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Abstract
Lipases (EC 3.1.1.3.) are water-soluble enzymes that catalyze the hydrolysis of ester bonds in water–insoluble, lipid substrates. Although the 

distribution and properties of various lipases from many tissues of human, laboratory and domestic animals have been studied, little is known about 
the pattern of distribution and physiological roles of these enzymes in the rainbow trout. The aim of the present study was to examine and compare 
the distribution of lipase in different tissues of the rainbow trout. A selection of tissue samples was assayed for lipase using the olive oil splitting 
method for the determination of formed free fatty acids. Significant activity of this enzyme was found throughout digestive system, which provokes 
that the pyloric caecal mass has the highest specific activity of lipase followed by the liver, kidney, stomach, spleen, distal intestine, proximal 
intestine, gill, heart, abdominal muscle and brain. High activity of lipase in the pyloric caecal mass of rainbow trout indicates its primary role in fat 
digestion. However, its wide tissue distribution suggests that this enzyme might perform other functions beside gastrointestinal fat digestion. The 
lipase activity in pyloric caecal mass seems to be dependent to bile salts under our assay conditions, resulting in a significant activity in the presence 
of natural bovine bile. The results of this study will be discussed in terms of the involvement of lipase in several biochemical and physiological 
functions in this species. 
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INTRODUCTION 

Lipases (EC 3.1.1.3.) are versatile enzymes that 
catalyze the hydrolysis of ester linkages in neutral 
lipids such as triacylglycerols. Lipases are ubiquitous 
throughout living organisms, and genes encoding lipases 
are even present in certain viruses [1, 2]. These lipolytic 
enzymes hydrolyze the acyl chains either at primary 
or secondary positions [3]. However, a few lipases do 
not show any positional specificity [4]. In addition to 
triacylglycerols, lipases are also known to degrade Tween 
and water-soluble and insoluble esters. There are reports 
of a few animal and microbial lipases that hydrolyze 
phospholipids [5-7]. Enzymatic activity of many lipases 
has been shown to be modulated by calcium [8] and 
bile salts [9]. Pancreatic triacylglycerol lipase (PTL) 
provides a mechanism to release fatty acids (FA) at low 
temperatures (12°C-18°C) and secreted into the small 
intestine where it hydrolyzes dietary fat [10]. Few reports 
are available on the digestive secretion of lipase in fish. 
The differential activity and expression of fish PTL is 
seen in other locations in addition to the traditional organ 
of its synthesis, the pancreas [9]. Borlongan (1990) [11] 

reported optimal activity for pancreatic and intestinal 
lipase of milkfish, at two different pH values. In case of 
rainbow trout, few reports have been done such as Léger 
et al. (1979) [12] whom purified a lipase and colipase in 
cecae, intestine, and liver. With respect to lipase activity 
in other carnivorous fish, such as rainbow trout, those 
usually consume fat-rich food [13] where high lipase 
activity has been detected. However, German et al. (2004) 
[14] found that monkeyface prickleback, Cebidichthys 
violaceus, had significantly higher lipase activity than a 
closely related carnivore, high cockscomb  Anoplarchus 
purpurescens. Horn et al. (2006) [15] also did not found 
differences in lipase activity among four closely related 
herbivorous and carnivorous atherinopsid fishes. The 
PTL activity in the rainbow trout was reported twice that 
of the sturgeon [16]. 

Specifically, pancreatic lipase (triacylglycerol-acyl 
hydrolase EC 3.1.1.3) hydrolyzes triacylglycerols on 
the lipid-water-boundary surfaces of micelles; however, 
adsorption of the pancreatic lipase to the triacylglycerol 
boundary surfaces is inhibited by bile acid salts. Whereas, 
colipase can be bound to boundary surfaces covered by 
bile acids and to pancreatic lipase and eliminating the 
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inhibitory effect of physiologic concentrations of bile 
acid salts on the activity of lipase [17]. In this sense, most 
lipases require bile salts in order to change the three-
dimensional structure from the inactive to the active state 
[9]. These are called specific lipases or bile-dependent 
lipases. However, several others do not require bile salts 
and these are therefore called non-bile-salt dependent or 
non-specific lipases [18, 19]. Our objective was to identify 
and to realize a partial biochemical characterization of 
lipase in tissues of rainbow trout adults.

MATERIALS and METHODS 

Four healthy adult female rainbow trout (1405 ± 32 
g mean weight) were used in this study. The animals 
were held under natural photoperiod in a flow-through 
system supplied with clear water. Water quality was 
monitored daily registering pH (7.20-7.45), temperature 
(13°C-16°C), and dissolved oxygen (7.45-8.25). Fish 
were fed 1% of their body weight once a day with our 
laboratory-made dry fish pellets (38.0% crude protein, 
3.5% fiber, 12.0% crude fat, 10.0% ash, 1.0% phosphate, 
and 11.0% water content) for 30 days. After 12h of 
starvation, fish were anesthetized with the suspension 
of clove powder (200 ppm) in a 40 liter polyethylene 
tank and blood was withdrawn from caudal vein using 
a medical syringe (23G) and immediately transferred to 
an Eppendorf tube containing 2.7% dry ethylene diamine 
tetra-acetic acid (EDTA) disodium salt to prevent clotting. 
Plasma was separated from blood by centrifuging at 4° C 
for 10 min at 5000 ×g. After blood sampling the animals 
were killed by cutting of head and their tissues (stomach, 
pyloric caecal mass, distal intestine, kidney, liver, heart, 
proximal intestine, swim bladder, spleen, abdominal 
muscle, brain, gonads, and  gill)  were separated, stripped 
of fat and extraneous materials (blood and gut contents), 
washed with distilled water and then blotted with paper 
wool. Tissues were weighed and freezing with liquid 
nitrogen until biochemical analysis. Samples of frozen 
tissues were minced on a prechilled parceled pestle into 
small pieces that were vigorously mixed and homogenized 
with an electric homogenizer (Heidolph Instruments, 
GmbH & Co, Germany) with a 4 mm generator at a 
setting of 6 for 30 s; the process was performed on ice. 
For the homogenization, a 0.025 M sodium phosphate 
buffer, pH 7.2 was used at a proportion of 1 g tissue in 9 
ml of buffer. The suspensions were centrifuged at 4000 
×g for 15 min at 4° C. The supernatants stored in aliquots 
(0.5–3.0 ml) at - 80°C and frozen supernatants were used 
as the source of enzyme.  

Lipase was assayed as described previously 
elsewhere [20, 21] with some addition and modification. 
Briefly, the quantity of fatty acid released in unit time is 
measured by the quantity of NaOH required to maintain a 
constant pH 7. The reaction mixture consisted of distilled 
water, tissue homogenate, phosphate buffer solution 
(pH 7) and olive oil emulsion (Olitalia, Italia). A 50% 

emulsion of olive oil in water using 5 % acacia (w/v) 
(Sigma, St Lewis, Mo, USA) as the emulsifying agent 
was found to be suitable. The mixture was placed on 
a shaker at 150 rpm for 24h and incubated at 16 °C, a 
temperature corresponding to the average temperature 
of the collection sites. Subsequently, 96% ethanol and 
2 drops of 1% phenolphthalein indicator dissolved in 
methanol 99.8% were added and titrated against 0.05 N 
NaOH until the appearance of permanent pink. A control 
was taken using enzyme source that was inactivated 
by heating (95°C) prior to addition of buffer and olive 
oil emulsion. The milliequivalent of alkali consumed 
per mg of protein is taken as a measure of the specific 
activity of the enzyme. Protein content of the supernatant 
solutions were determined by the Bradford method [22], 
using crystalline bovine serum albumin (BSA) (Sigma, 
St Lewis, Mo, USA) as the standard and reported as mg 
protein equivalent to BSA. All analyses were performed 
in triplicates. The effect of different volumes (5-40 µl) of 
natural bovine bile on the activity of lipase from pyloric 
caecal-mass crude extracts and the effect of 0.05 N NaCl 
on lipase specific activity of digestive system tissues was 
tested to identify partial characteristics of lipase activity 
in digestive organs.

Statistical procedures 
Statistical analysis was performed by one-way 

analysis of variance and Duncan’s test using the General 
Linear Models Procedure of SAS (SAS Institute, Inc., 
Cary, NC) software (ver. 8e) for multiple comparisons of 
the means of lipase activities. To evaluate the effects of 
bovine natural bile and NaCl on lipase activity, Student’s 
t test was employed. Statements of significance were 
based on p<0.05 unless otherwise noted.

RESULTS 

Lipase activity in 12 different tissues of rainbow trout 
is shown in Table 1. However, we found that soluble 
protein extracts made from rainbow trout heart, gill, swim 
bladder, stomach, intestine, kidney, brain, abdominal 
muscle and liver exhibited measurable lipolytic activity 
using the olive oil splitting method of determination of 
formed free FA at 16°C. All of the tissues studied contain 
lipase activity except gonads. The specific activity of 
lipase was significantly (pANOVA=0.0243) different among 
tissues. The pyloric caecal mass that contains diffuse 
tissues of exocrine pancreas had the highest activity of 
this enzyme. Liver, kidney, stomach and spleen had higher 
lipase specific activity than other tissues except pyloric 
caecal mass (p<0.05). Other tissues with relatively high 
lipase specific activity were the distal intestine, proximal 
intestine, gill and heart. Very low lipase specific activity 
was detected in abdominal muscle, brain and swim 
bladder. 

The high distribution of lipase activity throughout 
gastrointestinal tract from stomach to distal intestine 
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indicates that all parts of the digestive system involve 
in fat digestion. The activity of the lipase in extracts 
of stomach and pyloric caecal mass was not affected 
significantly (p>0.05) in the presence of NaCl (0.1 M). 
The salt-resistant lipase (i.e., non-LPL) activity was 
detected in intestine and liver (see Figure 1). The lipolytic 
activities of liver decreased significantly (p<0.05) in the 

presence of low NaCl concentration (0.1 M). Activities 
of lipase in the pyloric caecal mass, the main source of 
lipase, were affected positively by addition of natural 
bovine bile (pANOVA=0.0001) in comparison to bile-free 
controls. Enhancement of enzyme activity at different 
concentrations of natural bovine bile is shown in Figure 
2. Lipase activity was not detected in plasma.   

Table 1. Mean (SEM) lipase specific and total activities in different tissues

   Tissues                                          Specific Activity(Units/mg protein)    Total Activity (Units/ g tissue)

Stomach         0.77 (0.30) b  0.17 (0.06) cd

Pyloric caecal mass         7.74 (3.47) a  1.00 (0.27) a 

Distal gut (Jejunum & Ileum)              0.52 (0.06) b  0.40 (0.01) bcd

Kidney         1.25 (0.26) b       0.43 (0.06) bcd 

Liver         1.27(0.32) b    0.59 (0.10) abc

Heart         0.32 (0.13) b   0.18 (0.06) dc

Proximal gut (Duodenum)                  0.37(0.01) b                     0.68(0.05) ab

Swim bladder         0.11 (0.02) b  0.23 (0.09) bcd

Spleen         0.77 (0.17) b  0.67 (0.03) ab

Abdominal muscle         0.28 (0.10) b  0.09 (0.02) d

Brain         0.24 (0.06) b  0.50 (0.01) bcd 

Gill         0.33 (0.01) b  0.17 (0.07) cd 

  Note: Values with different superscripts are significantly different (p< 0.05)

Figure 1. The effect of NaCl (0.1 M) on lipase specific activity of digestive system tissues

Note: S = stomach; SS = stomach in the presence of NaCl; P = pyloric caecal mass; SP = pyloric caecal mass 
in the presence of NaCl; WG = whole intestine; SWG = whole intestine in the presence of NaCl; L = liver; SL 
= liver in the presence of NaCl.*, p<0.05.
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DISCUSSION

 Lipases form a rather diverse group of enzymes that 
can be divided into several classes, based on differences 
in their amino acid sequences, their tissue specificity of 
expression and their function [23]. In present study, lipase 
activity showed widespread distribution in rainbow trout 
tissues. Pyloric caecal mass had the highest level of this 
enzyme activity. Lipase from fish pancreas [18, 24, 25] 
and pyloric caecae of cod Gadus morhua [19] and tuna 
Thunnus albacares [26] have been purified and partially 
characterized. Gjellesvik et al. [19] purified a bile salt 
dependent lipase of defatted powder of cod pyloric 
caecae by combined affinity chromatography. Several 
studies have evaluated the activity of lipases during the 
larval stage of marine fish [27-30]. When the digestive 
system is fully developed, lipid digestion is supported 
by true lipases. In the present study, lipase activity was 
significantly higher in the pyloric caecal mass compared 
to the proximal intestine (duodenum) and distal intestine 
(jejunum and ileum). This is roughly in agreement with 
several reports that have shown that lipid digestion and 
absorption occurs in the proximal intestine [11, 31]. The 
striking feature of PTL in rainbow trout pyloric caecal 
mass was its increased activity in the presence of bovine 
natural bile and the present results suggest that bile-
dependent lipases are the main enzymes involved in fat 
digestion. In contrast to our results, Para et al. [32] found 
a 60% reduction in enzyme activity in the presence of 
bile salts in bluefin tuna. Several studies have reported an 
inhibitory effect of bile salts on rat lipase activity [33, 34], 
indicating the presence of different lipases. In addition, 
Gjellesvik et al. [19] concluded that bile-dependent 
lipases are the only pancreatic enzymes involved in 
lipid digestion in cod. Extrapancreatic lipases of tongue, 
pharynx, esophagus and stomach evoke the hydrolysis 

of the fat contained in food [17]. Lipase activity was 
significantly higher in the caecal mass compared to 
the stomach. Preduodenal (gastric and lingual) lipases 
have been reported in the most domestic and laboratory 
animals [35].The gastric lipase activity in these species 
may be due to the feeding habits and constant lipid 
content in the diet. Moreover, the occurrence of lipase 
activity is more important in carnivorous fish as they feed 
on food rich in fat [13]. Although each of these lipase 
family members may play a role in fat metabolism, their 
expression may be varies both developmentally and by 
tissue. It has shown that the intestine of rats does indeed 
synthesize lipase almost identical to lipase of pancreatic 
origin, and that it is responsive to lipid feeding [36]. 
The preduodenal and pancreatic lipases are known to 
hydrolyze dietary fats in the lumen of the gastrointestinal 
tract of adult mammals and roughly in fish. Their 
combined action produces monoacylglycerols (MAGs) 
and FA that are readily absorbed by enterocytes lining 
the small intestine. The presence of sodium chloride has 
been found to be important to activate pancreatic lipase in 
rats [34] while we did not detect any significant effect of 
sodium chloride (0.1 M) on lipase activity in the extracts 
of digestive organs except liver which suggests that the 
lipolytic activity is not strictly due to clearing-factor 
(lipoprotein) lipase [21]. It seems that lipase activity of 
liver in rainbow trout sharing different properties with rat 
hepatic lipase (HL) in terms of salt resistance [37]. 

In the present study, lipase activity in brain was high 
on the basis of U/g wet weight, this finding indicates that 
the lipase activity plays some kind of roles in the rainbow 
trout brain. Diacylglycerol lipase was reported in the 
brain of rabbit, mice and cow [38, 39, 40]. In the present 
investigation, lipase activity has been demonstrated 
biochemically in the homogenate of spleens. Lipase 
activity in these homogenates was far less than one tenth 

Figure 2. Effect of natural bovine bile on lipase activity of pyloric caecal mass in rainbow trout
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of the activity detected in the homogenates of pyloric 
caecal mass. It has been suggested that a lipolytic enzyme 
may play a role in cell-mediated immune reaction in mice 
[41].  

Triacylglycerol may provide a reserve of fuel in 
most muscles, including those in which it does not serve 
as a major source of fuel for mechanical activity (e.g. 
vertebrate white muscle and the flight muscles of some 
insects). Rainbow trout abdominal muscle contains 
substantial lipase activity in comparison to many other 
tissues. Crabtree and Newsholm [42] reported the 
absence of triacylglycerol lipase activity from dogfish 
red muscle. Lipase activity in abdominal muscle may 
be due to LPL activity although, Magnoni and Weber 
[43] concluded that red muscle LPL is strongly activated 
by endurance swimming and rainbow trout have a high 
reserve capacity for hydrolyzing lipoproteins. LPL 
activity was reported in the skeletal muscle of rats [44]. 
LPL has been characterized in tissues such as red and 
white muscle, mesenteric fat, gonads and liver in fish 
[45-47]. The full nucleotide sequence for LPL from 
rainbow trout (Oncorhynchus mykiss) has been reported 
[48]. In contrast to mammals, LPL mRNA is expressed 
in liver of adult trout; this indicates that trout LPL 
carries out functions that HL has evolved to take over in 
mammals. In fish liver, lipase activity with an apparent 
heparin affinity similar to or even higher than LPL was 
found [45]. It is not clear whether the lipase activities 
in liver of fish are variants of HL. HL is present in liver 
and adrenals, but not in other tissues in male rats [49]. 
Fatty acids are an important fuel source for heart and 
skeletal muscle, providing over 70% of the energy needs 
for cardiac function [50, 51]. Thus it is likely that hearts 
are continuously generating a large amount of FA from 
triacylglycerol lipolysis. Moreover, expression of LPL 
solely in the heart is adequate to maintain normal levels 
of plasma triacylglycerol [52]. Pancreatic lipase gene 
has been identified that is preferentially or increasingly 
expressed in the heart of hibernating mammals [53].  
Also, whole heart homogenate has shown moderately 
lipolytic activity in our investigation.

The principal purpose of the gas-filled swim bladder 
in fishes is to maintain a satisfactory state of buoyancy. 
A few fishes have swim bladders filled with lipid [54].  
In the present study, none of these fishes contained any 
lipid material within their swim bladders, while tissue 
homogenate showed lipolytic activity that on the basis 
of tissue wet weight; its activity was higher than lipolytic 
activity of heart, stomach, gill and abdominal muscle. 
Patton and Thomas [55] have reported lipid-containing 
deposits within the swim bladders of Coryphaenoides 
amolepis and Antimora rostrata, they proposed lipase 
and lecithin:cholesterol acyltransferase action on the 
swim bladder lipids but they did not construct any 

enzymatic assays. We believe that swim bladders are 
partly dependent on lipid catabolism for their high 
energy demand. Further studies are needed to purify 
lipase in this organ. The concentration of the lipases in 
circulating blood is low, but they are rapidly released 
into blood by heparin and other polyanions [56]. LPL 
activity could not be detected in trout plasma before the 
injection of heparin. Lipase activity was present at a low 
level 8 minutes after injection and increased for approx. 
35 minutes from the time of injection; it thereafter 
remained at an approximately constant value for a further 
20 minutes [57]. We did not find any obvious difference 
between plasma lipase activities in comparison to 95° C 
heated plasma. Lipase activity was reported in oocytes 
of chicken [58], hawkmoth Manduca sexta [59] and cow 
[60] but we didn’t detect it in rainbow trout gonads. 

Fish spent large amounts of energy, particularly in 
osmoregulatory (gills, intestine and kidney) organs. 
Although, the functions of osmoregulatory organs have 
been extensively investigated, less attention has been 
paid to the metabolic aspects of osmoregulation in these 
organs [61]. In the present study, specific activity of lipase 
in kidney was not as high as in pyloric caecal mass and 
liver but higher than the specific activity that measured in 
other tissues. The LPL activity in the kidneys of several 
animal species such as mink, Chinese hamsters, rat and 
mice has been reported [62]. The method employed in 
this study to process lipolytic activity is not very specific 
to PTL therefore; the lipolytic activity may be due to 
LPL activity. To our knowledge, there are no comparable 
studies in the literature that mention to lipolytic activity in 
gills. Further studies are needed to in order to understand 
the role of lipase in gills.

CONCLUSION 

A source of variation in lipase activity in different 
trout tissues might be related to the existence of different 
forms of this enzyme. Distribution of lipase in various 
extrapancreatic suggests that this enzyme may be 
functional in various physiological phenomena in the 
rainbow trout. It will be interesting to find the correlation 
between lipase activities with the level of mRNA of 
different forms of lipase to elucidate the pattern of lipases 
gene expression at the level of transcription. Future 
studies are needed to clarify involvement of lipase in 
various physiological processes and pathophysiological 
conditions in rainbow trout.  
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