfolio Cumulative Return Gain

CN 0,784                         1,767                                0,983                                           

EU 3,941                         9,032                                5,091                                           

IN 2,314                         5,595                                3,281                                           

JP 1,812                         5,652                                3,840                                           

KR 0,554                         3,330                                2,776                                           

MX 1,044                         3,477                                2,433                                           

SG 0,648                         2,772                                2,124                                           

TH 0,735                         3,200                                2,465                                           

TR 1,862                         8,518                                6,656                                           

TW 2,010                         3,675                                1,665                                           

US 3,513                         9,947                                6,434                                            

The empirical study results indicate that the Sharpe ratio generally increases with 

model complexity. The Sharpe ratios of linear models are not robust and vary between 

developed and emerging countries. In contrast, the gain in Sharpe ratios with ML 

models is significant in most countries. 

Table 7. Sharpe ratios for portfolios by country 

Country Linear Model Portfolio Machine Learning Portfolio Sharpe Ratio Gain

CN 0,561                         0,844                                0,283                            

EU 1,441                         1,889                                0,448                            

IN 1,014                         1,501                                0,487                            

JP 0,938                         1,630                                0,692                            

KR 0,439                         1,098                                0,659                            

MX 0,773                         1,002                                0,229                            

SG 0,532                         1,125                                0,593                            

TH 0,591                         1,172                                0,581                            

TR 0,716                         1,176                                0,460                            

TW 1,031                         1,194                                0,163                            

US 1,407                         1,815                                0,408                             

The empirical study's max drawdown results below highlight the worst peak-to-trough 

declines for Linear and ML Portfolios across various countries. The data shows that 
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maximum drawdowns differ by country, with the ML Portfolio generally reducing 

max drawdowns compared to the Linear Model. 

Table 8. Max drawdowns for portfolios by country 

Country Linear Model Portfolio Machine Learning Portfolio Max DD Gain

CN (0,772)                        (0,774)                               (0,002)                           

EU (0,201)                        (0,232)                               (0,031)                           

IN (0,835)                        (0,535)                               0,300                            

JP (1,892)                        (0,722)                               1,170                            

KR (1,375)                        (1,110)                               0,265                            

MX (2,193)                        (0,485)                               1,708                            

SG (1,650)                        (1,338)                               0,312                            

TH (3,666)                        (1,965)                               1,701                            

TR (4,205)                        (2,436)                               1,769                            

TW (0,426)                        (0,285)                               0,141                            

US (0,327)                        (0,321)                               0,006                             

The first chart shows the cumulative returns for two portfolios likely the Linear and 

the ML Portfolio along with the average line and range of outcomes across different 

countries. The ML portfolio (indicated by the darker line) generally shows higher 

cumulative returns over time compared to the linear model portfolio. The shaded areas 

represent the variability or range of returns across different countries, indicating that 

while the ML Portfolio tends to outperform, there is significant variation in outcomes 

depending on the specific market. 

Figure 7. Cumulative returns of portfolios summary with minimum and 

maximum ranges of countries (2013 to 2023) 

 

The figure below breaks down the cumulative returns by 10 individual countries, 

providing a more granular view. In all countries, the ML Portfolio outperforms the 

linear model portfolio, often with a significant margin. However, the degree of 

outperformance varies by country, highlighting that while ML generally offers better 

returns, its relative advantage can differ depending on local market conditions. 
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Figure 8. Cumulative returns of portfolios from 2013 to 2023 by country 
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6. Conclusion 

Using 63 stock characteristics in 31 countries, we conclude that this is an encouraging 

result: all models provide positive returns and underline the potential of ML for 

portfolio optimization. However, it is important to optimize hyperparameters in the 

next level of performance. Our analysis indicates that machine learning, especially 

neural networks and regression trees, enhances our understanding of asset prices by 

picking up a nonlinearity in the interactions, which more traditional models tend not 

to explain. The most crucial stock characteristics feeding the models belong to the 

traditionally popular factors such as value, size, momentum, and reversal. However, 

the models cannot be limited to a few parameters as the contribution of factors is not 

uniform. In developed markets, quality, value, and profitability factors rank highest. 

Value remains significant, although its prominence has declined in these regions. 

Profitability is more important than value in emerging markets, likely due to 

inefficiencies in pricing mechanisms. Investment and dividend factors have the lowest 

importance for return predictability. It generally turns out that shallower models are 

superior to deeper ones, possibly as a result of the low signal-to-noise ratio, which 

makes it difficult to distinguish meaningful patterns from random noise. The second 

concern is that deep learning is computationally intensive, requiring careful 

hyperparameter tuning due to the sensitivity to hyperparameters when it is 

implemented in the general framework of machine learning. Not to mention, the old 

parsimony principle—use as few parameters as possible to avoid overfitting—is in 

contrast with the parameterized nature of machine learning. The evidence from our 

study indicates that such machine learning models can be developed into effective 

portfolios. It is only for increasing complexity that complex models hold the potential 

to greatly improve predictions and Sharpe ratio, and thus complexity is positively 

adopted for portfolio results. The fact that the algorithms have been successful return 

predictors indicates a place of increasing importance in the fintech industry and its 

modern financial systems. The gains in Sharpe ratios coming with more complex 

models, therefore, underscore the benefits of model complexity, directly challenging 

the traditional simplicity paradigm in financial modeling. 
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