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Abstract

In this paper, we introduce Riemannian submersions of a hemi-slant submanifold of a Kéh-
ler manifold by observing the integrability of the anti-invariant distribution of a hemi-slant
submanifold and the integrability of the vertical distribution of a Riemannian submersion.
Using this notion, we show that the base manifold is a K&hler manifold in the submer-
sion of a hemi-Kaehlerian slant submanifold of an almost Hermitian manifold. We obtain
an inequality between the sectional curvature of the hemi-Kaehlerian slant submanifold
and the holomorphic sectional curvature of the base manifold. If this inequality becomes
equality, a geometric result is given. In addition, the Ricci tensor field on the horizontal
distribution along this submersion is also found.
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1. Introduction

CR-submanifolds were defined by Bejancu [1] as a generalization of holomorphic sub-
manifolds and anti-invariant submanifolds. It is known that the anti-invariant distribution
of a CR-submanifold of a Kéhler manifold is always integrable [3].

On the other hand, Riemannian submersions were defined by O’Neill [11] as the submer-
sion counterpart of Riemannian submanifolds. The vertical distribution in a Riemannian
submersion is also always integrable.

Observing the integrability of the vertical distribution in Riemannian submersions and
the integrability of the anti-invariant distribution of a CR-submanifold of a Kéhler man-
ifold [3], Kobayashi defined and studied CR-submersions [9]. This notion later attracted
the attention of many authors and a large number of works were published, [5], [6], [7],
[12], [13].

On the other hand, generic submanifolds were defined and studied by Chen [4] as a
generalization of CR-submanifolds. Unlike the case of CR-submanifolds, the distribution
that is orthogonal to the holomorphic distribution in generic submanifolds is not always
integrable [4]. Fatima and Ali [8] applied Kobayashi’s definition to generic submanifolds,
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thus assuming the integrability of purely real distribution. Under this assumption, they
studied the effects of such submersions on submanifolds and target manifolds.

Another class of submanifolds that is a generalization of CR-submanifolds in the liter-
ature is hemi-slant submanifolds [2], [14]. The anti-invariant distribution is always inte-
grable in hemi-slant submanifolds of a Ké&hler manifold [14].

In this paper, the submersion of a hemi-slant submanifold is defined by analogy with
this integrability situation in hemi-slant submanifolds and Riemannian submersions. The
paper is organized as follows: In the second section, the concepts and formulas that will be
used in the paper are recalled. In the third section, we first define a Riemannian submersion
from a hemi-slant submanifold of an almost Hermitian manifold to an almost Hermitian
manifold (Definition 3.1). For a Riemannian submersion from a hemi-slant submanifold
of a Hermitian manifold to an almost Hermitian manifold, it is then shown that the tar-
get manifold is also a Hermitian manifold (Theorem 3.2). It is obtained that the target
manifold is a Kaehler manifold if the hemi-slant submanifold is a hemi-Kaehlerian slant
submanifold (Theorem 3.3). On the other hand, an inequality is obtained between the
ambient manifold of the hemi-slant submanifold and the holomorphic sectional curvatures
of the target manifold. The case of the inequality being an equality was also investigated
(Theorem 3.4). We also find necessary and sufficient conditions for the horizontal distri-
bution of such a Riemannian submersion to be integrable (Corollary 3.6). Finally, the
Riccei curvature tensor field on the horizontal distribution is obtained (Proposition 3.7).

2. Preliminaries

If there is a (1,1) tensor field J, Riemannian metric g on a differentiable manifold m
and the following conditions are satisfied, (91, J, g) is called an almost Hermitian manifold
[10];

P =7 g(3¢,3¢) =g(C, ),
where J is the identity map. Let (91,g) be an almost Hermitian manifold. Then the
Nijenhuis tensor field is given by

N(C1,C2) = [JC1,3¢2] — [C1, Co] — J[IC1, Co] — J[C1,I¢2] (2.1)

for ¢1,( € T(TM), here T(TM) denotes the set of all vector fields on M. The same
notation will be used for the set of vector fields of any other manifold or submanifold under
consideration. If N = 0, then 9 is called Hermitian manifold. For an almost Hermitian
manifold (9N, g), if J is parallel, VJ = 0, then (901, g) is called a Kahler manifold. The
holomorphic sectional curvature K of 9t with respect to ¢ is given by

g(R(s1, J61)Js1, 1)
(9(s1, 1))?

where R is the curvature tensor field of 9. A complex space form, denoted by M(c), is
a Kéhler manifold of constant holomorphic sectional curvature c. In this direction, the
curvature tensor R of M(c) is computed as

R(G1,6,)G = E{Q(Cz, (3)C1 — 9(C1,¢3)¢2 + 9(J¢2, (3)IC
—9(3¢1, (3)IC2 + 29(C1,3¢2)I¢3 1 (2.2)

K =

for every (1, (o, (3 € T(T).

Let M be an m-dimensional submanifold of 9. The Riemannian connection V on 9t
induces the Riemannian connections V and V+ on M and in the normal bundle of M in
M, respectively. These connections are related by Gauss and Weingarten formulas

Val = Vo +h(G,é), (2.3)
?ClN/ = —ANlcl—FVé‘lN,
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for any ¢1,¢e € I(TM) and N’ € T(TM™). h and A are the second fundamental form
and Weingarten map and it is easy to see that g (h((1,(2), N') =g (/_XN/Q, Cg). Here, TM
and TM~* denote the tangent bundle and normal bundle of the submanifold, respectively.

Let R and R be the curvature tensors of 9 and M. The equations of Gauss, Codazzi,
and Ricci are given by

R(C1,C,C3y52) = R(Gr, 2, Gars2) — g(h(Cry2), h(C2,C3))
+9(h(¢1,¢3), h(C2,2)) (2.5)

for any (1, (2, (3,52 € TM and Ny, Ny € TM*. We now recall two important notions from
submanifolds of almost Hermitian manifolds.

Definition 2.1 ([1]). The submanifold M of an almost Hermitian manifold (9%,J) is
called a CR-submanifold if there exists a differentiable distribution D : p — D, C T,M
such that

(a) TM admits the orthogonal direct decomposition TM = D+ @ DY,

(b) The distribution DT is invariant with respect to the complex structure J.

(¢) The distribution Dt is an anti-invariant distribution, i.e., JD*+ c TM*.

Definition 2.2 ([14]). We say that M is a hemi-slant submanifold an almost Hermitian
manifold (9, J) if there exist two complementary orthogonal distributions D+ and D? on
M such that

(a) The distribution D= is an anti-invariant distribution, i.e., JD+ c TM*.

(b) The distribution DY is slant with slant angle 6.

Let M be a hemi-slant submanifold of an almost Hermitian manifold (9, J). Then for
G € IN(T'M), we write

JG = PG+ w(i, (2.6)

where P(; and w(; are tangential and normal parts of J(i, respectively. Similarly, for
¢ € F(TML, we write

Js2 = Bay + Csa. (2.7)

Here B¢ and C¢y are tangential and normal parts of Jea, respectively.

Definition 2.3 ([11]). Let (M™,g,,) and (N",g,) be Riemannian manifolds, where
dim(M) = m, dim(N) = n and m > n. A Riemannian submersion & : M — N is
a surjective map of M onto N satisfying the following axioms:

(S1) & has maximal rank.

(S2) The differential &, preserves the lengths of horizontal vectors.

For each ¢ € N, & !(q) is an (m—n)—dimensional submanifold of M. The submanifolds
&7 1(q), g € N, are called fibers. A vector field on M is called vertical if it is always tangent
to fibers. A vector field on M is called horizontal if it is always orthogonal to fibers.Thus
for every p € M , M has the following decomposition:

T,M =V, &H,=V,&V;.
A vector field (; on M is called basic if (y is horizontal and &— related to a vector field fl*

on N, ie., 6.1, = C’l*G(p) for all p € M. Note that we denote the projection morphisms

on the distributions ker&, and (ker&,)* by V and H, respectively. The geometry of
Riemannian submersions is characterized by O’Neill’s tensors T and A defined for vector
fields &1,& on M by

Ag &2 = HV g, Vo + VWV, HEo, Te {2 = HVye, V& + VWV, Héa, (2.8)
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where V is the Levi-Civita connection of g,,. From (2.8) we have

9(R(C1, ()G, C) = (R (C1,G2)Gy G) + 29(AcyCay Ac G2)
+g(AC2 C4a AC1 C3) - g(ACl C4> ACQ C3) (29)

for basic vector fields (1, (2, (3 and (4, where R™ represents the horizontal lift of the curva-
ture tensor field R’ of the manifold N, i.e. &.(R ((1,(2)¢3) = R (G4((1), 64(2))G4((3).

Observing the similarity between CR-submanifolds and Riemannian submersions, Kobayashi
defined the following notion.

Definition 2.4 ([9]). Let M be a CR submanifold of an almost Hermitian manifold
(9M,J) with distributions D and D+ and the normal bundle T+M. By a submersion
S : M — N of M onto an almost Hermitian manifold N we mean a Riemannian
submersion & : M — N together with the following conditions:

(1) D+ is the kernel of &,, that is, &§,D+ = {0},

(2) 6D, = Ts@p)N is complex isometry, where p € M and Tg(,) IV is the tangent

space of N at &(p),
(3) J interchanges D+ and T+ M.

Based on this notion, he showed that if N is a Kahler manifold then 9 is a Kéhler
manifold. He also found relation between holomorphic sectional curvatures.

3. Submersed hemi-slant submanifolds

In this section, we define the submersion of a hemi-slant submanifold to an almost Her-
mitian manifold, determine the character of the target manifold, and obtain an inequality
between the holomorphic sectional curvature of the ambient space of the submanifold and
the holomorphic sectional curvature of the target manifold, and discuss the condition of
equality.

We first recall from [14] that the anti-invariant distribution of hemi-slant submanifold
of a Kéhler manifold is always integrable. Thus we are able to present the following
definition.

Definition 3.1. Let M be a hemi-slant submanifold of an almost Hermitian manifold
(oM, J5590). Let g = 9"go be the induced metric on M, where ¢ : M — M is the
given immersion. Let (N, J,,g,) be an almost Hermitian manifold. We say that M is
submersed over N if there is a Riemannian submersion & : M — N of (M, g) onto
(N, g,) such that the following conditions are fulfilled:

(1) The slant distribution D? of M and the horizontal distribution 3 of the Riemann-
ian submersion & coincide |, i.e., Dg = H, for any p € M.

(2) The map G,p: Dz — TN is (P, Jy)- holomorphic i.e.,
seC 06.p(FpCip) = Iy, Gap(Ciyp) (3.1)

for p € M and ¢; € T'(D?).
(3) ker&,, = Dy
We say that a slant distribution D? is a Kéhler slant if VP = 0 on D?. It is clear that
J = seclP is a complex structure on D?.

First of all from Definition 3.1 and the definition of the Nijenhuis tensor field, we have
the following result.

Theorem 3.2. Let M be a hemi-slant submanifold of a Hermitian manifold M. Sup-
pose that M is submersed over the almost Hermitian manifold (N, J,,gy). Then N is a
Hermitian manifold.



Submersions of hemi-slant submanifolds 1787

Proof. Consider the Nijenhuis tensor field of N as [J,,J] (Cll,@/), Cll,Cgl € x(M).
Then, we have

[JN7 JN] (C1/7<2/) = [']NG*(Cl)? (CQ)] - [ (1), 6 (42)]
— iy [Ty 6i(C1), 64 (C2)] = Ty [64(C1), T 64(G2)] -
Since S, (H [(1,2]) = [64((1), 64(¢2)] from the second condition Definition 3.1, we get
[ Ty (G 62) = 6. (N7, G2))

where N+ denotes the Nijenhuis tensor field of J. On the other hand, since & is a isometry
between H and N, we have

In (64(¢1), 64(G2)) = 9(C1, C2)
for (1, (s € T(D?). Then Hermitian manifold M implies that
9(JC1, IG2) = g(C1, Ga).-
Thus from (3.1), we get

In (64(¢1), 64(C2)) = sec® 0g(6.(P¢1), 64(PC2))
_gN( 6. (¢ 1)?JN «(C2))

which shows that J is compatible with g, . U
We are now ready to prove the following theorem.

Theorem 3.3. Let M be a hemi- Kdhlerian slant submanifold of a Hermitian manifold
and (N,g,J) an almost Hermitian manifold. Suppose that M is submersed over the
manifold N. Then N is a Kdihler manifold.

Proof. We take the basic vector fields ¢;, and ¢, on D?. Then we have

2 2
(V. () In)8:(C2) = VG ) InG(C2) = Iy Ve, (c))G+(C2),

2
where V is the Levi-Civita connection of N. From (3.1), we get

2
(Ve () n)Bx(C2) = Ve (¢1)8eclS.(PC2) — Jy Vg, (¢))6x(C2)

2
Since HV ¢, P2 is the basic vector field corresponding to VG*(gl)G*(PCQ), we obtain

(Vo i)/ )(6.(C2) = 56¢86,(Ve, PCo) — T, 64(Ve, o)

where V is the Levi-Civita connection on M. Hence we get

(Ve () In)(64(C2)) = 5echB.(PV(,Ga) = Jy64(Vi, G2)

due to D? is a Kéhlerian slant distribution. Thus using (3.1), we have

(Ve (1) x)(64(C2)) = 8ech6.(PV ¢, (2) — sectB.(PV¢, () = 0
which proves the assertion. ]
We now give a relation between the holomorphic sectional curvatures. First of all, we
denote the holomorphic sectional curvatures of the manifolds N and 9t by fK]}fN (6.(¢1))

and X j(Cl) with respect to ¢; € I'(D?), respectively. Accordingly, the following inequality
exists between the holomorphic sectional curvatures of N and 1.
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Theorem 3.4. Let M be a hemi- Kdihlerian slant submanifold of a Kdihler manifold
(M, J,g). Suppose that M is submersed over an almost Hermitian manifold (N, J,gn).
If the morphism w given by (2.6) is parallel, then we have

KH¢) = K5 (8.(¢))
for ¢ € T(D?). The equality is satisfied if and only if M is D?- geodesic.
Proof. From (2.9), we have

g(R((1,(2)¢3,C) = g(RN (64(C1), 64(82))64((3), 64(C)) + 29(AgyCa, A¢y C2)
+9(A¢yCas Ay G3) — 9(A¢y Ca, Ay G3)

for (1, (2, (3,¢s € T(D?). Thus we get
g(R (G, G156, TG) = g(RN (G, T GG, TGn) + 39(Ag TG, Ay TGr)
+g(A‘7C1 JClv AC1 Cl)a
where (1" = &,(¢1). Since M is a hemi- Kéhlerian slant submanifold, (V, J)Ca = 0 for
(1, ¢ € T(D?).Using (2.9) we derive
hVCleQ + AcleQ = thQCQ + jAgl@.
Taking the vertical components of this equation, we obtain
A TG = JA¢ G
which implies that A¢, J¢; = 0. Therefore we get
g(R(C1, JC1)C1, IC) = g(RN (G Ty &), T4 ¢)
On the other hand from Gauss equation (2.5), we get
g(R(G1, JC)G, TG) = g(R(G, JG)G, TG) + g(h(G, TG, AT G, Gr))
= g(h(C1,¢1), h(JC1, I C)) (3:2)

Since 91 is a Kéhler manifold we have V.J = 0. Using Gauss and Weingarten formulas we
get _
VQPCQ + h(Cl, PCQ) — Aw@Cl -+ Véwgg = PVQCQ + WVC1C2
+Bh(§1a <2) + Ch(Ch CQ)
for (1, ¢ € T(D?). Thus we get
secf(V¢,w)Ca = —h(C1, JC2) + secdCh(C1, ()

and
secl(Ve,w)C1 = —h(C2, JC1) + secOCh((1, C2)
Hence we have

sec 0(V¢,w)Ca — sec O(Ve,w)1 = —h(C1, J62) + h(Ca, JG1)
If w is parallel, we obtain
h(C1, JG2) = h(Ga, JGr) (3.3)
Putting (3.3) in (3.2) we find
9(R(G, TG, ) = |16, T+ Im(@n I + a(R* (G, T6) G, T6)
Thus we arrive at

= NP 2 N
K1) = [[p(¢r, )|+ 11, )P + K5 (8.(G1)).

This gives the inequality. The equality is satisfied if and only if A((1,{2) = 0 for (1,2 €
I'(D?%) which completes the proof. O

We now have the following lemma.
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Lemma 3.5. Let M be a hemi-slant submanifold of a Kihler manifold (9, g). Suppose
that M is submersed over an almost Hermitian manifold (N, J, ,gn), then we have

Aq PG = AugyCry, o + PAG G + Bh(G1, G, (3.4)
for ¢1,¢ € T(D?).
Proof. Since M is a Kihler manifold, we have

(?Cl J)CQ =0.
Thus using (2.6), (2.7), O’'Neill’s tensor fields and Gauss-Weingarten formulas, we get
A PG+ HV ¢ PG+ h(Cr, Plo) — Aue,Gt + Vi wle = PAg G+ PHV (o
+ wVQC? + Bh(glv C2) + Ch(CIa CQ)
Taking the tangential parts of this equation, we derive
Aq PG+ HV ¢ PGy — Ay, Q1 = PA¢ G + PHV ¢ G2 + Bh((1,(2).
Finally, taking the vertical components of the above equation, we have
Aq PG — AugCr,, o = PAG G+ Bh(C1, G2) e, -

which is (3.4). O

From Lemma 3.5 we have the following corollary.

Corollary 3.6. Let M be a hemi-slant submanifold of a Kihler manifold (9, .J,g). Sup-
pose that M is submersed over an almost Hermitian manifold (N, J,,gn). If

APCIPCQ - AWC2P€1ker6* - PALUC1C2 - PBh(C17 CQ)kerG*

for (1,¢ € T(D?), then the distribution DY is integrable. Conversely, if the distribution
D? is integrable, we have

chgpﬁme* = PAy¢,Co+ PBh(C1,(2)pore.,
Proof. From (3.4), for (1, € I'(DY) we have
Apg, Pl = Aue, PGy, . — PAug Go + cos” 0A¢, (1 — PBR(C1, G2)
which completes the proof. ]

kerSx

Finally, we give Ricci tensor of horizontal distribution along a Riemannian submersion.

Proposition 3.7. Let M be a hemi- Kdhlerian slant submanifold of a Kdihler manifold
(M, J,g). Suppose that M is submersed over an almost Hermitian manifold (N, J,gn).
If the morphism w is parallel, then we have

. C
Ric(rere.) - (G G2) = 779(Cr, G2) = tracerere,) (V. T)¢ G2, ) — trace(V. A) G2, )
+ 9(TE;C1, TE,C2) + tracekers,) A Ag, + 3trace e,y Aq Ag,
B Z g(AFk CQ(kerG*)J- ’ AFk Cl (kerG*)J-) (3'5)
P

for ¢1,¢o € T(DY) where {Ex, ..., Es} is the orthonormal frame of the vertical distribution
and {Fy, ..., F.} is the orthonormal frame of the horizontal distribution.

Proof. Since M is a complex space form, from Gauss equation, we have
2{9(42, G3)9(C1y52) — 9(C1,¢3)9(C2,52)  + 9(JC2,G3)g(JICrss2) — 9(JC1, C3)g( I G2, 52)
+29(417JC2)9<JC37§2)} = R(C17<27C37§2) - g(h(ChQ),h(C%@)) +g(h(C17C3)7h(C27§2))
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Choose an adapted slant frame for D? as {e},secfPey, ..., e,,secdPe,}, then we compute
the Ricci tensor Ric(Cy,(2) for (1, ¢ € T(D?). We have

> 2{9(61, Q)glej ej) — glej; C2)g(Cire5) — g(Jej, 2)g(J ¢, €5) + 2g(ej, JC1)g(J G2, €5)}
=1

= {R(ej,¢1,Care5) — g(hlej,e;), h(C1,¢2)) + g(hlej, Ga), h(Cire5)}
i=1
Arranging this equation
€1,C2 Z{R 6]7417@76]) (h(eﬁej)vh(gl;@))+g(h(ej7g2)vh(<17ej))}

From (3.3) if w is parallel we get

*7‘9 (C1,C2) = Z{R ej, C1, G2, €5) + g(h(es, C2), h(C1,€5))}-

If the frame of the vertical distribution is denoted by {Ei, ..., Es},we obtain

Ric((1,G) = Y 9(R(E;, )62, E +Zg (ej,€1)G2, €5)
i=1

+ > g(R(secfPej,(1)Ca,sec O Pe;)
= trace(rers,)(V.T)c 2, .) + trace(V . A)¢e (2, )

- Z 9(Tg,C1, Tr,G2) — trace(ers,)Ac A,
=1

+  Ricgers,) (G, ¢2) + Y _{—29(Ac,C1, Agy€:)
i—1

— 286(32 Hg(ApeiQ,ACQPeZ-) —i—g(AClCQ,Aeiei)
+ SeC2 99(14(1 C27 APeiPei) - g(AeiCQ, AQ ei)
— SeC2 Qg(Apei@,AclPei)}

Since A and T are skew symmetric with respect to g, and A is symmetric on DY, we get
(3.5) ]

Acknowledgment. The authors are grateful to the referees for their valuable comments
and suggestions.
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