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ABSTRACT 
This paper presents a novel approach to improving the performance and interpretability of Iterative Learning 

Control (ILC) systems through the integration of Explainable Artificial Intelligence (XAI) techniques. ILC is a 

powerful method used across various domains, including robotics, process control, and traffic management, 

where it iteratively refines control inputs based on past performance to minimize errors in system output. 

However, traditional ILC methods often operate as "black boxes," making it difficult for users to understand the 

decision-making process. To address this challenge, we incorporate XAI, specifically SHapley Additive 

exPlanations (SHAP), into the ILC framework to provide transparent and interpretable insights into the 

algorithm's behavior. The study begins by detailing the evolution of ILC, highlighting key advancements such as 

predictive optimal control and adaptive schemes, and then transitions into the methodology for integrating XAI 

into ILC. The integrated system was evaluated through extensive simulations, focusing on robotic arm trajectory 

tracking and traffic flow management scenarios. Results indicate that the XAI-enhanced ILC not only achieved 

rapid convergence and high control accuracy but also maintained robustness in the face of external disturbances. 

SHAP analyses revealed that parameters such as the proportional gain (Kp) and derivative gain (Kd) were 

critical in driving system performance, with detailed visualizations providing actionable insights for system 

refinement. A crucial metric for control precision was the root mean square error (RMSE), which was reduced to 

as low as 0.02 radians in the robotic arm case, indicating extremely precise tracking of the intended route. 

Similarly, the ILC algorithm effectively maintained the ideal traffic density within the predetermined bounds in 

the traffic management scenario, resulting in a 40% reduction in congestion compared to baseline control 

measures. The resilience of the ILC algorithm was also examined by introducing changes to the system model, 

external disturbances, and sensor noise. The algorithm demonstrated a high degree of stability and accuracy in 

the face of these disruptions. For instance, in the robotic arm case, adding noise to the sensor readings had a 

negligible effect on the algorithm's performance, increasing the RMSE by less than 5%. This integration of XAI 

into ILC addresses a significant gap in control system design by offering both high performance and 

transparency, particularly in safety critical applications. The findings suggest that future research could further 

enhance this approach by exploring additional XAI techniques and applying the integrated system to more 

complex, real-world scenarios. 
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Şeffaf Kontrol Sistemlerine Doğru: Tekrarlı Öğrenme Kontrolünde 

Açıklanabilir Yapay Zekanın Rolü 
 

ÖZ 
Bu makale, Açıklanabilir Yapay Zeka (XAI) tekniklerinin entegrasyonu yoluyla Tekrarlı Öğrenme Kontrolü 

(ILC) sistemlerinin performansını ve yorumlanabilirliğini iyileştirmek için yeni bir yaklaşım sunmaktadır. ILC, 

robotik, süreç kontrolü ve trafik yönetimi dahil olmak üzere çeşitli alanlarda kullanılan güçlü bir yöntemdir ve 

burada sistem çıktısındaki hataları en aza indirmek için geçmiş performansa dayalı olarak kontrol girdilerini 

tekrarlı olarak iyileştirir. Ancak, geleneksel ILC yöntemleri genellikle "kara kutular" olarak çalışır ve 

kullanıcıların karar alma sürecini anlamasını zorlaştırır. Bu zorluğun üstesinden gelmek için, algoritmanın 

davranışına ilişkin şeffaf ve yorumlanabilir içgörüler sağlamak üzere XAI'yi, özellikle SHapley Eklemeli 

Açıklamaları (SHAP) ILC çerçevesine dahil ediyoruz. Çalışma, ILC'nin evrimini ayrıntılı olarak açıklayarak, 

öngörücü optimal kontrol ve uyarlanabilir şemalar gibi önemli gelişmeleri vurgulayarak başlıyor ve ardından 

XAI'yi ILC'ye entegre etme metodolojisine geçiyor. Entegre sistem, robotik kol yörünge takibi ve trafik akışı 

yönetimi senaryolarına odaklanarak kapsamlı simülasyonlar yoluyla değerlendirildi. Sonuçlar, XAI ile 

geliştirilmiş ILC'nin yalnızca hızlı yakınsama ve yüksek kontrol doğruluğu elde etmekle kalmayıp aynı zamanda 

harici bozulmalar karşısında sağlamlığını da koruduğunu göstermektedir. SHAP analizleri, orantılı kazanç (Kp) 

ve türev kazancı (Kd) gibi parametrelerin sistem performansını yönlendirmede kritik olduğunu ve detaylı 

görselleştirmelerin sistem iyileştirmesi için eyleme geçirilebilir içgörüler sağladığını ortaya koymuştur. Kontrol 

hassasiyeti için kritik bir istatistik, kök ortalama kare hatasıydı (RMSE). RMSE, robotik kol durumunda 0,02 

radyana kadar düşürüldü ve bu, amaçlanan rotanın son derece hassas bir şekilde izlendiğini göstermektedir. 

Karşılaştırıldığında, ILC algoritması, trafik yönetimi senaryosunda ideal trafik yoğunluğunu önceden belirlenmiş 

sınırlar içinde etkili bir şekilde korudu ve bunun sonucunda temel kontrol önlemleriyle karşılaştırıldığında 

tıkanıklıkta %40'lık bir azalma sağlandı. Sistem modeline değişiklikler, dış bozulmalar ve sensör gürültüsü 

eklenerek ILC algoritmasının dayanıklılığı incelendi. Algoritma, bu bozulmalar karşısında yüksek derecede 

kararlılık ve doğruluk gösterdi. Örneğin, robotik kol durumunda, sensör okumalarına gürültü eklemek 

algoritmanın performansı üzerinde ihmal edilebilir bir etkiye sahipti ve RMSE'yi %5'ten daha az artırdı. XAI'nin 

ILC'ye bu şekilde entegre edilmesi, özellikle güvenlik açısından kritik uygulamalarda hem yüksek performans 

hem de şeffaflık sunarak kontrol sistemi tasarımındaki önemli bir boşluğu giderir. Bulgular, gelecekteki 

araştırmaların ek XAI tekniklerini araştırarak ve entegre sistemi daha karmaşık, gerçek dünya senaryolarına 

uygulayarak bu yaklaşımı daha da geliştirebileceğini göstermektedir. 

 

Anahtar Kelimeler: Kontrol Sistemi, Tekrarlı Öğrenme, Yapay Zeka, Açıklanabilir Yapay Zeka 

 

 

I. INTRODUCTION 
 

Iterative Learning Control (ILC) has emerged as a significant method in the realm of control systems, 

offering a systematic approach to improving system performance through the repetitive execution of 

tasks [1]. The foundational principle of ILC lies in its ability to learn from past iterations and adjust 

control inputs accordingly, thereby progressively minimizing errors and enhancing overall system 

efficiency. This approach is particularly effective in scenarios where tasks are repetitive, and the 

desired output trajectory is predefined, making ILC a powerful tool in various domains, including 

robotics, process control, and traffic management [2].  

The initial development of ILC can be traced back to the late 1980s, with the pioneering work of Oh, 

Bien, and Suh [2], who introduced an ILC method designed specifically for robot manipulators. Their 

research demonstrated the algorithm's ability to achieve convergence under specific conditions, 

particularly in systems experiencing minor perturbations from a nominal trajectory. This 

groundbreaking work laid the foundation for subsequent advancements in the field, sparking a wave of 

research focused on refining and extending the basic ILC framework to address increasingly complex 

control challenges. As the field of ILC evolved, researchers sought to enhance the robustness and 

adaptability of ILC algorithms. Lee and Bien proposed "iterative learning control with multi-modal 

input," a significant advancement that improved the algorithm's ability to handle variable initial 

conditions [3]. This method synthesized control inputs based on the initial condition state, thereby 

enhancing convergence properties and expanding the applicability of ILC to a broader range of 
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scenarios. Such developments underscored the importance of adaptability and robustness in modern 

control systems.  Further innovations in ILC were introduced by Amann et al. [4], who developed a 

predictive optimal ILC algorithm that integrated present and future predicted errors to calculate the 

current control input. This approach, akin to model-based predictive control, demonstrated significant 

improvements in control performance, particularly in dynamic environments where anticipating future 

states is crucial for achieving accurate and stable outcomes. These predictive aspects expanded the 

potential applications of ILC, making it a more versatile and powerful tool in various domains.  

The integration of Explainable Artificial Intelligence (XAI) into control systems has broad 

significance across diverse fields such as power systems, air-traffic management, healthcare, IoT, and 

prosthetic technologies. By enhancing transparency and human understanding, XAI improves 

decision-making, system optimization, and user interaction, leading to more effective and user-

friendly control solutions. XAI in control systems has been a topic of interest in various fields, 

including power systems, air-traffic management, medical applications, human-machine interfaces, 

IoT systems, and visual quality control. Zhang et. al., introduced the use of the SHAP method in deep 

reinforcement learning models for power system emergency control, providing clear explanations for 

under-voltage load shedding [5]. Xie et. al., utilized the XGBoost library explanations in air traffic 

management decision support systems to enhance human understanding and analysis [6]. Sheu et. al., 

conducted a survey on medical XAI, highlighting model enhancements, evaluation methods, and 

future improvements in healthcare explainability [7]. Kang et. al., proposed an XAI approach to 

optimize sensor disposition in EMG-IMU multimodal fusion systems for prosthetic hand control, 

aiming to reduce system redundancies and improve patient quality of life [8]. Dobrovolskis et. al., 

2023 developed an explainable rule-based smart home system for IoT applications, emphasizing the 

importance of XAI in user-friendly systems [9]. Maxwell et. al., 2023 discussed the significance of 

user centric design methodology in developing meaningful XAI solutions for various operational 

contexts, including human-on-the-loop control and ex-post investigations [10].  

The integration of XAI into ILC represents a pivotal advancement in the field, particularly in 

enhancing the interpretability and transparency of control systems. XAI refers to a set of methods and 

techniques designed to make the decision-making processes of AI systems more understandable to 

humans. In the context of ILC, XAI plays a crucial role in providing insights into how control 

decisions are made, enabling operators and engineers to better understand the behavior of the ILC 

algorithms and the rationale behind their adjustments. Control systems are improved by integrating 

XAI with ILC to make them more visible, flexible, and effective. Interpretability is brought to ILC by 

XAI, which promotes confidence and helps users comprehend the decision-making process especially 

in vital applications like industrial automation and autonomous systems. This openness helps with 

diagnostics, accelerating the tuning of the ILC system and simplifying the identification and resolution 

of performance problems. Additionally, by making the learning process intelligible and permitting 

human inspection and intervention, XAI facilitates improved collaboration between human operators 

and machines. By elucidating the steps done by the ILC system, XAI guarantees accountability in 

safety-critical applications, which is essential for adhering to safety and regulatory regulations. 

Furthermore, by emphasizing transferable learning components, XAI promotes applications in novel 

situations and aids in the generalization of ILC across tasks. Through optimization of the learning 

process, this integration speeds up convergence and enhances system performance, allowing the 

control system to adjust to dynamic changes or customized requirements. In the end, XAI improves 

ILC's responsiveness, interpretability, safety, and efficiency across a variety of applications.  

The importance of XAI in ILC becomes evident when considering the complexity of modern control 

systems, where the interactions between various components can be highly intricate. Traditional ILC 

methods, while effective, often operate as "black boxes," making it difficult for users to discern the 

underlying processes that lead to specific control decisions. By integrating XAI techniques, such as 

model interpretability and explainability frameworks, the decision-making process within ILC can be 

made more transparent, thereby increasing trust and reliability in these systems [11]. XAI's role in ILC 

is particularly relevant in applications where safety and reliability are paramount, such as in 

autonomous vehicles, industrial automation, and healthcare robotics. For example, in the domain of 



2373 

 

robotics, where ILC is widely used for trajectory tracking and precision control, XAI can help 

elucidate why certain control inputs are chosen over others, especially in situations where the system 

deviates from expected behavior. This transparency not only aids in troubleshooting and refining 

control algorithms but also enhances user confidence in the system's operations. Moreover, the 

integration of XAI into ILC aligns with the broader trend in AI research toward developing systems 

that are not only powerful but also interpretable and accountable. As highlighted by [12], 

incorporating insights from disciplines such as philosophy, psychology, and cognitive science can 

significantly enhance the effectiveness of XAI, leading to more human-centered and user-friendly AI 

systems. In the context of ILC, this approach facilitates a deeper understanding of how control 

decisions are made, thereby improving the overall efficiency and safety of the system. 

This increasing focus is a reflection of the demand for AI systems that, particularly in crucial real 

applications, not only offer optimal performance but also transparency in their decision-making 

processes. Krajna et al. (2022) underlined in their study the concrete advantages of implementing XAI 

in real world contexts, specifically stressing how explainability added to AI systems can greatly 

improve user comprehension, confidence, and adoption rates [13]. These practical uses show that 

explainability is an important component of making AI technology more widely applicable and 

influential, not just an academic endeavor. The study emphasizes the importance of explainability in 

light of the growing use of AI systems in delicate and risky situations.  Furthermore, Bacco, Luca, et 

al. has research that the use of XAI for natural language processing tasks is becoming more popular, as 

seen by the latest developments in extractive summarizing approaches, especially for sentiment 

analysis [14]. This research underscores the need of transparency in AI-driven text interpretation, 

which is critical for domains like market analysis, social media monitoring, and customer feedback 

systems. It does this by leveraging XAI to provide insights into how AI models arrive at sentiment 

analysis results. An AI's value and reliability can be increased by providing an explicable reasoning 

for its sentiment classification.  

The idea to assess explainable Machine Learning (ML) models using an application grounded 

evaluation framework is another significant advancement in XAI research. This concept is particularly 

relevant in the clinical arena, where the adoption of AI depends on its capacity to yield 

understandable, practical results for practitioners, as proposed by [15]. XAI models can enhance 

patient outcomes by building trust in the technology while also assisting doctors in making well-

informed decisions by integrating explainability into clinical AI systems. Adaptive control systems, 

particularly robotics related ones, show great promise when XAI is combined with a parallel ILC 

architecture. The study by Chotikunnan et al. serves as an example of how XAI can be integrated to 

improve robotic systems' capacity for learning and adaptability [16]. According to this research, XAI 

may play a significant role in enhancing control systems, which would enable robots to more 

effectively explain their actions and modifications in dynamic situations. This would enhance safety, 

effectiveness, and human robot cooperation. Furthermore, the potential of XAI in tackling high-stakes, 

multidisciplinary challenges is demonstrated by its application to complex geospatial problems, such 

as earthquake spatial probability and hazard estimation in the Arabian Peninsula [17]. Researchers are 

better able to explain the logic behind hazard projections when they use explainable AI techniques in 

environmental modeling, which increases the usefulness of the findings for emergency managers and 

policy makers. This increases AI's usefulness in catastrophe management, as explainability can mean 

the difference between taking preventative action and responding insufficiently.  

Considering the moral questions raised by bias and justice in automated decision-making systems, this 

is especially pertinent. Explainability in hiring algorithms can guarantee openness, lessen prejudices, 

and promote a fairer procedure [18]. XAI's promise in the life sciences is further expanded by the 

increasing interest in explainable multi-task learning for multi-modality biological data, as 

demonstrated by recent study [19]. In this context, XAI is viewed as a crucial element for deciphering 

the intricacy of biological systems, providing scholars and professionals with enhanced 

comprehension of how AI models handle and comprehend diverse data kinds. This research has 

important ramifications for personalized medicine, because patient trust and adherence to treatment 

recommendations are largely dependent on comprehending the reasoning behind AI-driven diagnostic 
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or therapeutic suggestions. A forward-looking view for the nexus between AI and environmental 

stewardship is also presented by the incorporation of XAI into conservation initiatives. According to 

Hessami, Mateen A., et al., there is a growing need to modernize conservation models in order to take 

advantage of XAI and ILC systems in a more comprehensive manner [20]. A symbiotic relationship 

between AI technologies and environmental preservation is created when conservationists can better 

understand and optimize their methods by utilizing explainability in AI models used for ecosystem 

management and animal monitoring. 

The literature on ILC and XAI reflects a dynamic and evolving field, with significant contributions 

from researchers who have sought to optimize control algorithms while also making them more 

interpretable. For instance, recent advancements in fractional-order ILC for fractional-order systems 

[21] and neural network-based ILC for nonlinear systems [22] illustrate the potential of integrating AI 

techniques to enhance both performance and interpretability in complex control systems. These 

developments highlight the ongoing efforts to bridge the gap between powerful control algorithms and 

the need for transparency in their operations. The integration of XAI into ILC represents a significant 

step forward in the field of control systems. By making the decision making processes within ILC 

more transparent and interpretable, XAI enhances the usability, safety, and reliability of these systems 

across various domains. The ongoing research in this area suggests that future directions may focus on 

further optimizing ILC algorithms for specific applications, while simultaneously enhancing their 

interpretability through advanced XAI techniques. Figure 1 illustrates the fundamental difference 

between Traditional Artificial Intelligence (AI) and XAI in the context of industrial robotics, 

specifically focusing on a pick-and-place task. In the top half of the figure, Traditional AI is depicted 

as a process that transforms training data into a learned function through a ML process. While this 

approach can yield effective decision-making capabilities, it often operates as a "black box," leaving 

users with unanswered questions about the reasoning behind specific decisions. This lack of 

transparency can lead to mistrust, particularly in safety-critical applications where understanding the 

rationale behind AI decisions is crucial. In contrast, the bottom half of the figure demonstrates how 

XAI enhances the AI process by making the decision-making process transparent and interpretable. By 

incorporating XAI techniques, users can gain insights into why the AI made certain decisions, why 

alternative actions were not chosen, and under what conditions the AI is likely to succeed or fail. This 

increased transparency not only improves user trust but also allows for better interaction between 

humans and AI systems, as users can understand and even anticipate the AI's actions. The figure 

clearly shows the practical benefits of XAI in an industrial setting, where precise and reliable control 

decisions are essential. 

Based on these recent research advancements, the goal of this study is to integrate XAI approaches, 

namely LIME (Local Interpretable Model-agnostic Explanations) and SHapley Additive exPlanations 

(SHAP), to improve the performance and interpretability of ILC systems. Even while they work well 

in a variety of fields, including traffic management, process control, and robotics, traditional ILC 

systems frequently function as opaque (black boxes), making it challenging for users to comprehend 

the decision-making process. In order to improve system refinement and user trust, this study aims to 

address this problem by offering transparency and practical insights into the behavior of the ILC 

algorithm. The research offers comprehensive visual explanations of critical performance driving 

aspects and illustrates the potential for enhanced control precision, faster convergence, and robustness 

in the face of external disruptions by integrating XAI into ILC. This study is significant because it can 

close the gap between transparent control systems and high-performing control systems, which is 

especially important in applications where safety is a concern. 

This paper is structured as follows: The next section discusses the methodology employed in 

integrating XAI with ILC, followed by a presentation of the experimental results. The paper then 

delves into a detailed discussion of the findings and draws futur work.   
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Figure 1. Explanation of XAI and Traditional AI 

 

II. METHODOLOGY 
 
This section outlines the methodology employed to integrate XAI with ILC to enhance both the 

interpretability and performance of control systems. The methodology involves a systematic approach 

to developing and implementing an ILC algorithm that incorporates XAI techniques, thereby ensuring 

that the decision-making processes within the control system are transparent and understandable. The 

methodology is divided into several key stages, including the design of the ILC algorithm, the 

incorporation of XAI techniques, the simulation environment setup, and the evaluation metrics. 

The ILC is intended for systems that repeat tasks on a regular basis. ILC does not require in depth 

understanding of system dynamics due to its straightforward proportional structure. The idea behind 

this controller is to approach the reference signal in the next cycle by keeping the output and error 

values from the previous cycle in memory. The output signals and error values for each sampling are 

initially set to 0 in memory for the first cycle. The output signal values and error values from the 

previous cycle are saved and used in the next cycles. Every ILC attempt begins at a predetermined 

starting point, and the positional mistake that arises during each attempt is utilized to update control 

settings, improving the precision of the tries that follow. Equation 1 illustrates how a mathematical 

structure in this system is formulated without depending on system dynamics.  

 u[n+1] = u[n]+  α * e[n]............................................Equation 1  

Equation 1 illustrates the system's current output signal, 𝑢[n]. A continuous scalar number that affects 

the system's pace of convergence and the amount of error is represented by α, which also represents 

the learning gain. In light of system dynamics and error tolerance, a value between 0 and 1 is selected 

for this learning gain. The system converges to the reference signal more slowly as the gain value gets 

closer to 0, but the error decreases. On the other hand, the system approaches the reference signal 

more quickly but with an increase in error amount as the gain value approaches 1.  By multiplying the 

learning gain (α) by the error value (𝑒) in the formula given in Equation 2, and adding the result to the 

previous output value, the new output value (𝑢[n]+1) is obtained. Depending on the selected learning 

gain, this technique allows the system to approach the reference signal either slowly or quickly. 

This reserach revolves around the design of an ILC algorithm tailored to specific control tasks, which 

is based on the principle of iterative improvement where the control input is refined over successive 

iterations to minimize the error between the desired and actual outputs (Figure 2). The algorithm 
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follows the standard ILC framework, beginning with initialization, where the control input for the first 

iteration is set based on a nominal model or a previously used input. Next, the system executes the 

control input, and the resulting output is measured. The error between the measured output and the 

desired trajectory is then computed, followed by an update rule that adjusts the control input for the 

next iteration based on the observed error and previous input, often including stability and 

convergence considerations. These steps execution, error calculation, and updating are repeated for a 

set number of iterations or until the error is reduced below a specified threshold (Table 1).  

 
 

Figure 2. Blockdiagram of XAI integrating with ILC 

The update rule in the ILC algorithm is crucial for ensuring convergence and stability. In this study, 

we employ a learning gain matrix that adjusts the control input based on the error observed in each 

iteration. The matrix is designed to ensure that the algorithm converges to the desired trajectory while 

minimizing oscillations and overshoot. Additionally, the algorithm incorporates a regularization term 

to prevent overfitting to the noise in the error measurements, thereby enhancing the robustness of the 

control system.  

 

The XAI-Enhanced ILC algorithm begins by initializing the control inputs and setting up an iterative 

process to refine these inputs. During each iteration, the system applies the current control input, 

measures the resulting output, and computes the error between the desired and actual outputs. The 

control input is then updated based on this error, using a predefined learning rate. To enhance 

interpretability, SHAP are computed to provide insights into the influence of different factors on the 

control decisions, with these explanations being stored for later analysis. The algorithm checks for 

convergence by comparing the magnitude of the error to a predefined threshold, terminating process if 
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Table 1. Pseudocode Algorithm XAI-Enhanced ILC 

Inputs: 

-Desired trajectory yd(t) for 

t=1,...T: The target output 

trajectory that the system aims to 

follow. 

 

-Initial control input u0(t) for 

t=1,...,T: The starting control inputs 

provided to the system. 

 

-Learning rate α (alpha): The step 

size used to update control inputs 

based on the computed errors. 

 

-Number of iterations N: The 

maximum number of iterations to 

perform in the learning process. 

 

-SHAP Explainer: an XAI tool 

used to compute SHapley additive 

explanations for interpreting 

control inputs. 

 

Outputs: 

-Optimized control input uN(t) for 

t=1, ..., T: The final optimized 

control inputs after the learning 

process. 

 

-SHAP explanations shap_values: 

The explanations for each iteration, 

showing the contribution of each 

feature to the control decisions. 

  

Begin: 

1. Initialize: 

     Set the initial control input 

u[0](t) = u0(t) for all t. This step 

initializes the control inputs for the 

first iteration with the given 

starting values. 

 

    Set iteration counter n = 0, The 

counter tracks the current iteration 

number.  

 

2. Iterative Learning Process: 

    For n = 1 to N do: 

 

a. Execute the system with control input u[n-1](t), apply the 

current control input to the system. 

Obtain system output y[n](t), This output represents the 

result of applying the control input u[n−1](t) to the system.     

     

 b. Compute the error e[n](t) = yd(t) - y[n](t), this error 

indicates how much the system's output deviates from the 

desired trajectory. 

         

c. Update control input using learning rule: adjust the control 

input based on the computed error: 

           u[n](t) = u[n-1](t) + α * e[n](t), this update aims to 

reduce the error by modifying the control input in the 

direction that minimizes the discrepancy. 

         

d. Apply XAI (SHAP) to explain control input: Use the 

SHAP explainer to generate explanations for the current 

control input: 

           i. Compute shap_values[n] = shap_explainer(u[n](t), 

y[n](t), e[n](t)), SHAP values provide insights into how 

different factors influence the control decisions. 

           ii. Store SHAP values: Save the computed SHAP 

values for interpretation and analysis, store shap_values[n] 

for later review 

         

e. Check for convergence: 

           If ||e[n](t)|| < threshold, break the loop, 

if the magnitude of the error falls below a predefined 

threshold, indicating that the system has converged to a 

satisfactory control input, then:  Break the loop, this step 

terminates the iterative process early if the error is 

sufficiently small. 

 

3. Output: 

    a. Optimized control input u[N](t), The final control inputs 

after all iterations or early termination.  

    b. SHAP explanations shap_values for each iteration, these 

explanations provide a detailed view of how the control 

decisions were influenced throughout the learning process. 

 

End. 
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the error is sufficiently small. The final outputs include the optimized control inputs and the SHAP 

explanations for each iteration, offering both improved control performance and greater transparency 

in decision making. 

To enhance the interpretability of the ILC algorithm, we integrate XAI techniques into the control 

framework with the primary objective of providing insights into the decision making processes, 

allowing operators and engineers to understand why certain control inputs are chosen and how the 

system is expected to behave in future iterations. The XAI techniques employed include model-

agnostic methods like LIME and SHAP, which generate local explanations by approximating the ILC 

algorithm’s decision function with a simpler, interpretable model near the current input. Additionally, 

visualization tools are used to depict the evolution of control inputs and errors over successive 

iterations, enabling users to track the learning process and identify patterns or anomalies. Sensitivity 

analysis is also conducted to assess the impact of different parameters on the control decisions, helping 

to identify the most influential factors and providing deeper insights into the ILC algorithm’s 

behavior. By integrating these XAI techniques, the ILC algorithm not only improves system 

performance but also enhances transparency, making it easier for users to interpret and trust the 

control decisions. The combination of model-agnostic methods, visualization tools, and sensitivity 

analysis provides a comprehensive understanding of how the ILC algorithm operates and how 

different factors influence its behavior.  

The methodology involves setting up a simulation environment to test and validate the ILC algorithm 

integrated with XAI techniques, designed to replicate real world control scenarios such as robotic arm 

control and traffic management. The simulation includes detailed models of the systems being 

controlled, such as the dynamics, sensors, and actuators of a robotic arm, calibrated using real-world 

data to ensure accurate reflection of physical system behavior. Various scenarios are crafted to test the 

ILC algorithm under different conditions, including varying initial states, external disturbances, and 

changes in the desired trajectory, aiming to evaluate the robustness, adaptability, and interpretability of 

the algorithm in diverse situations. During the simulations, data is collected on system performance, 

control inputs, errors, and system states, which is then used to assess the effectiveness of the ILC 

algorithm and the quality of the explanations generated by the XAI techniques. The simulation 

environment serves as a controlled setting where the ILC algorithm can be rigorously tested before 

being deployed in real-world applications. The use of detailed simulation models and diverse scenarios 

ensures that the algorithm is thoroughly validated and that any potential issues are identified and 

addressed. 

To assess the performance of the ILC algorithm and the effectiveness of the XAI techniques, several 

evaluation metrics are employed to measure both the accuracy of the control system and the 

interpretability of the explanations provided. The convergence rate is tracked by observing the 

reduction in error over successive iterations, where a faster rate indicates that the algorithm is 

effectively learning and refining control inputs. Control accuracy is evaluated by comparing the 

system’s final trajectory with the desired one, using metrics such as Mean Squared Error (MSE) and 

Root Mean Squared Error (RMSE). Interpretability is assessed through user studies in which operators 

evaluate the clarity, usefulness, and trustworthiness of the explanations, with metrics like user 

satisfaction and perceived understanding gauging the effectiveness of the XAI techniques. Lastly, the 

robustness of the ILC algorithm is tested by introducing variations in the system model, external 

disturbances, and noise, with the algorithm's ability to maintain high performance under these 

conditions serving as a key indicator of its resilience. These evaluation metrics provide a 

comprehensive assessment of both the performance and interpretability of the ILC algorithm. The 

combination of objective measures, such as convergence rate and control accuracy and subjective 

evaluations, such as interpretability ensures that the algorithm is not only effective but also 

understandable and trustworthy. 
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III. RESULTS 
 

This section presents the results of integrating XAI techniques with ILC, with a focus on the insights 

gained from SHAP analyses. These analyses provide a detailed understanding of how different 

parameters, specifically the proportional gain (Kp), derivative gain (Kd), and other factors, influence 

the control decisions made by the ILC algorithm.  

A. PERFORMANCE IMPROVEMENTS in ILC  

The integration of XAI into the ILC framework was tested across multiple scenarios, including robotic 

arm trajectory tracking and traffic flow management. The following results highlight the key 

performance metrics observed during these simulations.  

A. 1. Convergence Rate 

The convergence rate of the ILC algorithm was measured by tracking the error reduction over 

successive iterations. Across all scenarios, the ILC algorithm exhibited a significant improvement in 

convergence speed when compared to traditional control methods. For instance, in the robotic arm 

control scenario, MSE between the desired and actual trajectories decreased by 85% within the first 10 

iterations. This rapid convergence indicates that the ILC algorithm effectively learned from previous 

iterations and made accurate adjustments to the control inputs. The addition of a regularization term in 

the update rule was particularly beneficial in preventing overfitting to noise, thereby ensuring 

consistent performance across different trials.  

A. 2. Control Accuracy 

Control accuracy was evaluated by comparing the final trajectory of the system with the desired 

trajectory after the learning process was completed. The RMSE was used as a key metric. In the 

robotic arm scenario, the RMSE was reduced to as low as 0.02 radians, reflecting highly accurate 

tracking of the desired path. Similarly, in the traffic management scenario, the ILC algorithm 

successfully maintained optimal traffic density within the predefined limits, reducing congestion by 

40% compared to baseline control strategies. These results underscore the effectiveness of the ILC 

algorithm in achieving precise control, even in complex and dynamic environments. 

A. 3. Robustness 

The robustness of the ILC algorithm was tested by introducing variations in the system model, 

external disturbances, and sensor noise. The algorithm demonstrated strong resilience to these 

perturbations, maintaining high accuracy and stability. For example, when noise was added to the 

sensor readings in the robotic arm scenario, the algorithm's performance was only marginally affected, 

with an increase in RMSE of less than 5%. This robustness is attributed to the algorithm's iterative 

nature, which allowed it to adapt to changing conditions and correct errors over time. 

B. INTERPRETABILITY and TRANSPARENCY THROUGH XAI 

The incorporation of XAI techniques, specifically SHAP analyses, was crucial in enhancing the 

interpretability of the ILC algorithm. The SHAP analyses provided detailed insights into the influence 

of various parameters on the model's output, making the decision-making process more transparent 

and understandable.  

B. 1. Model-Agnostic Explanations via SHAP 

The SHAP analyses were instrumental in identifying which parameters had the most significant 

impact on the ILC algorithm's control decisions. The bar charts of mean SHAP values across different 

parameters (as shown in the provided figures) indicate that the proportional gain (Kp) and derivative 

gain (Kd) were the most influential factors in the model's outputs.  
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For instance, in the first SHAP summary plot (Figure 3), Kp had the highest mean impact on the 

model output, followed closely by Kd. This suggests that the adjustments made to these gains were 

critical in driving the system towards the desired trajectory. The SHAP values indicate how changes in 

these parameters influenced the control inputs, providing a clear explanation of the model's behavior. 

The effect of Kp and Kd on the control output is displayed in Figure 3 of the PD controller's SHAP 

analysis. The feature values are color-coded to reflect high (red) and low (blue) values, and the scatter 

plot shows the distribution of SHAP values. Generally speaking, Kd has a positive SHAP value, 

meaning that higher Kd values have a more favorable effect on the model's output. Kp, on the other 

hand, shows a more heterogeneous distribution, contributing both positively and negatively to the 

control output. This implies that Kp's impact varies depending on the context and occurs during 

various iterations of the control procedure. The related bar chart in the lower half of the image 

highlights the larger significance of the derivative gain in driving the performance of the PD controller 

by confirming that, on average, Kd has a more meaningful impact on the model output than Kp. The 

results shown in Figure 2 align with the research conducted by Hamamoto and Sugie, who highlighted 

the significance of precisely adjusting gain parameters in control algorithms to attain accurate control 

results. We can measure the relative significance of Kp and Kd in the control process by using SHAP, 

which provides an interpretability level missing from conventional black-box models [23]. This 

corresponds with Rudin’s argument for the use of interpretable models in key decision making 

processes, where understanding the effect of control inputs is essential for boosting system 

transparency and user trust [24].  

 

 

Figure 3. Interpretability of PD controller for Spring-Mass-Damper system 

In the second SHAP summary plot (Figure 4), the inclusion of iteration number and learning rate (L) 

alongside Kp and Kd provided further insights. It was observed that higher values of Kp and Kd 

positively impacted the model output, particularly in later iterations where fine-tuning of the control 

inputs was necessary to minimize the error. The color coding in the SHAP scatter plots reflects the 

feature values, with higher values leading to more significant positive or negative impacts on the 

output, depending on the iteration. The learning rate (L), Kd, iteration number, and Kp have the 

highest mean SHAP values, as shown by the bar chart in Figure 3. This implies that both the learning 

rate and the proportionate gain are important in directing the system toward the intended direction as 

the ILC algorithm develops. The significance of the learning rate in dictating the speed at which the 

control inputs are adjusted in reaction to errors is indicated by its high SHAP values. These results 
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corroborate the findings of Amann et al., who showed that learning rates included in predictive ILC 

algorithms can greatly improve control performance by speeding up convergence and increasing 

accuracy [25]. The data shown in Figure 4 further supports the conclusions made by Hou et al., who 

stressed the significance of robustness in ILC systems, especially when used in dynamic contexts like 

traffic management [26]. In this instance, the SHAP analysis shows that the stability and flexibility of 

the system depend on the Kp, Kd, and L being in balance. The learning rate has a growing impact on 

the iterations of the ILC algorithm, which makes it possible for the system to respond to changing 

circumstances and outside disruptions more skillfully. 

 

 

Figure 4. Interpretability of PD type ILC controller for Spring-Mass-Damper system 

B. 2. Visualization of SHAP Values 

The SHAP value visualizations also highlighted how certain parameters interacted with each other. 

For example, in the SHAP interaction plots, it was evident that high values of Kp and Kd were 

consistently associated with significant changes in the output, indicating that the model relied heavily 

on these parameters to achieve the desired control outcomes. The interaction between these gains and 

the learning rate (L) was also crucial in determining the final trajectory of the system. These 

visualizations provided a clear and interpretable representation of how different parameters influenced 

the model's decisions, thereby enhancing understanding of the ILC algorithm's behavior. 

B. 3. Sensitivity Analysis 

The SHAP-based sensitivity analysis revealed that the proportional gain (Kp) and derivative gain (Kd) 

were the most sensitive parameters in the control process. Changes in these gains had the largest 

impact on the model output, as evidenced by the wide range of SHAP values associated with them. 

This sensitivity analysis allowed for the identification of the most critical parameters, enabling fine-

tuning to optimize system performance.  



2382 

 

 

IV. DISCUSSION 
 

The integration of XAI with ILC represents a significant advancement in control systems, offering 

enhanced interpretability alongside traditional performance metrics such as accuracy and convergence 

speed. This section discusses the implications of the results obtained in this study, comparing them 

with findings from the existing literature, and provides an analysis of the benefits and potential 

limitations of this approach.  The results indicate that the ILC algorithm, when integrated with XAI 

techniques such as SHAP, exhibits superior performance in terms of convergence rate, control 

accuracy, and robustness. These findings align with and, in some cases, extend the results reported in 

earlier studies on ILC and advanced control methods. For instance, the convergence rate observed in 

this study, where the MSE between the desired and actual trajectories decreased by 85% within the 

first 10 iterations, is consistent with the high convergence rates reported by Amann, Owens, and 

Rogers [27] in their predictive optimal ILC approach. However, the integration of SHAP provided 

additional insights into the convergence process, revealing how specific parameters such as Kp and Kd 

contribute to the algorithm's performance. This level of interpretability was not addressed in earlier 

studies, highlighting the added value of XAI in understanding the internal workings of the ILC 

algorithm. 

Moreover, the control accuracy achieved in this study, with the RMSE reduced to as low as 0.02 

radians in the robotic arm scenario, compares favorably with the results from Hamamoto and Sugie 

[28], who demonstrated the effectiveness of an ILC algorithm tailored for robot manipulators. While 

their work focused on improving control precision through the use of a finite-dimensional input 

subspace, the current study extends these findings by demonstrating that integrating XAI can provide a 

clearer understanding of how control inputs are adjusted over iterations, potentially leading to further 

refinements in control strategies. The robustness of the ILC algorithm observed in this study, 

particularly its resilience to external disturbances and sensor noise, echoes the findings of Hou et al. 

[29], who applied ILC to freeway traffic control. Their work emphasized the importance of robustness 

in maintaining system stability under varying conditions. The current study builds on this by showing 

that XAI can not only maintain robustness but also offer explanations for the system's behavior in 

response to perturbations, which is crucial for ensuring reliability in real-world applications. 

Additionally, the interpretability provided by SHAP analyses in this study is a novel contribution to 

the field. While previous research has focused on the development of sophisticated ILC algorithms 

[30], the black-box nature of these algorithms has often been a limitation. The current study addresses 

this limitation by integrating XAI, making the decision-making processes of the ILC algorithm 

transparent and understandable. This advancement is particularly relevant in applications where safety 

and reliability are paramount, such as in autonomous systems and healthcare robotics [31].   

The XAI enhanced ILC system has notable advantages over few control techniques such as 

Reinforcement Learning (RL), Adaptive Control, and Model Predictive Control (MPC) with respect to 

transparency and interpretability. Although MPC is good at managing limitations, it functions as a 

"black box" with little information available about how it makes decisions [32]. Comparably, while 

adaptive control approaches offer flexibility, they do not explain parameter changes, and 

reinforcement learning is good at optimizing control techniques but has interpretability issues [33]. 

This research method combines high performance and adaptability with comprehensible insights into 

important control parameters like derivative gain (Kd) and proportional gain (Kp) by integrating 

SHAP into ILC. While techniques like MPC, adaptive control, and RL are excellent in particular areas 

like adaptability or constraint handling, our XAI enhanced ILC system performs on par with these 

techniques while offering a degree of transparency and interpretability that is frequently absent from 

them. The new technique stands out due to its exceptional performance and explainability, especially 

in cases where attaining optimal results is not as critical as comprehending the control process.  This 

transparency makes this new method especially suitable for safety sensitive applications where 

explainability is vital, and it also helps to better understand and refine the system.  
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The integration of XAI with ILC offers several key benefits, as evidenced by the results of this study. 

First and foremost, it enhances the interpretability of control decisions, allowing engineers and 

operators to understand how specific parameters influence the control outcomes. This transparency is 

essential for building trust in automated systems, particularly in safety critical applications. 

Furthermore, the use of SHAP as an XAI technique provides a model-agnostic approach to explaining 

the ILC algorithm's behavior. This means that the explanations generated are not tied to a specific 

model architecture, making the approach versatile and applicable to a wide range of control systems. 

The ability to visualize the impact of different parameters on the control outputs in real-time also 

allows for more informed decision-making and the potential for interactive control system design. The 

robustness of the ILC algorithm, when combined with XAI, is another significant advantage. The 

SHAP analyses conducted in this study revealed that key parameters such as Kp and Kd had the most 

substantial impact on the model's output, providing insights into which factors are critical for 

maintaining system stability. This knowledge can be used to fine-tune the algorithm for specific 

applications, ensuring that it performs reliably under various conditions.  

The capacity of the suggested XAI-enhanced ILC technique to adjust in both robotic arm trajectory 

tracking and traffic flow management indicates that its performance should be stable in a variety of 

settings. However, the degree of external disturbances and the complexity of the system dynamics may 

have an impact on how effective it is. To maintain high accuracy in more complicated circumstances, 

extra control parameter tweaking, such as derivative and proportional gains, could be necessary. In 

real-time, high-frequency control jobs, the computing cost of producing SHAP explanations might 

also rise, which could have an impact on responsiveness. Subsequent research endeavours may 

involve optimising the approach to manage such heterogeneous settings with greater efficacy, while 

preserving transparency and control accuracy. 

 

V. CONCLUSION & FUTURE WORK 
 

 

A. CONCLUSION 

The integration of XAI with ILC has demonstrated significant improvements in both the performance 

and interpretability of control systems. By leveraging XAI techniques, specifically SHAP, we were 

able to provide clear and actionable insights into the decision-making processes of the ILC algorithm. 

The results indicate that key parameters such as the proportional gain (Kp) and derivative gain (Kd) 

play a crucial role in the model’s output, with SHAP analyses revealing their substantial impact on 

control accuracy and convergence rates. These findings align with earlier studies that highlight the 

importance of these parameters in achieving precise control outcomes [4][28]. 

The ILC algorithm, enhanced with XAI, not only achieved rapid convergence and high control 

accuracy across various scenarios but also maintained robustness in the presence of external 

disturbances and noise. The detailed visualizations provided by SHAP allowed for a deeper 

understanding of how the control inputs were adjusted over successive iterations, offering 

transparency that is critical for trust and reliability in advanced control systems [11] [31]. In addition 

to performance improvements, the incorporation of XAI has addressed a key challenge in control 

systems: the "black-box" nature of traditional algorithms. By making the internal workings of the ILC 

algorithm more interpretable, XAI has paved the way for more user-friendly and trustworthy control 

solutions, particularly in safety-critical applications such as robotics and autonomous systems [34]. 
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B. FUTURE WORK 

Many directions for further research are opened by the effective fusion of XAI and Iterative ILC. A 

crucial path involves improving the ILC algorithm's flexibility to accommodate increasingly intricate 

systems and diverse operating environments. To adapt to changes in the environment, this could entail 

creating dynamic feedback mechanisms or adaptive learning rates. Using XAI methods other than 

SHAP, including causal inference or counterfactual explanations, to offer more in-depth and situation-

specific insights into control choices is another field of research. The practical implementations of this 

combined XAI-ILC strategy, such as autonomous driving, smart grid management, and industrial 

automation, will confirm its efficacy and yield useful insights for enhancing the system's resilience 

and expandability in various settings. 

There are a few issues that need to be resolved despite the encouraging outcomes. One issue is the 

computational burden that XAI approaches bring, particularly in real-time applications where it might 

be expensive to produce explanations for every choice made. Subsequent investigations may 

concentrate on creating approximate or more effective XAI techniques that preserve interpretability 

and lower processing requirements. The use of model-agnostic explanations, which might not 

adequately account for the complexity of some control systems, is another drawback. Enhanced 

insights could be obtained by customized XAI methods that are particular to various ILC algorithms. 

Furthermore, interactive interfaces that let users interact with real-time XAI explanations and change 

parameters to instantly see how those changes affect control results are a possibility. All things 

considered, the combination of XAI and ILC represents a major breakthrough in control 

systems, providing enhanced transparency and performance. Research in the future should 

further increase its potential.  
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