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Abstract. Perfect Italian Domination (PID) is a domination concept where all vertices are assigned one of the
labels among 0, 1 and 2 such that the sum of the labels in the neighbourhood of every vertex labelled 0 should be
exactly 2. We examine a few graph classes of graphs and discuss the criticality of Perfect Italian Domination. We
also define γp

I stable graphs and PID critical graphs. Following our definitions of γp
I -stable and PID critical graphs,

we have grouped some graph classes. We characterise a family of trees that is γp
I -stable.
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1. Introduction

Let G be a simple connected graph with vertex set V(G) and edge set E(G). A subset S ⊆ V(G) is a dominating
set if every vertex in G is either in S or is adjacent to some vertex in S . Domination number of a graph G, γ(G) is the
cardinality of the smallest among the possible dominating sets of G [2].

Domination can be considered as a labelling problem where the vertices in the dominating set are labelled 1 and
the remaining vertices are labelled 0. i.e., any vertex labelled 0 is adjacent to at least one vertex labelled 1. Numerous
distinct cases of domination have been defined. Perfect domination is when each vertex labelled 0 is adjacent to exactly
one vertex labelled 1. The k-fair domination is when each vertex labelled 0 is adjacent to exactly k vertices labelled 1.

Roman domination is a type of domination where there are three subsets V0,V1,V2 for the vertex set V(G) such that
any vertex in V0 should have a neighbour in V2. The vertices in V0 are labelled 0, vertices in V1 are labelled 1 and the
vertices in V2 are labelled 2. Roman domination number γR(G) = |V1| + 2|V2| where these are the sets which give the
least value among all possible Roman dominating sets [7].

Italian domination is a generalisation of Roman domination. Here, the vertices in the set V0 should be either
adjacent to two vertices belonging to set V1 or one vertex from the set V2 [5]. Perfect Italian domination (PID) is an
Italian domination with an additional constraint that, if there exists a vertex vi in the set V0, then exactly one among the
following two cases should be true.

(1) N(vi) ∩ V1 = 2 and N(vi) ∩ V2 = 0.
(2) N(vi) ∩ V1 = 0 and N(vi) ∩ V2 = 1.
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Perfect Italian domination number, γp
I (G) = |V1|+ 2|V2| where these are the sets which give the smallest possible value

among the ones satisfying the above condition. In [3] the authors found an upper bound for perfect Italian domination
number of trees. They had also defined a constant cG with which they proposed to determine an upper bound for
perfect Italian domination as cG ×n of various classes of graphs G . Lauri and Mitillos [6] proved that cG = 1 for planar
graphs and for cubic graphs cG = 2/3. They have also characterised graphs with γp

I (G) = 2 and γp
I (G) = 3.

In [12], the authors have found an upper bound for the perfect Italian domination number of cartesian product of two
graphs. A relation between Roman domination number and perfect Italian domination number of a graph is determined.
The perfect Italian domination problems in cographs are studied in [1] and Sierpinski graphs are determined in [13].
A comparative study between Domination and Perfect Italian Domination numbers is done in [8]. The complexity
difference between finding the PID number and the Italian domination number is found in [10].

An essential part of the analysis of some graph property is studying the criticality concepts of that particular property
[11]. Vertex removal significantly influences the Perfect Italian Domination concept in graphs, showcasing its important
role in the network robustness and structure. When a vertex is removed from a graph, the PID number may or may not
change.

Removal of a certain vertex from a graph can increase its PID whereas removal of another vertex from the same
graph may decrease its PID number. There are cases in which removal of some vertices does not make any significant
change in the Perfect Italian Domination property of that graph.

If a vertex removal alters the connectivity of a graph, then there is high chance for the PID to rise to cover these
seperated parts.

Understanding how vertex removal affects the PID number provides insights on finding the most reliable graph
structure that is lesser vulnerable to disruptions in a network. Hence a study on the effect of vertex removal on PID
number has a vital role to play in network designing and optimisation.

Stem vertices otherwise known as supporting vertices are vertices which are adjacent to a pendant vertex [4]. Strong
stem vertices are stem vertices with at least two pendant vertices adjacent to each. In this paper we address a pendent
vertex as a leaf vertex. Number of leaf vertices adjacent to a stem vertex x is denoted as L(x) [4].

2. Vertex Deletion

In this work, we examine a few graph classes and discuss in detail the criticality concept of Perfect Italian Dom-
ination. Removing certain vertices can reduce the PID number, while other vertices may cause the PID number to
increase. Additionally, there are some vertices whose removal does not affect the PID number. Graphs where the
removal of any vertex does not change the PID number are called γp

I -stable graphs, whereas graphs where the removal
of specific vertices causes a change in the PID number are known as PID-critical graphs.

Observation 2.1. For a complete graph Kn,

γ
p
I (Kn − v) =

γp
I (Kn) − 1 n = 1 or 2
γ

p
I (Kn) n ≥ 3.

Observation 2.2. Let K1,n be a star, and let v be any random vertex of it. Then,

γ
p
I (K1,n − v) =

γp
I (K1,n) + (n − 2), if v is the root vertex
γ

p
I (K1,n), otherwise.

Theorem 2.3. Let Cn be a cycle of order n, and let v be any vertex of it. Then, γp
I (Cn − v) = γp

I (Cn).

Proof. Removal of any random vertex from the cycle Cn makes it a path Pn−1. From [6], γp
I (Pn−1) = ⌈ (n−1)+1

2 ⌉ = ⌈ n
2 ⌉ =

γ
p
I (Cn). Hence, the proof. □

In order to study the vertex deletion in Path (Pn) graphs, we need to consider the following cases:
(i) The removed vertex v is a pendant vertex and n be odd.

(ii) The removed vertex v is a pendant vertex and n be even.
(iii) The removed vertex v is not a pendant vertex and n be even.
(iv) v is not a pendant vertex but n be odd and the two disconnected paths in Pn − v are both odd paths.
(v) v is not a pendant vertex but n be odd and the two disconnected paths in Pn − v are both even paths.
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We will discuss the effect of the removal of the vertex v in each of the above cases and conclude the effect of vertex
removal in case of a Path graph.

Lemma 2.4. Let Pn be a path where n ≥ 3, and let v be a vertex of it. Then, γp
I (Pn − v) = γp

I (Pn) when any of the
following conditions is satisfied.

(i) v is a pendant vertex and n is odd.
(ii) v is not a pendant vertex but n is odd and the two disconnected paths in Pn − v are both odd paths.

(iii) v is not a pendant vertex and n is even.

Proof. If v is a pendant vertex and n is odd, then the removal of a vertex v ∈ Pn gives an even path Pn−1. From the [6],
γ

p
I (Pn−1) = ⌈ (n−1)+1

2 ⌉ = ⌈ n
2 ⌉ =

n
2 +

1
2 and γp

I (Pn) = ⌈ n+1
2 ⌉ =

n+1
2 = γ

p
I (Pn−1).

If v is not a pendant vertex but n be odd and the two disconnected paths in Pn − v are both odd paths Pn1 , Pn2 , then
from [6] γp

I (Pn1 ) = ⌈ n1+1
2 ⌉ =

n1+1
2 . Similarly for Pn2 , γp

I (Pn2 ) = n2+1
2 . From [6] we have the result, γp

I (G) =
∑k

i=1 Gi,
where Gi’s are components of the graph G hence, γp

I (Pn−v) = γp
I (Pn1 )+γp

I (Pn2 ) = n1+1
2 +

n2+1
2 = n1+n2+2

2 = n+1
2 = γ

p
I (Pn).

When n is even and v is not a pendant vertex, removal of v disconnects the path Pn to two smaller paths Pn1 , Pn2

where n1 + n2 = n − 1. Since (n − 1) is odd, one of n1, n2 is odd and the other is even. Without loss of generality let
us assume n1 be odd and n2 is even [6]. γp

I (Pn1 ) = ⌈ n1+1
2 ⌉ =

n1+1
2 . γp

I (Pn2 ) = ⌈ n2+1
2 ⌉ =

n2+1
2 +

1
2 . From [6] we have

the result, γp
I (G) =

∑k
i=1 Gi, where Gi’s are components of the graph G. Hence, γp

I (Pn − v) = γp
I (Pn1 ) + γp

I (Pn2 ) =
n1+1

2 +
n2+1

2 +
1
2 =

n1+n2+2
2 + 1

2 =
n+1

2 +
1
2 = γ

p
I (Pn) (since n is even). □

Lemma 2.5. Let Pn be a path of order n ≥ 3, and let n be even. If v is a pendant vertex, then γp
I (Pn − v) = γp

I (Pn) − 1.

Proof. If v is a pendant vertex and n is even, then removal of v ∈ Pn makes an odd path Pn−1. From the paper [6],
γ

p
I (Pn−1) = ⌈ (n−1)+1

2 ⌉ = ⌈ n
2 ⌉ =

n
2 and γp

I (Pn) = ⌈ n+1
2 ⌉ =

n+1
2 +

1
2 =

n
2 + 1 = γp

I (Pn−1) + 1. Hence, the lemma. □

Lemma 2.6. Let Pn be a path where n ≥ 3 and let n be odd. If v is not a pendant vertex and the two disconnected
paths in Pn − v are both even paths, then γp

I (Pn − v) = γp
I (Pn) + 1.

Proof. If v is not a pendant vertex, n is odd and the two disconnected paths formed after removal of v are even
paths, Pn1 , Pn2 where n1 + n2 + 1 = n, then from [6] γp

I (Pn1 ) = ⌈ n1+1
2 ⌉ =

n1+1
2 + 1

2 =
n1
2 + 1. Similarly for Pn2 ,

γ
p
I (Pn2 ) = n2

2 + 1. From [6] we have the result, γp
I (G) =

∑k
i=1 Gi, where Gi’s are components of the graph G hence,

γ
p
I (Pn − v) = γp

I (Pn1 ) + γp
I (Pn2 ) = n1

2 +
n2
2 + 2 = n1+n2+4

2 = n1+n2+1+3
2 = n+3

2 =
n+1

2 + 1 = γp
I (Pn) + 1. □

Remark 2.7. It is easy to see that γp
I (P2 − v) = γp

I (P2) − 1.

Theorem 2.8. Let Pn be a path where n ≥ 3. Then, γp
I (Pn − v) is any of the following.

(i) γp
I (Pn) − 1, if v is a pendant vertex and n is even.

(ii) γp
I (Pn),
(a) if v is a pendant vertex and n is odd or
(b) if v is not a pendant vertex and n is even or
(c) if v is not a pendant vertex, n is odd and the two disconnected paths in Pn − v are both odd paths.

(iii) γp
I (Pn) + 1, if v is not a pendant vertex, n is odd and the two disconnected paths in Pn − v are both even paths.

Proof. (i) If the removed vertex is an end vertex the graph remains connected and the path Pn becomes path Pn−1,
then
(a) when n is even, from Lemma 2.5 γp

I (Pn − v) = γp
I (Pn) − 1.

(b) when n is odd, from Lemma 2.4 γp
I (Pn − v) = γp

I (Pn).
(ii) If the removed vertex is any random vertex but not an end vertex, then the path Pn gets disconnected to two

new paths Pn1 , Pn2 where n1 + n2 = n − 1.
(a) When n is even we have Lemma 2.4 which says γp

I (Pn − v) = γp
I (Pn).

(b) When n is odd, n1 + n2 = n − 1 is even. In this case either of the two cases are possible depending on
which vertex is removed-

(i) if n1, n2 are both even then from Lemma 2.6, γp
I (Pn − v) = γp

I (Pn) + 1.
(ii) if n1, n2 are both odd then from Lemma 2.4, γp

I (Pn − v) = γp
I (Pn).

Hence, the theorem.
□



Vertex Removal on PID and γp
I -Stability of Graphs 70

3. Perfect Italian Domination Stability

A graph G, is said to be Perfect Italian Domination Stable or γp
I -stable, when γp

I (G) = γp
I (G − v), where v is any

vertex belonging to G. Hence, graphs which are not γp
I -stable are considered as PID critical graphs.

From the results of the above section we can conclude that-
(i) Cycles, Cn are γp

I -stable.
(ii) Complete graphs, Kn, n ≥ 3 are γp

I -stable.
(iii) Stars K1,n where n ≥ 3 are not γp

I -stable.
(iv) P3 is γp

I -stable whereas the paths Pn where n = 2 or n ≥ 4 are not γp
I -stable.

3.1. γp
I -stability on Generalised Stars.

Theorem 3.1. Let S n1,n2...nk be a generalisation of star. Then, it is γp
I -stable if and only if the graph is either S 2 or the

graph S n1,n2...,nk has at most an even ni and the remaining n′i s are equal to 3.

Proof. S n1,n2,...nk is a graph constructed by joining one of the end vertices of each paths Pn1 , Pn2 , ..., Pnk to a vertex v by
an edge. That is each of the paths is extended by a vertex v hence an even path becomes an odd path and an odd path
becomes an even path. We know that paths have a minimum PID labelling by 0′s and 1′s [6].

(i) If v is labelled 1, then labelling each of the even paths by (0− 1− ...0− 1), the odd paths by (0− 1− ...− 1− 1)
gives a minimum PID labelling for S n1,n2,...nk . There are ⌈ ni−1+1

2 ⌉ = ⌈ ni
2 ⌉ 1’s labelled in each of the paths [6].

(a) Let k > 3 and there exist at least two even paths Then removing the root vertex decomposes the graph
to kPni and each of the paths will have ⌈ ni+1

2 ⌉ vertices labelled 1. If ni is odd, then ⌈ ni
2 ⌉ = ⌈

ni+1
2 ⌉. Hence,

removal of root vertex does not effect the odd paths. If ni is even, then ⌈ ni
2 ⌉ = ⌈

ni+1
2 ⌉ + 1. Hence removal

of the root vertex means adding a new label 1 to the even paths. This implies that if there exist at least
two even paths, then the graph S n1,n2,...nk is not γp

I -stable.
(b) Let k > 3, and there exists at least an odd path of length greater than 3. Then, removal of a pendant vertex

from an odd path decreases the PID number by 1. Hence, S n1,n2,...,nk is not γp
I -stable if at least one of the

ni > 3 is odd.
(ii) Let k > 3 and n1 = n2 = ... = nk = 3. Then labelling the root vertex v by 0, two P′3s are labelled by 1 − 0 − 1,

and the remaining k − 2 P′3s are labelled by 0 − 2 − 0. Removing the root vertex decomposes the graph to kP3

and each of them can retain the same labelling. Since a P3 is a γp
I -stable graph, removing a vertex of any P3

do not effect the PID of the graph S 3,3,..., 3. Hence, S 3,3,..., 3 is γp
I -stable.

(iii) If all the n′i s are equal to 3 except one which is an even number, then labelling the vertices as mentioned in 1
gives a minimum PID number for the given graph. As mentioned in the case 1a, removal of the root vertex
v is same as addition of a label 1 to the even path. Since there exists only one even path this vertex removal
does not affect the PID number. As discussed earlier, ni is even implies that the even path Pni along with v is
an odd path of order ni + 1. Hence, removal of the pendant vertex from the path Pni+1, where ni is even turns
it to an even path of order ni + 1 − 1 = ni. Since ⌈ ni+1+1

2 ⌉ = ⌈ ni+1
2 ⌉ implies that PID number is not altered. If

any vertex other than the pendant vertex or root vertex is removed from the path Pni+1 where ni is even, then
this path of odd order ni + 1 is decomposed to either two odd paths or two even paths say Pr, Pni+1−1−r. Since
⌈

ni+1+1
2 ⌉ = ⌈ r+1

2 ⌉ + ⌈
ni−r+1

2 ⌉, we can conclude that even on removal of any vertex the PID number is not altered.
(iv) If k = 1 or k = 2, then graph is a path of length n1 + 1 or n1 + n2 + 1. This implies that S 2 or S 1,1 which are

isomorphic to P3 are the only γp
I -stable graphs among all the cases when k < 3.

Hence, S 2, S n1,n2,...,nk where at most one ni is an even number and all the remaining n′i s are equal to 3 for i = 1, 2, ..., k
are the only generalised star graphs which are γp

I -stable. □

3.2. γp
I -stability on Corona Product of Graphs.

Proposition 3.2. Let G be a connected graph. Then, G ◦ K1 is a PID critical graph.

Proof. There exists a minimum PID labelling for G ◦ K1, where pendant vertices are not labelled 0 [9]. This implies
that the pendant vertices are either labelled by 2 or 1. If a pendant vertex is labelled by 2, then obviously its stem vertex
should be zero labelled. Hence, removal of the stem vertex disconnects the graph and relabelling the isolated vertex by
1 decreases the PID number. A pendant vertex v labelled by 1 has its stem vertex either labelled 0 or by 1. If its stem
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vertex is labelled by 1, then removal of v decreases the PID number. Let the stem vertex of v say v′ is zero labelled,
then there exists a neighbour u′ for v′ ∈ G labelled 1 and the pendant vertex u adjacent to the vertex u′ is labelled by 1.
Removal of the vertex u′ decreases the PID number. Hence we can conclude that G ◦ K1 is not γp

I -stable but it is PID
critical graph. □

Proposition 3.3. Let G be a connected graph. Then, G ◦ 2K1 is γp
I -stable.

Proof. Since each vertex in the graph G is a stem vertex to two pendant vertices, each of them can either be labelled 0
or by 2 in the minimum PID labelling. If a vertex v ∈ G is labelled 0, then its pendant vertices are labelled by 1 each
and all its neighbouring vertices in the graph G are labelled by 0. Since G is a connected graph, this leads to all the
vertices of G zero labelled and the pendant vertices are all labelled by 1. If a vertex v ∈ G is labelled by 2, then its
pendant vertices are labelled by 0 and none of the neighbours of v can be zero labelled. Since G is a connected graph
no vertex of G except v will be labelled 0.

This implies that for a G ◦ K2 there exist only two possible minimum PID labellings. Either all the vertices of G
are labelled by 2 and all the pendant vertices are labelled by 0 or all the vertices of G are labelled by 0 and the pendant
vertices are labelled by 1.

The vertices in the graph (except one) is either a pendant vertex or a stem vertex with two pendant vertices, hence
each of them should have at least a total label of 2 along with each of their pendant vertices. Hence, if any stem vertex
is removed, then the pendant vertices turn to isolated vertices and take the labels of 1. This implies that PID is not
altered. If a pendant vertex x is removed, then the stem vertex of the removed pendant vertex v is relabelled by 1 and
its remaining one pendant vertex is labelled by 1. The remaining stem vertices are labelled by 2 and their respective
pendant vertices are labelled by 0. This relabelling does not make any change in the PID number. This proves that the
PID is not altered on removal of any vertex from G ◦ K2. □

Proposition 3.4. Let G be a γp
I -stable graph, and let v be a stem vertex of G. Then, |L(v)| ≤ 2.

Proof. Assume that there exist a strong stem vertex v with |L(v)| ≥ 3. Then in the minimum possible PID labelling
of G, the leaf vertices adjacent to a vertex v can only be given the label 0 and v can only be labelled by 2. Hence,
on removal of the vertex v, G becomes disconnected and the leaf vertices become isolated vertices increasing the PID
number by at least 1. □

Corollary 3.5. Any graph with a stem vertex v such that |L(v)| ≥ 3 is not γp
I -stable.

Remark 3.6. The graph G ◦ nK1, where n ≥ 3 is not γp
I -stable.

4. A Particular Family of γp
I -stable Trees

In this subsection we are trying to characterize trees which are γp
I -stable. We have found a family of trees T which

are γp
I -stable and also have found few conditions which trees will satisfy if they are γp

I -stable.
There exist trees where PID remains unchanged, decreases and increases depending on which vertex is removed.

Example 4.1. Consider a Coconut tree graph CT3,3 as shown in the below Figure 1. On removal of the vertex u, the
PID remains unchanged. On removal of the vertex f , the PID decreases by 2. On removal of the vertex e the PID
decreases by 1. When the vertex d is removed the star get disconnected and PID increases by 1.

uf d

Figure 1. PID labelling of a Coconut tree graph

We will define a family of trees T .

Definition 4.2. T ∈ T are trees constructed from a sequence T0, T1, ...,Tn of graphs where T0 = K1,2, T = Tn. If
n ≥ 1, then Ti+1 is obtained from Ti by doing any one of the operations O1 or O2, for i = 0, 1, ..., n − 1.
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Operation O1: Let Ti ∈ T and u ∈ V(Ti) such that |L(u)| = 2. Then, add a K1,2 say, x1x2x3 (where x2 is a stem
vertex) and an edge ux2 in order to get Ti+1.

Operation O2: Let Ti ∈ T and u ∈ V(Ti) such that |L(u)| = 2. Then, add a K1,3, x1x2x3x4, (where x2 is a stem
vertex) and an edge ux3 to get Ti+1.

Lemma 4.3. Let T be any tree, and let u ∈ V(T ). If T ′ is a tree obtained from T by the operation O1, then γp
I (T ′) =

γ
p
I (T ) + 2.

Proof. (i) If u is labelled 0, then the only possible labels that can be given to x1, x2, x3 is x1, x3 labelled 1 each
and x2 labelled 0.

(ii) If u is labelled 2, then the only possible labels that can be given to x1, x2, x3 is x1, x3 labelled 0 each and x2
labelled 2.

(iii) If u is labelled 1, then the only possible labels that can be given to x2 is 2 and x1, x3 by 0′s (since x1, x3 are
pendant vertices to x2).

In both the cases γp
I (T ′) ≤ γp

I (T ) + 2.
If you are adding a new strong stem vertex at least an increase of value 2 is required in the PID number =⇒

γ
p
I (T ′) ≥ γp

I (T ) + 2. From above two results, γp
I (T ′) = γp

I (T ) + 2. □

Lemma 4.4. Let T be any tree and u ∈ V(T ) such that |L(u)| = 2. If T ′ is a tree obtained from T by adding an edge
x1x2 such that u is adjacent to x1, then γp

I (T ′) = γp
I (T ) + 2.

Proof. Since |L(u)| = 2, u can only be labelled by 0 or by 2.
If u is labelled 2 in T , then the only possible values x1, x2 can take is 1 each. Hence, γp

I (T ′) = γp
I (T ) + 2.

If u is labelled 0 in T , then the only possible labelling for x1x2 is 0-2. In this case also γp
I (T ′) = γp

I (T ) + 2. Hence,
proved. □

Lemma 4.5. Let Ti be a γp
I -stable tree, and let Ti+1 be a tree obtained from Ti by the operation O1. Then, Ti+1 is also

γ
p
I -stable.

Proof. If Ti is a γp
I -stable tree, then for any v ∈ V(Ti), γ

p
I (Ti − v) = γp

I (Ti) −→ (a)
From Lemma 4.3, γp

I (Ti+1) = γp
I (Ti) + 2 −→ (b)

To prove Ti+1 is γp
I -stable we need to show γp

I (Ti+1 − v) = γp
I (Ti+1)

(i) For any v ∈ V(Ti) − {u}, (u ∈ Ti is the vertex to which K1,2 is attached by O1)
γ

p
I (Ti+1 − v) = γp

I (Ti − v) + 2 (since (b) is true for any tree)
= γ

p
I (Ti) + 2 (from (a))

= γ
p
I (Ti+1).

(ii) If v = u, then on removal of v we get two disconnected trees Ti−u and K1,2. γp
I (Ti+1−v) = γp

I (Ti−v)+γp
i (K1,2) =

γ
p
I (Ti) + 2 = γp

I (Ti+1) (from (a) and (b)).
(iii) If v = x2, then on removal of v we get Ti and two isolated vertices x1, x3.
γ

p
I (Ti+1 − v) = γp

I (Ti) + γ
p
I (2K1) = γp

I (Ti) + 2 = γp
I (Ti+1) .

(iv) If v = x1 or x2, (WLG let v = x1) then on removal of v we get Ti ∪ x2x3.
γ

p
I (Ti+1 − v) = γp

I (Ti ∪ x2x3) (from Lemma 4.4)
= γ

p
I (Ti) + 2 = γp

I (Ti+1).
Hence, we have the result. □

Lemma 4.6. Let T be any tree with a stem vertex u such that |L(u)| = 2 and let T ′ be a tree obtained from T by O2.
Then, γp

I (T ′) = γp
I (T ) + 2.

Proof. Let T be a tree with PID number γp
I (T ). Since K1,3 is joined to a strong stem vertex u ∈ T , u can only be

labelled by 0 or 2. Let us define the possible PID labellings for T ′.
(i) If u is labelled 0, then x3, x1, x4 are labelled 0 and x2 is labelled 2. Remaining vertices are given the same

labels as in the minimum PID labelling of T .
(ii) If u is labelled 2, then x3, x2 are labelled 0 and x1, x4 are labelled 1. Remaining vertices are given the same

labels as in the minimum PID labelling of T .
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In both the cases γp
I (T ′) ≤ γp

I (T ) + 2.
If you are adding a new strong stem vertex at least an increase of value 2 is required in the PID number =⇒

γ
p
I (T ′) ≥ γp

I (T ) + 2. From above two results, γp
I (T ′) = γp

I (T ) + 2. □

Lemma 4.7. Let T ∈ T and u ∈ V(T ) be a stem vertex where |L(u)| = 2. If T ′ is a tree obtained by adding a vertex x
such that ux is an edge, then γp

I (T ′) = γp
I (T ).

Proof. From the construction of the trees in T , its clear that a vertex belonging to T is a pendant vertex, a strong stem
vertex or a 2−degree non-stem vertex adjacent to exactly two stem vertices. The 2-degree vertices can be labelled by 0
and one among each of its neighbouring strong stem vertex is labelled by 2 whereas the other strong stem vertex by 0.
The pendant vertices adjacent to the 2 labelled stem vertices are labelled 0 each whereas the pendant vertices adjacent
to the stem vertices labelled 0 are labelled by 1 each. This is a minimum perfect Italian domination labelling for T
because perfect Italian domination is greater than or equal to twice the number of strong stem vertices in a graph.

Since u is a stem vertex with |L(u)| = 2 in T , addition of a vertex x and adding an edge ux increases the |L(u)| to
3 in T ′. This implies u can only be labelled by 2. If there exist a two degree vertex v adjacent to u, label it 0 and the
other strong stem vertex adjacent to v by 0. Remaining vertices can be labelled as mentioned in the labelling of T . This
implies that perfect Italian domination number of T and T ′ are equal. □

Lemma 4.8. Let T be a tree and u ∈ V(T ) be a stem vertex where |L(u)| = 2. If T ′ is a tree obtained by adding a P3-
v1v2v3 such that u is adjacent to v1, then γp

I (T ′) = γp
I (T ) + 2.

Proof. Since |L(u)| = 2, u is labelled by 0 or 2. Let us define a PID labelling for T ′.
If u is labelled 2, then P3 can only take the labelling 0 − 0 − 2 or 1 − 0 − 1.
If u is labelled 0 then P3 can only take the labelling 0 − 2 − 0. In both the cases remaining vertices in T ′ are given

the same labels as in T . Hence γp
I (T ′) = γp

I (T ) + 2. □

Lemma 4.9. Let Ti+1 be a tree obtained from Ti by the operation O2. If Ti is a γp
I -stable tree, then Ti+1 is also γp

I -stable.

Proof. If Ti is a γp
I -stable tree, then for any v ∈ V(Ti), γ

p
I (Ti − v) = γp

I (Ti) −→ (a)
From Lemma 4.6, γp

I (Ti+1) = γp
I (Ti) + 2 −→ (b)

To prove Ti+1 is γp
I -stable we need to show γp

I (Ti+1 − v) = γp
I (Ti+1)

(i) For any v ∈ V(Ti) − {u},
γ

p
I (Ti+1 − v) = γp

I (Ti − v) + 2 (since (b) is true for any tree)
= γ

p
I (Ti) + 2 (from (a))

= γ
p
I (Ti+1).

(ii) If v = u, then on removal of v we get two disconnected trees Ti−u and K1,3. γp
I (Ti+1−v) = γp

I (Ti−v)+γp
I (K1,3) =

γ
p
I (Ti) + 2 = γp

I (Ti+1).
(iii) If v = x2, then on removal of v we get two isolated vertices x1, x4 and a tree Ti∪ x3 (Ti with an extra edge ux3).
γ

p
I (Ti+1 − v) = γp

I (Ti ∪ x3) + γp
I (2K1) = γp

I (Ti) + 2 (from Lemma 4.7)
= γ

p
I (Ti+1).

(iv) If v = x1 or x4 (WLG let v = x1), then on removal of the vertex v we get Ti ∪ x3x2x4. γp
I (Ti+1 − v) =

γ
p
I (Ti ∪ x3x2x4) = γp

I (Ti) + 2 = γp
I (Ti+1) (from Lemma 4.8).

(v) If v = x3, then on removal of v we get two disconnected trees Ti and K1,3.
γ

p
I (Ti+1 − v) = γp

I (Ti) + γ
p
i (K1,3) = γp

I (Ti) + 2 = γp
I (Ti+1) .

From (i), (ii), (iii), (iv), (v) we have the result. □

Theorem 4.10. A tree T ∈ T is γp
I -stable.

Proof. We prove this by induction on number of operations done on the base graph to obtain the resultant graph.
T0 = K1,2 is γp

I -stable. Let us assume that graph obtained by doing k ≤ i operations are γp
I -stable. Let Ti+1 be a

tree obtained by doing i + 1 operations. i.e, Ti+1 is obtained from Ti by doing one of the operations O1 or O2, where
Ti is γp

I -stable. From Lemma 4.5 and Lemma 4.9, Ti+1 is γp
I -stable. Thus, we can conclude that any tree T ∈ T is

γ
p
I −stable. □
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5. Conclusion

Whether by increasing or decreasing the Perfect Italian Domination number, the vertex removals reveal insights into
structural vulnerability and the change in the minimum number of vertices required to have complete control over the
graph. Only a few graph classes are discussed in detail. Hence, a study exploring the vertex removal on many other
graph classes will deepen the understanding of network dynamics. In this paper, a few γp

I -stable graph classes are also
found. A γp

I -stable family of trees is characterised. More γp
I -stable graph classes are open for further research.
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