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ABSTRACT 
 
In this study, the effects of the production parameters used in injection molding of particle-reinforced thermoplastics 
on the product quality and mechanical properties of the produced part are modeled using an optimized Genetic 
Algorithm-Long Short-Term Memory (GA-LSTM) hybrid deep learning method. Here, LDPE, HDPE, and PP, the 
most important members of the polyolefins group, were used as thermoplastics, while powdered synthetic paint wastes 
were evaluated as reinforcement elements. Using different parameters, 819 specimens were produced by injection 
molding, and mechanical tensile, three-point bending, and izod impact tests were performed on each specimen. The 
GA-LSTM model was trained with the parameters used and the results obtained during the experimental process, and 
the predicted values were determined to correspond to the actual values. Well-known methods were used to measure 
the success of the hybrid GA-LSTM model. The designed GA-LSTM model produced the best outcomes, according 
to the results attained. 
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Sentetik Atık Takviyeli Poliolefinlerin Mekanik Özelliklerinin GA-LSTM Hibrit Modeli ile 

Tahmini 
 

ÖZ 
 
Bu çalışmada, parçacık takviyeli termoplastiklerin enjeksiyon kalıplamasında kullanılan üretim parametrelerinin ürün 
kalitesi ve üretilen parçanın mekanik özellikleri üzerindeki etkileri optimize edilmiş bir Genetik Algoritma-Uzun Kısa 
Süreli Bellek (GA-LSTM) hibrit derin öğrenme yöntemi kullanılarak modellenmiştir. Burada termoplastik olarak 
poliolefinler grubunun en önemli üyesi olan AYPE, YYPE ve PP kullanılırken takviye elemanı olarak ise toz halde 
sentetik boya atıkları kullanılmıştır. Farklı parametreler kullanılarak enjeksiyon kalıplama yoluyla 819 numune 
üretilmiş ve her numune üzerinde mekanik çekme, üç nokta eğme ve izod darbe testleri gerçekleştirilmiştir. GA-
LSTM modeli, kullanılan parametreler ve deneysel süreç boyunca elde edilen sonuçlarla eğitilmiş ve tahmin edilen 
değerlerin gerçek değerlere karşılık geldiği belirlenmiştir. Hibrit GA-LSTM modelinin başarısını ölçmek için iyi 
bilinen yöntemler kullanılmıştır. Elde edilen sonuçlara göre tasarlanan GA-LSTM modeli en iyi sonuçları üretmiştir.  
 
Anahtar Kelimeler: Derin Öğrenme, Enjeksiyon Kalıplama, Mekanik Özellikler, Makine Öğrenmesi, Termoplastik 
 
 
INTRODUCTION 
 
Polymers are materials we use in all areas of our daily 
life because they are simple to produce, low cost, and 
readily available. In particular, the use of polymer matrix 
composites developed together with many different 
reinforcing elements, in addition to their use alone, is 
widespread [1, 2]. One of the most preferred types of 
composite is thermoplastic matrix composites. Many 
organic or inorganic reinforcement elements can be used 
in these composites, as well as synthetic fillers [3-6]. 
Especially if the reinforcing element used is in the form 
of particles, the injection molding method is preferred in 

production. The injection molding method is a mass 
production method, and the production parameters used 
here are critical. Parameters such as temperature, 
injection pressure, holding pressure, receiving pressure, 
etc., belonging to the injection part of the injection 
machine, and parameters such as mold temperature and 
cooling time belonging to the mold part of the injection 
machine significantly affect the part quality in 
production. Knowing these parameters in advance will 
enable the production to be carried out in series by saving 
both material and energy without resorting to trial and 
error at the beginning of the machine in case of changing 
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the type of matrix and reinforcing element to be used in 
production or changing the mixture ratios [7, 8]. 
Today, artificial intelligence methods have started to be 
used to learn and predict these parameters. With the 
emergence of the ease of application of these methods to 
different fields with the developing technology, artificial 
intelligence methods are used more easily and widely in 
various production areas. Thus, the production 
advantages it brings in production industries have 
positively affected the sectors economically [9-10]. Due 
to these important features, it plays an important role in 
modeling production stages and estimating the optimum 
values of various parameters (e.g. mechanical properties) 
used in the production of various parts used in 
manufacturing. For example, a database was created 
based on the mechanical results, such as maximum 
compressive/crushing force, maximum strain, and 
modulus of elasticity of cylindrical section pipes 
produced from carbon fibers used in textiles after 
production. With this database, predictions with high 
convergence accuracy were developed for pipes 
containing different proportions of carbon fiber by using 
methods such as artificial neural networks (ANN) based 
feedforward backpropagation algorithm (FFBP) and 
machine learning (ML) [11]. In addition, dog bones were 
produced by plastic injection molding method using 
high-density polyethylene, and studies were carried out 
to increase the efficiency of the samples produced using 
ANN and ML methods [12]. Similarly, the dimensional 
stability of injection molded thermoplastics, such as 
width and thickness, and mechanical properties, such as 
Young's modulus, tensile stress, and elongation at break, 
can be predicted using machine learning (ML) [13-15]. 
Ahmed et al. [16] used Random Forest (RF) and Gradient 
Boosted Regression Tree (GBRT) algorithms to predict 
the warpage of a PVC component obtained in the 
injection molding process. The results achieved using the 
absolute percentage metric show that the RF algorithm 
performs better than the other algorithms. In order to 
reduce the costs of plastic manufacturing companies 
during injection molding, the correct parameter values 
should be used. Schulze Struchtrup et al. [17] applied 
various feature selection methods based on this idea. 
Then they used ANN, Binary Decision Trees (bDT), k-
Nearest-Neighbors (kNN), Support-Vector Machines 
(SVM), LSBoost, RF, and Gaussian Process Regression 
(GPR) methods. Kiehas et al. [18] studied Charpy 
fracture surface images and tried to reveal the 
mechanisms that cause stress whitening. In this context, 
they tried to understand the Ductile to Brittle Transition 
Temperature (DBTT) based on fracture surface features. 
They also trained a CNN model to predict the DBTT. Wu 
et al. [19], offered an efficient machine learning-based 
model instead of the old and time-consuming methods 
used during the production of polymer materials. The 
mechanical properties and polymorphic properties of the 
models to be produced with this model were predicted by 
RF, Extreme Gradient Boosting (XGBoost), Extreme 
Tree (ET), and Gradient Boosting Tree (GBT) machine 
learning methods. Nasri and Toubal [20] tried to predict 

the impact and mechanical properties of biocomposite 
materials with pine and flax fibers reinforced with 
polypropylene using an artificial neural heavy (ANN) 
model. Many tests and expenses are required to 
determine the appropriate properties of these materials 
that degrade prematurely. With this model, this situation 
was avoided. 
In recent years, traditional machine learning and deep 
learning methods have been applied to solve the problem 
of accurate prediction of various production parameters 
due to their ability to solve complex and nonlinear 
problems [21]. However, there are some situations where 
the performance of traditional machine learning methods 
is degraded. For example, in any prediction task, most 
machine learning algorithms require the user to provide 
relevant features. However, deep learning models extract 
the features themselves [22]. In addition, the large 
amount of data generated during manufacturing, the 
exceptionally high feature space of this data, and the 
multimodal data structure all have a negative impact on 
the performance of traditional machine learning methods. 
Deep learning models, on the other hand, yield quite 
successful results in complex tasks such as speech 
recognition, image processing, and natural language 
processing. Owing to their multi-layered structure, these 
methods automatically process data and uncover non-
linear and complex relationships. These automatic 
learning capabilities have made deep learning models an 
effective tool in complex manufacturing processes [23]. 
This study created a dataset based on the injection 
molding production parameters of polyolefins reinforced 
with synthetic dye wastes and the mechanical test results 
of the produced samples, and a GA-LSTM hybrid 
agorithm was designed to predict the mechanical analysis 
results obtained during the production phase. Linear 
Regression (LR), RF, SVM, Multilayer Perceptron 
(MLP), Recurrent Neural Networks (RNN), and LSTM 
models were then applied to measure the 
accomplishment of this model. 
The contributions of this study are listed as below: 
• The predictive power of the LSTM model was 

optimized with the GA method. 
• In this study, 819 injection-molded specimens were 

produced, and each specimen underwent mechanical 
tensile, three-point bending, and izod impact testing 
with different parameters. 

• The mechanical analysis results of both LDPE-HDPE 
and LDPE-HDPE-PP were predicted with GA-LSTM.  

• The designed GA-LSTM model was compared with 
RF, LR, SVM, MLP, RNN, and LSTM. 

• Mean Square Error (MSE), Root Mean Square Error 
(RMSE), Mean Absolute Error (MAE) and R squared 
(R2) metrics were used to measure the success of the 
proposed models in predicting mechanical properties.  

 
MATERIAL and METHOD 

The matrix materials used in the production are LDPE, 
HDPE, and PP obtained from PETKIM A.Ş. The 
reinforcement elements are three different synthetic paint 
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wastes belonging to epoxy, epoxy/polyester (hybrid), and 
polyurethane systems. 
 
Production of Test Bars 
 
Powder coating wastes were mixed with each matrix 
material separately by %5, 10%, 20%, and 30% by 
weight, first mechanically and then homogeneously 
using a single screw extruder device in the Polymer 
Science and Technology Laboratory of Munzur 
University Mechanical Engineering Department. After 
these mixtures were cooled at the extrusion outlet, they 
were passed through a crusher to 2 to 3-mm granules. 
These granules were separately produced into test bars 
using the "EKİN 100 T" brand/model plastic injection 
molding machine shown in Figure 1 in the Polymer 
Science and Technology Laboratory.  
 

 
 
Figure 1. Production Flow chart of test bars 
 
During these productions, the injection machine 
temperature, injection pressure, secondary pressure, 
holding pressure, mold temperature, cooling time, and 
cycle time values vary depending on the type and mixing 
ratio of each matrix material and reinforcing element. 
Samples were also produced using pure LDPE, HDPE, 
and PP without reinforcements, and the production 
parameters varied for each. For example, the number of 
samples produced according to the AYPE and paint 
waste used for these experiments is given in Table 1. In 
addition, the same number of test bars were produced for 
other thermoplastics 
Table 1. Test LDPE matrix samples used in mechanical tests 
 

Materials/Mechanical 
Tests 

Tensile 
Test 

Three-
point 
bending 

Izod 
Impact 
Test 

AYPE pure 7 7 7 
AYPE+%5 Epoxy 7 7 7 
AYPE+%10 Epoxy 7 7 7 
AYPE+%20 Epoxy 7 7 7 
AYPE+%30 Epoxy 7 7 7 
AYPE+%5 Hybrid 7 7 7 
AYPE+%10 Hybrid 7 7 7 
AYPE+%20 Hybrid 7 7 7 
AYPE+%30 Hybrid 7 7 7 
AYPE+%5 P-Pure 7 7 7 
AYPE+%10 P-Pure 7 7 7 
AYPE+%20 P-Pure 7 7 7 
AYPE+%30 P-Pure 7 7 7 

 
A total of 819 test bars were produced as specified, and 
the mechanical properties of each of these test bars were 
analyzed. In addition, tensile, three-point bending, and 
izod impact tests were performed as mechanical tests. 
 
Mechanical Tests 
 
Tensile and three-point bending tests for the bars were 
performed using the 100 kN "Shimadzu AG-X" device in 
the Mechanical Engineering Laboratory of Munzur 
University. The device used in the experiment for the 
produced specimens is shown in Figure 2. 
 

 
 
Figure 2. Tensile test performed for the produced specimens. 
 
Tensile tests were performed under EN ISO 527 
standards with a 50 mm/min tensile speed. And three-
point bending tests were performed under EN ISO 178 
standards with a bending speed of 10 mm/min, and a 
maximum travel of 6 mm. Izod impact tests followed EN 
ISO 180 standards using the Italian brand "Ceast 
Fractovis Plus" impact device in Dokuz Eylül University 
Mechanical Engineering Department. 
Classification Models 
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Popular artificial intelligence methods used in many 
current researches were used to measure the performance 
of the GA-LSTM hybrid model developed in this study. 
These methods are briefly described in this section. 
LR: Linear regression is a commonly used method in 
statistical data analysis. LR is used for linear and 
continuous variables and is one of the popular machine 
learning methods. LR shows the relationships between 
one or more independent variables and a dependent 
variable [24]. There are two different types of LR: Simple 
Linear Regression and Multiple Linear Regression 
models. The first one deals with one independent 
variable, while the other has more than one independent 
variable [25]. 
RF: It is one of the most promising ensembles learning 
methods that aims to find more successful solutions to 
problems by combining different methods. The random 
forest algorithm is an ensemble of multiple decision trees 
[26]. The algorithm comprises decision trees that 
independent of the input vector of each classifier. For the 
classification of the input vector, each tree produces a 
unit vote result [27]. The RF algorithm achieves 
successful results from both large data sets and small data 
sets. It can also work with a combination of discrete and 
continuous data types.  
SVM: It is a trained statistical learning method used for 
classification and regression and successfully solves 
machine learning problems. SVM, developed by Vapnik 
[28], has gained popularity due to its many efficient 
features and good performance in solving nonlinear 
problems. The version used to solve regression problems 
is called the Support Vector Regression model [29]. 
MLP: This model is a nonparametric artificial neural 
network technique that performs many detection and 
prediction tasks. It is a general-purpose, flexible, non-
linear model consisting of units (neurons) organized in 
multiple layers [30]. It consists of many layers, and for 
each neuron in these layers, it takes the sum of the 
product of the connection weight and the input signals 
and calculates its output as a function of this sum. This 
model is also known as feedforward ANN, as the learning 
is done from the previous layer to the following layer 
[31]. 
RNN: In RNN, a type of artificial neural network, the 
output data depends on the calculation of the sequential 
time series inputs of the neural network. These models 
are networks where the connections between units form 
a directed loop. RNN allows a system to exhibit dynamic 
temporal behavior [32]. Unlike feedforward neural 
networks, RNNs can process inputs using their own input 
memory. RNN performs processing time series data in 
application areas such as handwriting, speech, and 
activity classifications [33-34]. 

LSTM: This effective model is a variant of RNN and is 
used to solve various problems where the RNN method 
does not provide the desired solution power. LSTM is 
designed to overcome error-backflow problems. It was 
proposed by Hochreiter and Schmidhuber [35]. There are 
four layers in the LTSM architecture: input, forget, 
output, and cell. The cells that are the key to the 
architecture can keep or remove the information because 
of the features in the LTSM architecture, which are 
expressed as gates [36]. The other layers in the 
architecture, namely the input, output, and forgetting 
layers, constitute the memory of the network in the cell 
state. LSTM achieves very effective results in 
classification and regression problems, especially in text 
and audio-related tasks. 

 
Developed Hybrid Deep Learning Model 
 
This section describes the development process of the 
deep learning-based model, which successfully predicts 
the actual experimental results by using the production 
parameter values used and obtained experimental results 
in the real experimental environment and thus 
realistically models this experimental process. First, a 
data set was created using real experimental results, and 
then the data was given as input to the model after 
preprocessing steps. The developed GA-LSTM hybrid 
model inputs the experimental parameters and generates 
predictions for mechanically tensile, three-point bending, 
and izod impact tests as output. The architecture of the 
developed GA-LSTM model is shown the Figure 3. 
As seen in Figure 3, the GA-LSTM architecture consists 
of an input layer, LSTM layers, and an output layer. The 
input layer is taken to the input layer after the data has 
gone through a certain preprocessing process in the first 
stage of the model. This layer receives time series data 
and prepares it in a format suitable for the LSTM layers. 
LSTM layers are used to learn and model long-term 
dependencies of consecutive data. Each LSTM layer 
contains an input gate, an output gate, a forget gate, and 
a cell state. The input gate determines how to process 
newly arriving data. The forget gate decides how much 
of the previous state information to forget. The output 
gate outputs the updated state information. The cell state 
stores and updates the long-term information. These 
gates and the memory cell control how the data is updated 
and stored at each time step. Hidden layers, the outputs 
obtained from the LSTM layers, are passed to the hidden 
layers. These layers represent the learned features at a 
higher level and increase the learning capacity of the 
model. The output layer provides the final prediction 
results of the model. Information from the hidden layers 
is passed to the output layer to produce the model's 
predictions. 
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Figure 3. The architecture of the developed GA-LSTM model 
 
Dataset 
 
The dataset used in this study comprises three mechanical 
test results: tensile, three-point bending, and izod impact 
results of the samples produced with the parameters used 
during the injection molding of polyolefins reinforced 
with synthetic dye wastes. The dataset consists of 819 
real test results obtained in the laboratory. Table 2 shows 
the attributes and value ranges in the dataset. 
 
Table 2. Attributes and value ranges in the dataset 
 

Attributes Value ranges 
Percentage contribution    ≥ 0       ≤ 0.3 
Temperature ( oC )    ≥ 165   ≤ 200 
Injection pressure (bar)    ≥ 60     ≤ 90 
Secondary pressure (bar)    ≥ 50     ≤ 0.3 
Holding pressure (bar)    ≥ 0       ≤ 80 
Mold temperature ( oC )     ≥ 25     ≤ 90 
Cooling time (s)    ≥ 30     ≤ 80 
Cycle time (s)    ≥ 60     ≤ 110 
Tensile strength    ≥5.13   ≤ 56.783 

Tree point bending strength    ≥10.54 ≤ 68.55 

Izod impact strength    ≥ 2.11  ≤ 23.87 

 
Evaluation Metrics 
 
In prediction problems, the metrics Root Mean Squared 
Error (RMSE), Mean Squared Error (MSE), Mean 
Absolute Error (MAE), and R Squared (R2) are mainly 
used to determine the error between predictions and 
actual values. MSE is calculated by subtracting the 
predicted values from the actual values, squaring them, 
and calculating the average. MSE is calculated using 
Eq.1, where y is the actual value, 𝑦𝑦� predicted values and 
n is the number of samples. 

 
𝑀𝑀𝑀𝑀𝑀𝑀 = 1

𝑛𝑛
∑ (𝑦𝑦 − 𝑦𝑦�)2𝑛𝑛
𝑖𝑖=1     (1) 

 
RMSE calculates the standard deviation of the prediction 
errors. The square root value of MSE represents RMSE, 
as shown in Eq.2. 
 

𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀 = �1
𝑛𝑛
∑ (|𝑦𝑦 − 𝑦𝑦�|)2𝑛𝑛
𝑖𝑖=1            (2) 

 
MAE takes the absolute value of the difference between 
the actual values found and the values predicted by the 
methods and then calculates their average. It calculates 
the mean of the prediction errors. MAE is calculated 
using Eq.3. 
 
𝑀𝑀𝑀𝑀𝑀𝑀 = 1

𝑛𝑛
∑ |𝑦𝑦 − 𝑦𝑦�𝑛𝑛
𝑖𝑖=1 |    (3) 

 
R2 is a statistical measure of the proportion of variance. 
R2 is calculated using Eq.4. 𝑦𝑦� is the average of the actual 
values. The values of y and 𝑦𝑦�  were mentioned at the 
beginning of the section and are not repeated here. 
 
𝑅𝑅2 = ∑(𝑦𝑦−𝑦𝑦�)2

(𝑦𝑦−𝑦𝑦�)2
      (4) 

 
Proposed Hybrid GA-LSTM Prediction Model 
 
In this research, the hybrid model was designed and 
compared with RF, LR, SVM, MLP, RNN, and LSTM 
models in practice. First, this dataset was normalized in 
between 0 and 1 values with the MinMaxScaler method 
belongs to the Scikit Learn library and then artificial 
intelligence models were applied. After the 
normalization step, the data were divided into training, 
test, and validation sets. As a result of the experimental 
studies, the highest prediction accuracy was achieved in 
the combination of 80% training and 20% testing, so 
these values were chosen for the experimental studies. In 
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addition, 10% of the training data was reserved for 
validation. The validation data was used to optimize the 
parameters of the applied models. The model parameters 
were optimized using the GridSearchCV method from 
the Scikit Learn library to ensure the applied models get 
the best prediction outcomes. GridSearchCV uses a 
different combination of all specified hyperparameters 
and their values and selects the best value for the 
hyperparameters by calculating the performance for each 
combination. However, in the GA-LSTM model, 
parameter optimization was carried out using the GA 
algorithm to create the ideal parameter configuration for 
accurately predicting mechanical properties. Initially, 
3x3 and 5x5 kernel sizes were tried for kernel sizes. 
These sizes were evaluated in a wide range to ensure that 
the model could learn different features and as a result of 
the experimental studies, 3x3 kernel size was selected. 
For epoch numbers, 50, 100 and 150 epoch values were 
used in the training process and as a result of the 
experimental studies, 100 epoch number was selected. 
For number of neurons, 50, 100 and 150 values were tried 
as the neuron numbers used in different layers and as a 
result of the experimental studies, 50 neurons were 
selected. 
For learning rate, 0.001, 0.01 and 0.1 values were tried 
and as a result of the experimental studies, 0.01 learning 
rate was selected. 
The LSTM can learn and model the sequential data more 
efficiently. This allowed LSTM to learn long-term 
patterns better. The following equations show the stages 
of the LSTM algorithm. 
 
LSTM algorithm 
 
For the input sequence 𝑇𝑇1,𝑇𝑇2, … ,𝑇𝑇𝑁𝑁 the hidden state ℎ𝑡𝑡 
and the output 𝑦𝑦𝑡𝑡  can be calculated as in Equations 1 and 
2. 
ℎ𝑡𝑡 = 𝐻𝐻(𝑊𝑊𝑖𝑖ℎ𝑇𝑇𝑡𝑡 + 𝑊𝑊ℎℎℎ𝑡𝑡−1 + 𝑏𝑏ℎ)    (1) 
 
𝑦𝑦𝑦𝑦 = 𝑊𝑊ℎ𝑜𝑜ℎ𝑡𝑡 + 𝑏𝑏𝑜𝑜     (2) 
 
𝑊𝑊𝑖𝑖ℎ ,𝑊𝑊ℎℎ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑊𝑊ℎ𝑜𝑜 refer to the weight matrices between 
the input, hidden, and output layers. Here, an input 𝑥𝑥𝑡𝑡 is 
received at time t. 𝐶𝐶𝑡𝑡−1 denotes long-term memory and 
ℎ𝑡𝑡−1 denotes the transaction memory. 
The following equations are used for learning and 
prediction by the LSTM deep learning model. 
 
𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑤𝑤𝑥𝑥𝑖𝑖𝑥𝑥𝑡𝑡 + 𝑤𝑤ℎ𝑖𝑖ℎ𝑡𝑡−1 + 𝑤𝑤𝑐𝑐𝑖𝑖𝑐𝑐𝑡𝑡−1 + 𝑏𝑏𝑖𝑖)                (3) 
 
𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑤𝑤𝑥𝑥𝑥𝑥𝑥𝑥𝑡𝑡 + 𝑤𝑤ℎ𝑥𝑥ℎ𝑡𝑡−1 + 𝑤𝑤𝑐𝑐𝑥𝑥𝑐𝑐𝑡𝑡−1 + 𝑏𝑏𝑓𝑓)   (4) 
 
𝑐𝑐𝑡𝑡 = 𝑓𝑓𝑡𝑡 ʘ 𝑐𝑐𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ʘ tanh (𝑤𝑤𝑥𝑥𝑐𝑐𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ𝑐𝑐ℎ𝑡𝑡−1 + 𝑏𝑏𝑐𝑐)(5) 
 
𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑤𝑤𝑥𝑥𝑜𝑜 + 𝑤𝑤ℎ𝑜𝑜ℎ𝑡𝑡−1 + 𝑤𝑤𝑐𝑐𝑜𝑜𝑐𝑐𝑡𝑡−1 + 𝑏𝑏𝑜𝑜)   (6) 
 
ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡  ʘ ℎ(𝑐𝑐𝑡𝑡)        (7) 
 

where, 𝑖𝑖𝑡𝑡 represents the input gate, 𝑜𝑜𝑡𝑡  the output gate, 
𝑓𝑓𝑡𝑡 the forgetting gate, c denotes the cell activation vector, 
w weight matrix, and b is the bias vector. ʘ is a the scalar 
product of two vectors. 𝑥𝑥𝑡𝑡 and ℎ𝑡𝑡  denotes input-output 
sequences.   
The parameters used in the experiments performed in this 
study were given as input to the LSTM model. These 
parameters were used in the construction of the 
algorithms to be selected while building the model. The 
selection of the activation function and the construction 
of the optimization algorithm can be given as examples. 
In order for the model to make effective and high 
performance predictions, the optimum values of the 
hyperparameters should be selected, and also the limits 
of the hyperparameters should be considered during this 
selection. Some of these hyperparameters to be selected 
are the kernel size, epochs, neurons, and layers numbers. 
However, finding the optimum values of the 
hyperparameters is a time-consuming process. The first 
hyperparameters obtained while designing the model 
usually do not give successful results. In the following 
process, many trials are made to achieve the highest 
success of the model and optimum results are obtained. 
The model is trained with these hyperparameter values.  
By adjusting the most successful hyperparameter 
combination, the best results are tried to be obtained by 
using success metrics. In this study, the hyperparameter 
values are optimized using GA to increase the success of 
the LSTM model. Thus, the most successful model was 
tried to be found. 
 
Genetic Algorithm 
 
GA is a population-based and stochastic method. It is also 
an efficient classification and search algorithm. Its ability 
to adapt to problems, its fast operation, and the fact that 
it does not get stuck in local solutions in the search space 
make it stand out. This algorithm was introduced by John 
Holland [37]. GA is a method developed based on 
Darwin's theory of evolution and the principle that the 
best-adapted individual will survive [38]. The operators 
that form the basic structure of the algorithm are 
crossover, mutation, and selection operators. When 
adapting GA to problems, the representation of 
individuals should be done correctly, the fitness function 
should be created efficiently, and the correct genetic 
operators should be selected. 
In GA, each solution corresponds to a chromosome, and 
gene represents each variable. GA calculates the fitness 
of each candidate solution in a population, and the 
individual with the best fitness after all iterations is 
presented as the solution. The GA algorithm first 
generates a random initial population. The aim here is to 
expand the solution space by creating a wide variety of 
individuals [39]. The pseudocode of GA is given in 
Figure 4. 
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Figure 4. The pseudocode of GA 
 
The selection operator determines whether chromosomes 
will participate in the reproduction process. In other 
words, individuals selected by the selection operator are 
eligible to enter the crossover pool, while unselected 
individuals are destroyed. In some studies, the selection 
operator is also called the reproduction operator. This 
operator affects the convergence process of the 
algorithm. Various selection methods include the 
Roulette wheel, rank, tournament, and Boltzmann [41]. 
The crossover process, which is used to create new 
generations in the evolutionary process, comes to life in 
the genetic algorithm as a crossover operator that 
produces better solutions. The crossover operator creates 
a new generation from individuals selected by the 
selection operator. New chromosomes are produced at 
this stage, just as new ones are produced from parent 
chromosomes. After the replication process is finished, 
two chromosomes are randomly selected from the new 
population to be crossed. Generally, single-point, double-
point, k-point, partially matched, uniform, shuffle, order, 
and cycle crossover operators are used [40]. The last 
operator is the mutation operator. With this operator, a 
process similar to the natural mutation process is carried 
out. It diversifies the solutions formed after the selection 
and crossover processes with a certain probability. This 
increases the diversity of the population, recovers good 
features that may be lost due to crossover, and prevents 
the algorithm from getting stuck in local solutions [39]. 
In the process of optimizing the LSTM model with the 
genetic algorithm, 20 iterations were performed for each 
experiment. In the implementation of the GA, the 
Python-based Distributed Evolutionary Algorithms in  
 

 
Python (DEAP) package was used. In addition, the Keras 
and PyGAD packages were used for the LSTM model to 
integrate the GA into the LSTM. In the optimization 
process with the GA, the population size was determined 
as 50 agents. This number of agents was found to be 
sufficient to reach optimum results by scanning a large 
part of the solution space. The tanh transfer function was 
preferred as the activation function used in the LSTM. 
This function was chosen to ensure that the LSTM cells 
learn long-term dependencies better. In the output layer, 
since it was a regression problem, the linear activation 
function was used. Finally, the KerasGA class generates 
the initial population of parameters of the LSTM model. 
The MSE metric served as a fitness measure. Through the 
algorithm's operation, these values were attempted to be 
maximized. In other words, an effort was made to 
identify the maximum fitness value. As a result, GA 
optimized the parameters of the LSTM. Additionally, the 
LSTM's weights were initially set to random numbers. 
Here the sliding window size parameter and the LSTM 
cells number are represented as chromosomes and 
encoded in binary bits. Recombination and selection 
operators work to discover the best solution from the 
population. As a result, the solutions with the best fitness 
values were selected for reproduction. If the condition to 
terminate the algorithm is reached after the reproduction 
operator is applied, it means that the optimal solution is 
approached. If the desired quality solutions are not 
reached as a result of iterations, crossover and mutation 
operators are applied again in order for the model to 
generate better solution candidates.  The flowchart of the 
developed model is shown in Figure 5. 
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Figure 5. Flowchart of the developed model 
 
EXPERIMENTAL RESULTS 
 
In order to determine the error between the predictions 
and the actual values, MSE, MAE, RMSE, and R2 results 
are given below for each thermoplastic separately and 
together. 
 
Mechanical Predictions of LDPE-HDPE 
 
This study evaluated the mechanical test results of LDPE 
and HDPE specimens in the data set. In addition, the 
tensile, bending, and izod test results of LDPE-HDPE 
obtained with the developed hybrid GA-LSTM model 
were given. 
Table 3 shows the variations among the actual and 
predicted values of the tensile test results of LDPE and 
HDPE processed together. If R2 is examined from these 
changes, it is seen that it is above 0.9 for all models. 
Therefore, when this value approaches 1, the difference 
in standard deviation among the actual and predicted 
values is nearly negligible. and the accuracy is high. A 
convergence to zero is sought if the MSE, RMSE, and 
MAE metrics are examined. When we look at the 
developed GA-LSTM-based deep learning method, it is 
seen that the R2 value is 0.992 and the margin of error is 
minimum, and the other metrics are the closest values to  

 
0 in the GA-LSTM-based model. If the R2 value moves 
away from 1, it is understood that the standard deviation 
range increases and the difference between the actual and 
predicted values widen. 
 
Table 3. Tensile strength results 
 

Model    MSE       RMSE      MAE R2 
LR 2.718 1.649 1.271 0.925 

RF 1.724 1.313 1.007 0.953 

SVM 2.607 1.615 1.176 0.928 

MLP 1.482 1.218 0.938 0.959 

RNN 1.192 1.092 0.899 0.967 

LSTM 0.748 0.865 0.759 0.979 

GA-
LSTM 

0.444 0.666 0.585 0.992 

 
Table 4. Three Point Bending strength results 
 

Model    MSE       RMSE      MAE R2 
LR 1.813        1.347 1.077 0.869 

RF 1.780        1.334 0.987 0.871 

SVM 3.416         1.848     1.314 0.753 
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MLP 1.744         1.320    1.096 0.874 

RNN 1.569       1.253 1.036 0.886 

LSTM 0.800       0.894 0.682 0.942 

GA-
LSTM 

0.771      0.878  0.670 0.958 

 
Table 5. Izod impact strength results 
 

Model    MSE       RMSE      MAE R2 
LR 9.612 3.100 2.451 0.501 

RF 4.393 2.096 1.765 0.772 

SVM 8.194 2.862 1.858 0.575 

MLP 7.346 2.710 2.195 0.619 

RNN 6.062 2.462 1.848 0.686 

LSTM 1.441 1.200 0.854 0.925 

GA-
LSTM 

1.396 1.181 0.841 0.939 

 
Tables 4 and 5 analysis reveals that GA-LSTM is the 
most effective model. The minimal standard deviation R2 
in Table 4 is 0.958, whereas the minimum distinction 
among the actual and predicted values in Table 5 is 0.939. 
In addition, if all three tables are examined, it is seen that 
the LSTM deep learning method gives the second-best 
results, apart from GA-LSTM. 
 
Mechanical Predictions of LDPE-HDPE-PP 
 
The results for the LDPE-HDPE and PP co-processed 
values are given in the tables below. Table 6 shows the 
success of the tensile test results obtained by machine 
learning and deep learning methods. These results show 
that LSTM and GA-LSTM deep learning models give the 
most accurate convergence, similar to the analysis 
performed for LDPE and HDPE. However, the difference 
here is that the standard deviation range, i.e., the 
difference between the actual and predicted values, is 
higher than the LDPE-HDPE results. This is because 
although polypropylene is a commercial thermoplastic in 
the polyolefin group, it is a different material with 
different properties than polyethylene. 
 
Table 6. Tensile strength results 
 

Model      MSE       
RMSE 

     MAE     R2 

LR 17.254 4.154 3.380 0.756 
RF 16.180 4.022 2.615 0.771 
SVM 18.816 4.338 2.803 0.734 
MLP 17.297 4.159 3.472 0.755 
RNN 8.067 2.840 2.483 0.886 
LSTM 7.608 2.758 2.263 0.892 
GA-
LSTM 

7.287 2.699       
2.215 

0.911 

 

PP and PE have a crystalline/semi-crystalline structure, 
but PP is synthesized from propene monomer instead of 
ethylene and has unique properties. LDPE and HDPE are 
both PE-based; that is, they are more similar in structure 
since the polymerization of ethylene monomer produces 
them. The most apparent difference between them is their 
density. In addition, PP is a brittle material, while PE is 
ductile. This makes PP more brittle and therefore causes 
variability from production parameters to test results. 
 
Table 7. Three Point Bending strength results 
 

Model       MSE     
RMSE 

     
MAE 

            R2 

LR 40.777 6.386 5.128 0.810 
RF 29.076 5.392 4.048 0.864 
SVM 45.741 6.763 4.814 0.786 
MLP 38.241 6.184 4.498 0.821 
RNN 24.095 4.909 3.525  0.888 
LSTM 14.927 3.864 2.210 0.930 
GA-
LSTM 

14.236 3.773 2.158 0.952 

 
Table 8. Izod impact strength results 
 

Model        
MSE 

    
RMSE 

     
MAE 

            R2 

LR 14.587 3.819 2.962 0.224 
RF 5.698 2.387 2.006  0.697 
SVM 14.707 3.835 2.326 0.218 
MLP 3.068 1.751 1.316 0.837 
RNN 1.960 1.400 1.081 0.896 
LSTM 1.605 1.267 0.968 0.915 
GA-
LSTM 

1.559 1.248 0.954 0.928 

 
The outputs of the models used to predict the bending test 
results are shown in Table 7. Similar to earlier studies, it 
is clear from these data that GA-LSTM and LSTM deep 
learning models produce the most outstanding outcomes. 
However, the difference between the actual and predicted 
results has increased since the results for PP are included 
in addition to LDPE and HDPE. For example, while the 
R2 value obtained only for LDPE-HDPE was 0.958, here 
it was 0.952, slightly more than 1. 
Table 8 shows the models' outputs depending on the Izod 
impact test results obtained by working with LDPE-
HDPE-PP. Looking at these results, it is seen that the best 
models are GA-LSTM and LSTM, deep learning models. 
The following compares the predicted values obtained 
for tensile, three-point bending, and izod tests with the 
actual values. As shown in Figure 6, the mechanical 
results obtained from the original experimental results 
were successfully predicted. Graphically, it is seen that 
the actual results and the predicted results coincide. 
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Figure 6. The comparison of original experimental values and GA-LSTM predicted values 
 
The LDPE-HDPE-PP izod impact strength results 
overlap less than the others, as shown in the graph above. 
Within a limited range, the hybrid model gave 
mechanical results comparable to the actual experimental 
results. 
 
DISCUSSION 
 
GA-LSTM has achieved quite successful results in the 
training and testing phases, but the model's performance 
with completely new data that is not in the original 
dataset may have some difficulties. LSTM models are 
strong at learning long-term dependencies in time series 
data, but when faced with new untrained data patterns, 
performance may decrease. This situation can occur 
especially when structural changes or different 
distributions in the dataset are not fully reflected in the 
model. 
LSTM optimized with GA may be prone to learning data-
specific features. In this way, although the model 
achieves successful results on training data, it may lead 
to overfitting problems on new data. Although cross-
validation techniques have been used to prevent 
overfitting, this risk exists when faced with a completely 
new dataset.  
The GA-LSTM model used in this study has shown 
superior performance in the injection molding processes 
of polyolefin matrix thermoplastics when compared to 
other machine learning and deep learning methods 
frequently used in the literature. 
Ahmed et al. [16] used Random Forest and Gradient 
Boosting models to predict the bending properties of 
PVC in injection molding processes, providing over 85% 
accuracy. However, the GA-LSTM model used in this 
study achieved a superior performance in modeling 
complex process parameters, achieving over 0.95 in R2 
value. 

 
Schulze Struchtrup et al. [17] used ANN and SVM 
methods for quality prediction in injection molding, and 
R2 values were generally below 0.90 in their studies. Our 
GA-LSTM model, on the other hand, showed that it 
better models complex and nonlinear relationships, 
providing results up to 0.95 in R2 value, especially in 
flexural strength and impact strength predictions. 
The ability of the LSTM model presented by Hochreiter 
and Schmidhuber [35] to process time series data was 
also verified in this study. However, the GA-LSTM 
model optimized with genetic algorithms clearly 
demonstrated the effect of parameter optimization by 
achieving lower error rates in predictions compared to the 
pure LSTM. 
Comparisons with studies in the literature support that the 
proposed model offers higher accuracy and consistency 
for the prediction of mechanical properties, especially in 
polymer-based injection molding processes, compared to 
the methods in the literature. When compared with the 
data obtained from other studies in the literature, it was 
concluded that the hybrid model used can accurately 
model the effects of different parameters and has a 
significant potential for improving product quality. 
 
CONCLUSION 
 
This study investigated the effect of production 
parameters on product quality in the injection molding of 
LDPE, HDPE, and PP thermoplastics with particle filler 
reinforcement. In plastic injection molding production, 
the part must be easy to separate from the mold, burr 
formation is prevented, and the part surface must be 
smooth. All these are also among the factors affecting the 
mechanical properties of the produced parts. In this 
study, the optimum production parameters of the parts 
produced by plastic injection molding were processed 
with the developed GA-LSTM-based deep learning 
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model, and the forecasted values were studied using the 
actual values of the mechanical analysis results of both 
LDPE-HDPE and LDPE-HDPE-PP. Especially in the 
LSTM learning model used, it was determined that the R2 
value was close to 1, and the MAE value was close to 0. 
These results indicate that the standard deviation range is 
decreasing, and the actual and predicted values are close 
to each other. Therefore, it is supported that these 
parameters, which are used primarily in producing 
synthetic particle filler-reinforced LDPE, HDPE, and PP, 
can also be used in similar productions. 
Nowadays, items that directly affect production, such as 
material and labor costs, especially energy costs, are 
essential for companies to be sustainable. As a result of 
the outcomes obtained in this study, energy, labor, and 
material costs for companies producing with plastic 
injection molding machines can be reduced, and time 
losses can be minimized by supporting mass production. 
Predicting the production parameters that directly affect 
the product quality, such as temperature, pressure, 
receiving amount, and cooling time in advance, will 
allow production to start without trial and error. As a 
result, material, energy, and time spent on production can 
be saved. Consequently, the quality of the parts produced 
and production efficiency will increase positively. 
In future work, we aim to expand the use of GA-LSTM 
in different industrial applications and apply it to more 
complex data sets. In addition, it is planned to apply it to 
different areas such as other manufacturing processes, 
biomedical data analysis and time series prediction, in 
addition to the mechanical properties of the polymer 
materials used in this study. 
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