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ABSTRACT 
Soil erosion is one of the most important and critical processes occurring 

in Türkiye, as in all parts of the world. It is of great importance to 

understand the processes that occur as soil erosion continues. The aim of 

this study is to determine the erosion susceptibility occurring in the 

Çapakçur Stream basin, one of the important erosion areas of Türkiye. In 

the study, erosion susceptibility analysis was carried out using 4 different 

methods Shannon Entropy (SE), Logistic Regression (LR), Frequency 

Ratio (FR) and Weight of Evidence (WoE) that are effectively used today 

in erosion susceptibility analysis and determination of critical areas in 

terms of erosion, and 19 conditioning factors based on these methods. 

Analysis Results Model performances were evaluated using Receiver 

Operating Characteristic (ROC) and Area under the Curve (AUC) values 

based on a dataset consisting of 840 training (70%) and 360 testing (30%) 

points. According to result of the AUC values show that Logistic 

regression seems to perform well on both training (AUC= 94.7%) and 

validating datasets (AUC=93.5%). On the other hand, Weight of 

Evidence training (AUC= 93.5%) and testing datasets (AUC= 91.4%), 

Frequency Ratio training (AUC= 93.5%) and testing datasets 

(AUC=92.4%) of the Weight of Evidence result show that AUC and ROC 

values similar to Logistic Regression result, but slightly lower than 

Logistic Regression. Additionally, Shannon Entropy shows that it 

performs lower than other methods on both training (AUC= 55.7%) and 

testing datasets (AUC= 56.3%). Conducting analyses based on these 

methods, especially in erosion susceptibility studies, will facilitate both 

planning and the accuracy of the results obtained. 

 

Keywords: Erosion susceptibility, Logistic regression (LR), Weight of Evidence (WoE), Frequency Ratio (FR), Shannon’s Entrophy (SE).

 

 

1. Introduction 
 

Soil plays a crucial role in providing essential nutrients for the nourishment of land covers and types (such as forests, grasslands, 

and agriculture), controlling the emission rates of greenhouse gases, regulating Earth's temperature, retaining and storing water, 

preventing droughts, floods, and inundations in basins, and serving as a natural purification environment in terms of pollution. 

However, since the transition of humanity from the Neolithic period (pre-9000 BCE) to settled societies, various civilizations, 

from ancient times to the present, have exerted significant pressures on natural resources, especially land. Particularly in modern 

times, the rapid increase in population has led to a surge in demand for and pressure on natural resources, challenging the 

environment's self-renewal capacity. Factors such as unhealthy industrialization, unplanned urbanization, improper land use, 

increased pollution, decrease or extinction of species, and climate change, resulting from this population growth, endanger the 

sustainability of ecosystems due to biodiversity loss. These pressures, combined with natural factors, lead to one of the biggest 

problems, soil erosion, and cause land degradation by creating an irreversible risk of desertification (Valentin et al. 2005; Dengiz 

et al. 2014; Zhuang et al. 2015; Saha et al. 2020). Therefore, soil erosion is a major and critical environmental issue that poses a 

serious and irreversible threat to agricultural productivity and long-term ecosystem stability wherever it occurs globally, 

impacting the entire world (Chalise et al. 2019; Mohammed et al. 2020; Bag et al. 2022).  

 

One of the most significant environmental problems encountered when soils and lands are not sustainably managed is the 

risk of desertification. Land degradation and drought, in short desertification, directly or indirectly affect the lives of 

approximately 1.2 billion people worldwide. The main reasons for this are extreme changes in climate events and the adverse 

effects of human activities. About 6% of the world's soils are severely desertified, and approximately 29% are at risk of 

desertification. Desertification has affected all regions of the globe to some extent, with particularly significant impacts felt in 

South America, Asia, and Africa. Each year, in addition to approximately 6 million hectares of land that become desertified, an 
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additional 21 million hectares become unusable due to the spread of desertification (UNCCD 2016; Dengiz et al. 2020; İnik 

2022; İnik 2023). 

 

Türkiye is among the countries experiencing significant levels of soil erosion mainly due to its topography, climate, soil 

conditions, and anthropogenic factors, with erosion problems observed in only 13.86% of its land area according to official data 

(Berberoğlu et al. 2020). Land areas experiencing severe and very severe erosion make up 58.74% of the total landmass. Water 

erosion, which is the most common type of erosion both in Türkiye and globally, is the primary land degradation problem in our 

country, affecting 57.15 million hectares of land (Anonymous, 1987; Anonymous, 1998). The susceptibility of Turkish soils to 

both erosion and desertification is closely related to its geographical location, climate, topography, and soil structure. Soil erosion 

susceptibility, which we can define as the resistance of soils to erosive forces, varies under changing conditions such as rainfall 

intensity, slope steepness, changes in soil structure, and hydraulic properties. This situation makes it evident that desertification 

will have a more pronounced impact in the future under Türkiye conditions (İDEP 2012; Saygın 2013; Karagöz et al. 2015). 

 

In recent years, innovative methods such as Geographic Information Systems (GIS) and machine learning (artificial 

intelligence algorithms) have been used for the identification of erosion-sensitive areas, resulting in more accurate and successful 

outcomes (Chakrabortty et al. 2020). Particularly, determining soil erosion susceptibility is of critical importance for 

implementing measures against erosion. In parallel with these advancements, numerous GIS-based soil erosion models have 

been developed from the 1990s to the present (Danacıoğlu & Tağıl 2017). In this context, soil erosion susceptibility studies also 

aim to identify potential areas at risk of soil erosion, particularly within specific sites and river basins. These studies generally 

focus on areas where erosion is likely to occur, and based on the results of the obtained susceptibility model, potential risk 

classifications are made. This classification is of great importance for determining measures to be taken for erosion sites within 

the high-risk category. For example, Bouamrane et al. (2024), examined soil erosion susceptibility maps in the Medjerda basin 

in North Africa. In this context, they used four different models: Deep Learning Neural Network-AHP (DLNN-AHP), Frequency 

Ratio-AHP (FR-AHP), Monte Carlo-AHP (MC-AHP), and Fuzzy AHP (F-AHP). They used eight different triggering factors, 

and the study identified that the distance to the river and rainfall erosivity factor had the greatest impact on soil erosion. Ait 

Neceur, et al. (2024), examined gully erosion susceptibility mappings in the N’fis River Basin using different machine learning 

algorithms. A total of 434 inventory data points were used for modeling, with 70% as training data and 30% as test data. The 

model accuracies were evaluated using the ROC curve. As a result, drainage density, slope, and NDVI were found to be the most 

influential factors in the field. 

 

Therefore, recent studies on erosion susceptibility have shown a noticeable increase in research where parameter groups and 

analysis methods are determined by researchers, and independent models are used, alongside ready-made erosion models. 

Looking at recent studies on erosion susceptibility analysis using GIS technologies in the literature, the majority of them utilize 

statistical models (Akgün, 2007; Kheir et al. 2008; Conforti et al. 2011; Ogbonna et al. 2011). In this regard, there has been a 

rapid increase in studies focusing on soil erosion modelling approaches using methods such as frequency ratio (FR), logistic 

regression (LR), weight of evidence model (WoE), and Shannon entropy (SE), deep learning, machine learning etc., 

 

This study aims to conduct a soil erosion susceptibility analysis in the Çapakçur Creek basin, which is part of the Murat River 

Sub-basins and one of the significant soil erosion areas in Türkiye (Avcıoğlu et al. 2022). The purpose is to understand the 

erosion situation in this basin. For this purpose, four different methods, namely SE, LR, FR, and WoE, were employed to perform 

susceptibility analyses. 

 

2. Material and Methods  
 

2.1. Description of study site 

 

The Çapakçur Stream basin is located within the borders of Bingöl province, in the Eastern Anatolia Region of Türkiye. It is 

situated between the latitudes of 38°48' - 38°55' and the longitudes of 40°17' - 40°32', with a basin area of 113.4 km². Generally, 

it extends in an east-west direction, with a maximum basin length of 21.6 km and a maximum basin width of 9.7 km. The basin 

has elevations ranging from a minimum of 1044 m to a maximum of 2505 m, with an average elevation of 1735 m, and it is 

characterized by a highly rugged topography. While the middle and upper parts of the basin have steep relief, only the area 

towards the city centre of Bingöl represents a relatively flat and plain topography. However, these areas also contain slopes with 

quite high gradients, and the average slope throughout the basin is 22.5° (Figure 1).  
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Figure 1- Location of the study area 

 

According to the Koppen-Geiger climate classification, the main climate type is "D", representing a cold and humid temperate 

climate type (continental climate) in the winter seasons and is the second most common climate type seen in Türkiye (Peel et al. 

2007; Öztürk et al. 2017). The sub-climate type is represented as "Dsa". The annual total precipitation in this region is 949 mm, 

with 117 days of snowfall and a snow cover duration of 76 days (İnik et al. 2022) and the average temperature values fall below 

0°C during the winter seasons while exceeding 20 °C during the summer season (Öztürk et al. 2017). Dense erosion observed in 

the field is strongly controlled not only by climatological characteristics but also by geological and geomorphological features. 

Therefore, erosion is observed, particularly on steep slopes in the study area (Figure 2). Especially with heavy rainfall, erosion 

development accelerates in areas where surface runoff occurs, particularly in river valleys with flash floods. According to the 

general lithological characteristics of the basin, two different basic lithological units are observed in the field. In the lower reaches 

of the basin, a small portion consists of Quaternary-aged alluviums and volcanic units. One of the intensively observed units 

consists of sandstone, mudstone, limestone shelf, and sedimentary rocks spreading in areas where erosion events actively occur, 

while the other unit consists of upper Miocene-Pliocene-aged volcanic rocks, conglomerates, and continental units. 
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Figure 2- UAV images of the erosion areas in the Çapakçur Stream basin 

 

2.2. Methodology 

 

Geographic information systems and remote sensing technologies were used in this work, and Microsoft Excel and SPSS were 

used for statistical computations. The general flowchart used in the study is provided in Figure 3. The present study was carried 

out in the following main steps.  

 

 Firstly, the detection and digitization of erosion areas within the basin boundaries,  

 

 (ii) followed by subsetting the generated inventory data by randomly selecting 70% as training data and 30% as test 

(validation) data, 

 

 the selection of condition factors and their reclassification and preparation, 

 

 the implementation of LR, FR, WoE, and SE methods,  

 

 the creation of susceptibility models for these methods,  

 

 Testing the performance of erosion susceptibility models using the area under the receiver operating characteristic 

(AUROC). 
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Figure 3- General flowchart of the study 

 

In order to complete this study, 5m resolution DSM data, referred to as "Level-0 DSM5", generated from stereo aerial 

photographs through automatic matching, have been obtained from the General Directorate of Maps (HGK). From this surface 

model data, 14 different condition factor datasets have been produced. Additionally, Sentinel-2 satellite imagery with a resolution 

of 10m has been utilized for NDVI and lineaments analyses, precipitation characteristics from global grid data, and land cover 

data from global 10m resolution land cover data have been used. In this context, detailed properties of the data used, obtained 

from different sources and with different resolutions, are presented in Table 1.  

 
Table 1- Details about the data was used in the study 

 

 Data Source Type 
Resolutio

n 
Product Software 

1 
Digital surface 

model (DSM) 

https://www.harita.

gov.tr/  

Grid 5 m 

Slope, Geomorphology, TRI, TWI, 

LS, Aspect, Curvature (plan, 

profile), SPI, Positive opennes, 

Flow acc, Dist to river 

ArcGIS Pro 

SAGA GIS 

2 Landcover 
https://esa-

worldcover.org/en  

Grid 10 m Landcover ArcGIS Pro 

3 Satellite Image 

https://scihub.cope

rnicus.eu/Sentinel-

2  

Grid 10 m NDVI, Lineaments ArcGIS Pro 

 

4 Road 
https://overpass-

turbo.eu/ 

Vector 

 

Distance to road ArcGIS Pro  

6 Precipitation 
Fijk and Hijmans, 

2017 
Grid 1 km Precipitation ArcGIS Pro  

7 Geomorphology 

https://saga-

gis.sourceforge.io/

saga_tool_doc/7.3.

0/ta_lighting_8.ht

ml  

Grid 5 m Geomorphologic unit SAGA GIS  

 

 

https://www.harita.gov.tr/
https://www.harita.gov.tr/
https://esa-worldcover.org/en
https://esa-worldcover.org/en
https://scihub.copernicus.eu/Sentinel-2
https://scihub.copernicus.eu/Sentinel-2
https://scihub.copernicus.eu/Sentinel-2
https://overpass-turbo.eu/
https://overpass-turbo.eu/
https://saga-gis.sourceforge.io/saga_tool_doc/7.3.0/ta_lighting_8.html
https://saga-gis.sourceforge.io/saga_tool_doc/7.3.0/ta_lighting_8.html
https://saga-gis.sourceforge.io/saga_tool_doc/7.3.0/ta_lighting_8.html
https://saga-gis.sourceforge.io/saga_tool_doc/7.3.0/ta_lighting_8.html
https://saga-gis.sourceforge.io/saga_tool_doc/7.3.0/ta_lighting_8.html
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2.3. Erosion inventory mapping 

 

Susceptibility models are conducted for the purpose of the likelihood of past events recurring in the future. Thus, it is important 

for making rapid, on-site, and accurate decisions through the identification of potential areas. Therefore, inventory data collected 

from areas where the erosion have occurred is necessary for susceptibility modelling. Additionally, inventory data plays a critical 

role in the creation of statistically different susceptibility models and in measuring the performance of the resulting model 

outcomes. (Choubin et al. 2019). It particularly contributes to the accuracy, reliability, and effectiveness of susceptibility models. 

This facilitates the comparison of different modelling results for susceptibility models created for study areas. In this study, 

inventory data were used to determine the influence of each variable on erosion dependent on four different statistical methods 

for erosion susceptibility modelling (Figure 1). Fieldwork, drone imagery, and Google Earth were utilized to obtain the inventory 

data. A total of 1200 inventory point data were collected from various points in the study area where erosion occurred. Of these, 

70% were used as training data and 30% as test (validating) data (Conforti et al. 2011; Gayen & Saha 2017; Hembram et al. 

2019). In the ArcGIS Pro environment, subset features were randomly determined in the study area, resulting in 840 training 

data points and 360 test data points. The training inventory data were used within the scope of the model creation to learn the 

relationship between each factor used and the erosion status, while the test data were used to measure the accuracy of the created 

susceptibility models.  

 

2.4. Erosion conditioning factors  

 

In susceptibility modelling to be conducted in natural disaster research, there are many triggering and controlling factors involved 

in the occurrence of disasters. Therefore, in the creation of erosion susceptibility models, the most important stage is the selection 

of these data, as it will significantly impact the quality of the study and the accuracy of the results (Rahmati et al. 2017; Garosi 

et al. 2018). In erosion susceptibility studies, there are many factors that influence the occurrence, development, and progression 

of erosion. In this context, the selection of controlling factors has been made taking into account previous studies. However, 

there is no fixed controlling factor in erosion susceptibility studies (Conoscenti et al. 2013). Therefore, this study has selected 

19 factors to improve the identification of erosion susceptibilities with enhanced accuracy and quality, as determined by the 

researchers (Rahmati et al. 2017; Arabemeri et al. 2020, Lei et al. 2020; Lana et al. 2022). Triggering factors are shaped by 

climatic, geomorphological, anthropogenic, and geological characteristics. These include elevation, slope, aspect, Normalized 

Difference Vegetation Index (NDVI), Topographic Wetness Index (TWI), Stream Power Index (SPI), Topographic Ruggedness 

Index (TRI), slope length (LS), distance to river, distance to road, land cover, lineament density, positive openness, 

geomorphology, curvature, plan curvature, profile curvature, flow accumulation, and precipitation data (Figure 4). Within the 

scope of the study, triggering factors were evaluated by classifying them into 5 classes according to the natural breaks method 

(Jenks, 1967). 

 

Elevation, significantly influences erosion, especially in rill erosion processes. Higher elevations often lead to steeper slopes, 

which increase surface runoff and erosion potential (Conoscenti et al. 2008, Zhu et al. 2014; Zabihi et al. 2018; Zabihi et al. 

2019). Accordingly, the elevation data for the Çapakçur Stream basin ranges from 1042 to 2506 m, with values divided into 5 

classes as follows: 1042–1363, 1363–1621, 1621–1680, 1840–2092, and 2092–2506 m (Figure 4). 

 

Slope, plays a key role in determining the extent of surface runoff, which directly affects erosion rates. Steeper slopes increase 

the potential for soil and sediment transport, making these areas more susceptible to erosion (Dramis and Gentili, 1977; Valentin 

et al. 2005; Güney, 2018). The slope values range from 0 to 76.1°, classified into 5 categories as follows: 0–15.2, 15.2–30.5, 

30.5–45.7, 45.7–60.9, and 60.9–76.1 (Figure 4).  

 

Aspect, one of the most important factors to consider when evaluating erosion susceptibility processes in a specific area or 

watershed is aspect (Carrara et al. 1991; Maharaj 1993; Guzzetti et al. 1999; Nagarajan et al. 2000; Güney 2018). Aspect is 

expressed with values ranging from 0 to 360 degrees in a clockwise direction. The aspect of a slope directly or indirectly 

influences erosion processes as it controls various climatic characteristics and vegetation cover (Dai et al. 2001; Çevik & Topal 

2003; Pulice et al. 2009; İnik 2023). Aspect characteristics were evaluated and classified into 9 classes based on intermediate 

and main directions (Figure 4). 

 

Normalized Difference Vegetation Index (NDVI), is the most commonly used method for analysing information about 

vegetation using GIS data to measure the amount of vegetation cover in an area. It serves as an indicator of green biomass in the 

area. NDVI is calculated using Equation 1 (Pettorelli et al. 2005):  

 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 (1) 

 

NIR represents the Near-Infrared band reflectance, RED represents the Red band reflectance. The NDVI values, analyzed in 

5 classes, have minimum and maximum values ranging from 0.078 to 0.606. Accordingly, the NDVI values are classified into 5 

categories as follows: 0.078–0.125, 0.125–0.203, 0.203–0.294, 0.294–0.405, and 0.405–0.606 (Figure 4). 
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Topographic wetness index (TWI), is generally defined as the influence of topography on the location and extent of areas 

where surface water will flow, and it is calculated according to Equation 2. 

 

𝑇𝑊𝐼 = 𝐼𝑛 (
𝐴𝑠

𝑇𝑎𝑛𝛽
)   (2) 

 

Here, As represents the contributing area to the cell, and β represents the slope gradient (Beven & Kirkby 1979). It provides 

clues about the degree of soil saturation or the movement of water within and on the surface of the soil, depending on the 

topography. This is because soil moisture content directly affects surface runoff, infiltration of water, ponding and other 

situations. This demonstrates the impact of TWI on erosion processes and it has been generated as a parameter for use in erosion 

susceptibility (Conforti et al. 2011; Sharma & Pandey, 2022). Accordingly, the TWI values range from 0.293 to 24.117 and are 

classified into 5 categories as follows: 0.293–3.188, 3.188–4.963, 4.936–7.392, 7.392–11.036, and 11.036–24.117 (Figure 4). 

 

Stream Power Index (SPI), generated by flowing water or surface runoff on a particular slope directly affects erosion. SPI 

represents the power index in this context and is one of the key factors controlling erosion processes (Güney, 2018). Additionally, 

areas where high stream power index values are observed indicate a significant erosion potential, as they have the potential 

energy to transport sediments, in other words, they indicate locations that could serve as sediment sources (Kakembo et al. 2009). 

SPI is determined according to Equation 3. 

 

𝑆𝑃𝐼 = 𝐼𝑛(𝐴𝑠 × 𝑡𝑎𝑛𝛽)  (3) 

 

Here, As represents the contributing area to the cell, and β represents the slope gradient (Nikolova 2022). 

 

Topographic Ruggedness Index (TRI) is used to represent the amount of elevation difference between adjacent cells of a 

DEM. This scanning function template is used to create a visual representation of TRI with your elevation data. For example, it 

is assumed that 0-80 m represents a flat terrain surface, 81-116 m represents a nearly flat surface, 117-161m represents a slightly 

rugged surface, or 959-4367m represents an extremely rugged surface (Różycka et al. 2017; Habib, 2021; Trevisani et al. 2023). 

The SPI values range from -6.907 to 15.398 and are classified into 5 categories as follows: -6.907 to -3.671, -3.671 to 0.178, 

0.178 to 2.189, 2.189 to 5.076, and 5.076 to 15.398 (Figure 4). 

 

The LS factor, is a parameter used to measure soil erosion rates in erosion prediction models such as USLE and RUSLE. It 

controls surface flow velocity and is considered one of the most important factors for sediment transport (Haan et al. 1994). The 

technique for calculating the LS factor is provided by Moore and Burch (1986) as follows (Equation 4): 

 

𝐿𝑆 = (Flow accumulation ×
A

22.13
)

0.4

× 𝑠𝑖𝑛(
𝑆𝑙𝑜𝑝𝑒

0.0896
)1.3 (4) 

 

The LS factor ranges from 0 to 807.97. Accordingly, it is classified into 5 categories as follows: 0–6.377, 6.377–25.348, 

25.348–57.033, 57.033–129.90, and 129.90–807.97. 

 

Distance to river, one of the important factors used to assess erosion susceptibility is the distance to the river. This factor is 

crucial for understanding what is more prone to erosion. Distance to river refers to the distance of an area from the river or 

streambed. (Arabemeri et al. 2020). Accordingly, the Distance to River ranges from a minimum of 1358 m to a maximum of 

18607 m, with 5 classes as follows: 1358–6363, 6363–8663, 8664–10490, 10490–12519, and 12519–18607 (Figure 4). 

 

Distance to road, roads have a negative impact on the sustainability of areas where surface runoff may be suitable for 

channels. Therefore, determining the distance to the road factor is important in identifying erosion susceptibility maps (Nkonge 

et al. 2023). In the study, in ArcGIS, the distance from each scanning cell to the road section (meters) was calculated using the 

Euclidean distance tool. Accordingly, the Distance to road ranges from a minimum of 0.82 m to a maximum of 11601 m, with 5 

classes as follows: 0.82, 0.82-2275, 2275-3821, 3822-5960 and 5960-11601 (Figure 4).        

                                                                                                                              

Landcover, has a significant impact on geomorphological processes on slopes. Bare areas are generally more susceptible to 

erosion. The presence of vegetation reduces erosion susceptibility due to its ability to reduce the erosive effect of surface runoff 

(Anabalagan, 1992; Dai et al. 2001; Çevik & Topal, 2003; Conforti et al. 2011). Therefore, the land use and land cover of the 

basin have been emphasized as one of the geographical factors affecting erosion susceptibility. Accordingly, there are 7 different 

land cover types in the study area. These are tree cover, shrubland, bare/scarce vegetation, permanent water bodies, grassland, 

and cropland (Figure 4).              

                                                                                                                        

Lineament density, Surface lines represent weak areas with high permeability and low resistance. The distance to linearity 

is an important influencing factor for erosion development. This is because it represents a weak surface characterized by heavily 

fractured rocks in an area. Surface lines also promote soil degradation (Foumelis et al. 2004). The lineament density ranges from 
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0 to 5046. Accordingly, it is classified into 5 categories as follows: 0–0.396, 0.396–1069, 1069–1781, 1781–2652, and 2652–

5046 (Figure 4). 

 

Positive opennes (Po), is important for identifying narrow and deep valleys and determining convex units, especially those 

affecting erosional processes, within these valleys (Doneus 2013). The Po value ranges from 0.424 to 1687 and is classified into 

5 categories as follows: 0.424–1127, 1127–1231, 1231–1315, 1315–1404, and 1404–1687 (Figure 4). 

 

Precipitation, one of the fundamental factors that influences soil erosion, affecting surface runoff and causing increases or 

decreases in soil erosion and loss, is slope (Zhao et al. 2022)Global grid data was used in generating the rainfall dataset (Fick & 

Hijmans 2017). The study area has rainfall values ranging from 765 to 1379 mm. Accordingly, the precipitation data, classified 

into 5 categories, has values ranging from 76–888, 888–1011, 1011–1134, 1134–1256, and 1256–1379 mm (Figure 4). 

 

Geomorphology, in erosion susceptibility mapping, it is important to determine the geomorphons representing the 

classification of land parcels and category forms. These are generated from a digital elevation model and utilized in the study 

(Stepinski & Jasiewicz, 2011; Jasiewicz & Stepinski, 2013). According to the geomorphological data, the study area has the 

following morphological units: flat, summit, ridge, shoulder, spur, slope, hollow, footslope, valley, and depression (Figure 4). 

 

Plan curvature, geomorphological and land morphology definitions, such as plan curvature analysis, are determined. Plan 

curvature refers to the effect on erosion formation, which is related to whether water moves away or towards during downstream 

flow. Therefore, the plan curvature layer is an important factor in triggering and developing erosion (Rahmati et al. 2016). The 

plan curvature values range from -113.78 to 108.39, and the classes are as follows: -113.78 to -10.97, -10.97 to -3.12, -3.12 to 

2.971, 2.971 to 10.813, and 10.813 to 108.39 (Figure 4). 

 

Profile curvature, which is believed to control the erosive force of the river, is particularly an important parameter for gully 

erosion (Conoscenti et al. 2013). The profile curvature values range from -98.501 to 119.071, and the classes are as follows: -

98.501 to -12.375, -12.375 to -3.839, -3.839 to 2.136, 2.136 to 11,525, and 11.525 to 119.071 (Figure 4). 

 

Curvature, units with concave landforms (negative curvature) generally affect water accumulation, while points with convex 

landforms (positive curvature) facilitate easy water flow and increase the likelihood of erosion (Ohlmacher, 2007). Curvature 

values range from -164.86 to 187.766. The first two classes contain negative values, while the last three classes have positive 

values (2.46 to 187.766) (Figure 4). 

 

Flow accumulation, affects the direction of water flow and the likelihood of water accumulation It particularly influences 

the velocity of surface runoff. High flow accumulation results in increased surface runoff, causing soil erosion and carrying more 

sediment (Zhang et al. 2021). The flow accumulation values range from 0.001 to 6370.808 (Figure 4). 
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Figure 4- Condition factor of erosion susceptibility analysis 
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Figure 4- Condition factor of erosion susceptibility analysis (continued) 

 

2.5. Erosion susceptibility mapping 

 

Frequency Ratio (FR) 

 

Frequency ratio (FR) is a commonly used method in erosion susceptibility assessment. FR is defined as the ratio of the probability 

of an event occurring, using all factors affecting a natural event (such as erosion) that occurred in the past, to the probability of 

not occurring (Bonham Carter, 1994; Dai and Lee 2002). Parameters used in erosion susceptibility analysis were correlated with 

erosion surfaces, which are considered evidence of severe erosion in the study area. The frequency ratio allows for the 

consideration of both the areas where erosion is severe and the extent of the areas covered by the parameters used in the research 

area. Equation 5 was utilized in the calculation of FO. 

 

𝐹𝑂 =
𝑋

𝑌
 (5) 

 

In Equation 1, X represents the percentage of erosion surface presence within each subclass of a parameter influencing 

erosion, while Y represents the percentage of each subclass of a parameter influencing erosion within that parameter. The values 

for X and Y were calculated based on Equations 6 and 7. 
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𝑋 =
𝐴

𝐵
× 100  

 

(6) 

𝑌 =
𝐶

𝐷
× 100   (7) 

  

Weight of Evidence (WoE) 

 

The "Weight of Evidence (WoE)" model is used to calculate the Bayesian probability model more explicitly and which is 

commonly used in susceptibility modeling for spatial prediction (Akıncı et al. 2017; Kılıçoğlu, 2020). This model is a method 

within the Bayesian approach where conditional and unconditional probabilities are applied using sufficient data. Through this 

model, positive weights are assigned to predictions that anticipate erosion occurring in the studied area in the future, while 

negative weights are assigned to predictions that anticipate no erosion (Akıncı et al. 2017). The WoE model has been 

mathematically expressed by Van Westen et al. (2003) and Regmi et al. (2010). The determination of weights relies on the 

following equations. 

 

W+ =

A1

A1 +  A2

A3

A3 + A4

 

 

(8) 

W− =

A2

A1 +  A2

A4

A3 + A4

 

 

(9) 

C = W+ − W− (10) 

 

     In these equations; A1: number of erosion cells in the sub-class, A2: number of erosion cells outside the sub-class, A3: number 

of non-erosion cells in the parameter subclass, A4: number of non-erosion cells outside the sub-class, W+: Positive weight, W−: 

Negative weight, C: Represents the weight contrast. Positive weight (W+) is used to indicate the importance of the presence of 

the factor in terms of erosion formation. If this value is positive (+), the presence of the relevant factor is conducive to erosion 

formation; if negative (-), it is not conducive. Negative weight (W−) is used to evaluate the importance of the absence of the 

factor in terms of erosion formation. If this value is positive (+), the absence of the relevant factor is conducive to erosion 

formation; if negative (-), it is not conducive. C (weight contrast) reflects the spatial relationship of the prediction variable with 

erosion, indicating the difference between positive and negative weights. A positive value indicates a spatial relationship of the 

variable with erosion, while a negative value indicates no spatial relationship of the variable with erosion. A weight contrast 

value equal to zero indicates that the subcategory of the factor causing erosion is not significant (meaningful) for analysis (Van 

Westen et al. 2003; Neuhauser & Terhorst, 2007; Corsini et al. 2009, Akıncı et al. 2015; Akıncı et al. 2017; Kılıçoğlu, 2020). 

 

Logistic Regression (LR) 

  

There are three common types of multivariate statistical analysis methods widely used in the literature: multiple regression, 

logistic regression (LR), and discriminant analysis. In multivariate statistical analysis methods, factors that could cause erosion 

for a known land parcel are relatively examined, and the reasons for the occurrence of events are investigated. The land parcel 

examined through the analysis methods is based on data obtained by examining whether erosion has occurred or not (Akgün, 

2007). The most significant limitation in multivariate statistical analysis studies is the long processing time due to the use of grid 

cells in the studies. However, the most important advantage of the method is that it is largely an objective method. Logistic 

regression is one of the most commonly used multivariate analysis methods in producing erosion susceptibility maps. LR analysis 

is based on a multivariate regression relationship between a dependent variable and multiple independent variables. The logistic 

regression method is defined by the following Equation (Equation 11): 

 

Y=𝑏0 + 𝑏1𝑥1 +  𝑏2𝑥2 + ⋯ + 𝑏𝑛𝑥𝑛 (11) 

  

Shannon’s Entropy (SE) 

 

Shannon's entropy method is one of the techniques used in susceptibility analysis. This method is actively utilized in the 

implementation of susceptibility models for natural disasters such as floods, landslides, and erosion. (Sharma et al. 2012; 

Hembram et al. 2020; Islam et al. 2022; Utlu, 2023). It is generally based on the concept of entropy, which measures the level 

of uncertainty or randomness, and abnormality between causality and consequences (Lin 1991; Yufeng & Fengxiang 2009). It 

determines the maximum and minimum impact levels, or in other words, the entropy level of factors influencing the occurrence 

of hazards (Yulianto et al. 2020). The ratio of the high and low values of the measure affects the susceptibility level. A high 

value indicates a high probability situation, while a low value indicates a low probability situation (Al-Hinai & Abdalla 2021). 

Shannon entropy is computed using the formula as specified below (Equation 12):  
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𝑃𝑑𝑖𝑗 =
𝐹𝑅𝑖𝑗

∑ 𝐹𝑅𝑖𝑗

𝑚𝑗

𝑖=1

                                                                                                                                                                                              (12) 

 

𝑃𝑑𝑖𝑗 , Represents the probability density, while,𝐹𝑅𝑖𝑗 and denotes the frequency rate in the given parameters. After calculating 

the probability density, the obtained values are used to calculate the entropy (Equation 13-14). 

 

𝐸𝑣𝑗 = ∑ 𝑃𝑑𝑖𝑗 𝑙𝑜𝑔2 𝑃𝑑𝑖𝑗 , 𝑗 = 1, … , 𝑛

𝑚𝑗

𝑖=1

                                                                                                                                                           (13) 

𝐸𝑣𝑗𝑚𝑎𝑥 = 𝑙𝑜𝑔2 𝑚𝑗
                                                                                                                                                                                               (14) 

 

𝐸𝑣𝑗  𝑣𝑒 𝐸𝑣𝑗𝑚𝑎𝑥  Entropy values,𝑚𝑗 represent the number of classes (Equation 15) in calculating the weights of factors used 

in erosion susceptibility assessment. 

 

𝐼𝑐𝑗 = (𝐸𝑣𝑗𝑚𝑎𝑥 −
𝐸𝑣𝑗

𝐸𝑣𝑗𝑚𝑎𝑥

) , 𝐼 = (0,1)1𝑗 =  1, … 𝑛                                                                                                                                     (15) 

 

The formula is utilized, and in the formulaIcj:  represents the coefficient of the relevant layer (Equation 16), 

 
𝐶𝑤𝑗 = 𝐼𝑗𝐹𝑅                                                                                                                                                                                                           (16) 

 

𝐶𝑤𝑗 : It represents the weight value representing the entire relevant layer. 

 

2.6. Model evaluation 

 

In natural disaster studies, the ROC curve and AUC values method is widely used for assessing the model performances of 

susceptibility models generated to understand flood, landslide, rock fall, and erosion events. ROC and AUC method currently, 

most of the researchers are actively using this approach (Tehrany et al. 2013; Miao et al. 2023; Utlu, 2023; El Miloudi et al. 

2024). Data from the susceptibility model's event inventory is required to measure model performances with accuracy and 

reliability. As a result, evaluating the results that are produced using the ROC and AUC approaches is simple. Plotting the true 

positive rate (TPR) and false positive rate (FPR) of binary classification models is carried out for assessing their efficacy using 

ROC and AUC metrics. Equation 17 displays the y-axis as TPR (True Positive Rate), and Equation 18 shows the x-axis as FPR 

(False Positive Rate). 

𝑦 𝑎𝑥𝑖𝑠 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                                                                                                                                                  (17) 

𝑥 𝑎𝑥𝑖𝑠 𝐹𝑃𝑅 = 1 −
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
                                                                                                                                                                          (18) 

 

AUC represents the area under the ROC curve and ranges from 0 to 1. Equation 19, (Amiri et al. 2019; Baiddah et al. 2023): 

 

𝐴𝑈𝐶 =
∑𝑇𝑃 + ∑𝑇𝑁

𝑃 + 𝑁
                                                                                                                                                                                         (19) 

 

P: the total number of erosion data, N: the total number of data without erosion data (Baiddah et al. 2023). 

 

3. Results 

 
3.1. Multi-collinearity assessment 

 

This evaluation indicates whether there is a linear relationship among multiple independent variables. Especially in susceptibility 

analyses, the importance of model accuracy and reliability plays a role, and examining and evaluating the correlation between 

independent variables is crucial (Graham 2003; Rahmati et al. 2017; Roy & Saha 2019; Wang et al. 2021). Thus, variables with 

high correlation can lead to unstable coefficient estimates and inaccurate predictions, while on the other hand, they can reduce 

the predictive accuracy of the model. Therefore, the independent variables to be considered should have a VIF (Variance Inflation 

Factor) value below 10 and a tolerance threshold value above 0.1. Because values that go outside of and beyond these boundaries 

signify the existence of problems with multicollinearity (Kelava et al. 2008; Arabameri et al. 2020). The VIF values of curvature, 

plan curvature, and profile curvature among the 19 distinct condition data exhibit strong association among independent 

variables, suggesting multicollinearity. As a result, 16 factor values were taken into account, and these 3 condition factors were 

not included in the analysis (Table 2). 
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Table 2- Multi-collinearity values of conditioning factors 

 

No Factors Tolerance VIF 

1 Elevation 0.742 1.347 

2 Distance to river 0.315 3.173 

3 Distance to road 0.869 1.151 

4 TWI 0.226 4.426 

5 TRI 0.545 1.837 

6 SPI 0.214 4.426 

7 Slope 0.161 6.229 

8 Geomorphology 0.503 1.989 

9 Distance to lineament 0.922 1.085 

10 LS 0.442 2.265 

11 LU 0.393 2.547 

12 NDVI 0.367 2.723 

13 Plan curvature 0.020 51.109 

14 Profile curvature 0.017 58.948 

15 Curvature 0.006 167.909 

16 Precipitation 0.279 3.587 

17 Positive openness 0.243 4.112 

18 Flow accumulation 0.854 1.170 

19 Aspect 0.916 1.091 

 

3.1. Erosion susceptibility modelling  

 

Erosion susceptibility analysis has been conducted on the Çapakçur Creek basin using different statistical methods dependent on 

various algorithms. In this context, FR, LR, WoE, and SE methods were employed, and the results obtained has been classified 

into 5 classes using the natural breaks classification Jenks algorithm (Jenks, 1967). According to multicollinearity assessment, 

16 out of the 19 selected factors were considered. Among the 16 factors used across 4 different methods, those with the highest 

impact on erosion in the Çapakçur Stream basin are as follows: for the WoE (Weights of Evidence) method, elevation and slope; 

for the LR (Logistic Regression) method, NDVI, land use, slope, and TWI (Topographic Wetness Index); for the FR (Frequency 

Ratio) method, NDVI, precipitation, flow accumulation, and elevation; and for the SE (Statistical Evaluation) method, the 

significant factors are elevation and precipitation data. These classes are very low, low, moderate, high, and very high. The 

results of the susceptibility model obtained by different methods are presented in Figure 5. According to result of the four 

methods, the areas with high and very high erosion susceptibility, show quite similar distributions except for the SE method, 

direct correlation with the geomorphological features of the relief. In the LR, FR, and WoE methods, areas with high and very 

high susceptibility are found in steep slopes and ridges with narrow and deep valleys, while in the SE method, areas with high 

susceptibility are observed in river valley bottoms and areas with low slope values close to flat relief. In addition, areas with very 

low, low, and moderate erosion susceptibility correspond to similar terrain characteristics in the LR, FR, and WoE methods, 

generally comprising low-lying flat areas and gently sloping terrains. However, in the SE method, these areas appear to be high-

slope and steep terrain, contrasting with the high and very high erosion susceptibility areas identified by the three other methods 

(Figure 5). 
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Figure 5- Erosion susceptibility models using different statistical methods a) FR b) LR c) SE d) WoE 

 

Each method shows variations in the distribution of susceptibility classes, which could indicate differences in the 

susceptibility of the methods or the underlying assumptions they rely on. According to the spatial distributions of each 

susceptibility classes for different statistical model results are as follows for the LR method: very low class covers 12.2 km² 

(11%), low class covers 31 km² (27.9%), moderate class covers 37.2 km² (33.5%), high class covers 21.1 km² (19%), and very 

high class covers 9.5 km² (8.5%) (Figure 6). FR method: very low class covers 20.7 km² (18.7%), low class covers 39.6 km² 

(37.7%), moderate class covers 25.7 km² (23.1%), high class covers 15 km² (13.5%), and very high class covers 10 km² (9%) 

(Figure 6). WoE method: very low class covers 14.6 km² (13.1%), low class covers 28.3 km² (25.5%), moderate class covers 

30.9 km² (27.8%), high class covers 25.4 km² (22.9%), and very high class covers 11.8 km² (10.7%) (Figure 6). SE method: very 

low class covers 16.1 km² (14.5%), low class covers 30.2 km² (27.2%), moderate class covers 32.9 km² (29.6%), high class 

covers 23.6 km² (21.2%), and very high class covers 8.3 km² (7.5%) (Figure 6).  

 

 
 

Figure 6- a) The percentage soil erosion susceptibility classes in different models (%), b) The area erosion susceptibility 

classes in different models (km2) 
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3.2. Susceptibility model evaluation and comparison 

 

The performance of the resulting erosion susceptibility models was assessed using the ROC curve and AUC (Du et al. 2017). 

The AUC value is commonly categorized as follows, and the resulting numbers offer a crucial indication of the model's validity 

and accuracy. A result falls into one of five categories: poor (0.5–0.6), fair (0.6–0.7), good (0.7–0.8), very good (0.8–0.9), and 

excellent (0.9–1.0) (Rahmati et al. 2016). As the ROC curve approaches 1, it indicates the presence of a prediction model with 

perfect accuracy, while moving away from 1 generally signifies a decrease in overall model accuracy (Nkonge et al. 2023).  In 

this study, the performances of susceptibility models created based on different statistical methods were evaluated using both 

training and test datasets (Figure 7). According to result of the ROC and AUC values, Logistic regression seems to perform well 

on both training (AUC: 94.7) and validating datasets (AUC: 93.5), with slightly higher performance on the training set compared 

to the testing set. This indicates that the model might be slightly overfitting the training data, but the drop in performance from 

training to testing is not substantial and LR result correspond to “excellent” range, demonstrating high predictive accuracy and 

validity. Weight of Evidence performs consistently on both training (AUC: 93.5) and testing datasets (AUC 91.4), but it shows 

slightly lower performance compared to Logistic Regression, especially on the validating set. Frequency Ratio performs well, 

similar to Weight of Evidence and Logistic Regression, but slightly lower than Logistic Regression. It also exhibits consistent 

performance on both training (AUC: 93.5) and testing datasets (AUC: 92.4) also shows that “excellent” category. These values 

indicating that it is an effective model for erosion susceptibility prediction.  Frequency Ration (FR) shows similar and close 

results to the WoE method. These values are high for both training and test data. Although it is lower compared to the LR method, 

it falls within the "excellent" category. In this context, the FR method Training AUC (93.5) and testing AUC (91.4) has yielded 

good results for the applicability of the soil erosion susceptibility model. Shannon's Entropy shows significantly lower 

performance compared to the other methods on both training (AUC: 55.7), testing datasets (AUC: 56.3) also indicated that “poor” 

category. These low values SE is not effectively capturing the patterns needed to predict erosion susceptibility. The AUC values 

close to 0.5 suggest that this model’s prediction is only slightly better than random guessing, confirming that it is not possible to 

use for this basin and areas. This suggests that the model built using Shannon's Entropy might not be capturing the underlying 

patterns effectively. Because, Shannon's Entropy may not be the most appropriate method for modeling erosion susceptibility in 

your specific study area. The entropy-based model might be too simplistic or fail to capture complex interactions among 

environmental factors like topography, land use, or soil properties that contribute to erosion. If the data does not exhibit enough 

"randomness" or variability in relation to erosion patterns, entropy may not be able to generate meaningful insights. 

 

 
 

Figure 7- Prediction and success rates of the different susceptibility models based on a) training datasets b) validating 

datasets 

4. Discussion 
 

Due to environmental factors and human activities, the frequency of natural disasters in recent years has increased, and this can 

lead to loss of life, resources and property (He et al. 2012; Chen et al. 2017). The most common of these is soil erosion. Erosion 

events have directly and indirectly caused many negative problems, and they are quite diverse. These effects include increased 

sediment transport, damage to vegetation, soil degradation and the failure of surface water to flow into groundwater. As sediment 

transport increases and riverbeds fill, inevitable events such as floods and inundations occur. In addition, it results in water 

pollution and habitat destruction. Soil loss due to erosion restricts the habitat and root system of the vegetation (Sterk, 2003; 

Podhrazska et al. 2015; Duniway et al. 2019; Saxena, 2021). Therefore, in natural disaster studies, it is very important to take 

the necessary precautions and make critical planning in case past events recur in the future. Despite efforts to prevent these 

events, it is important to make inferences about possible future situations or to model them in order to prevent them effectively. 

Therefore, sensitivity models are developed to take necessary precautions and minimize possible hazards and risks and to reduce 

erosion and especially desertification risks (Morgan & Nearing, 2016; Batista et al. 2019). However, due to the various 
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lithological, climatic and geomorphological characteristics of different regions, the suitability of these models varies. Therefore, 

it is important to test different methods and approaches in a specific area to determine the most suitable model. 

 

In this study, sensitivity modelling was carried out to understand the advanced erosion status in the Çapakçur River basin. 

According to the literature and multicollinearity analysis, nineteen conditioning factors (elevation, distance to river, distance to 

road, TWI, TRI, SPI, slope, geomorphology, distance to lineament, LS, LU, NDVI, plan curvature, profile curvature, curvature, 

positive openness, precipitation, flow accumulation and aspect) (Table 2) and four different methods (LR, FR, WoE and SE) 

were used to determine the sensitivity and model performances were measured using ROC curves and AUC values to determine 

the most suitable model (Xu et al. 2012; Demir et al. 2022; Jaafari et al. 2014; Ding et al. 2017; Bhandari et al. 2024). 

 

Logistic Regression shows the highest performance among the methods, both on training and testing datasets, indicating its 

robustness in capturing the relationship between the predictors and the target variable.  LR is a widely used model for 

classification, especially for binary classification problems (Kleinbaum et al. 2002). Therefore, to obtain a better classifier, WoE 

and FR models were also included to determine the sensitivity (Chen et al. 2019). Weight of Evidence and Frequency Ratio also 

perform reasonably well, with consistent performance across training and testing datasets. Shannon's Entropy performs 

noticeably worse than the other approaches, indicating that it may not be appropriate for this specific purpose or that it may need 

to be implemented more precisely. In summary, Shannon's Entropy performs noticeably worse than Logistic Regression, which 

looks to be the best approach for this erosion susceptibility mapping problem. Other methods that perform well include Frequency 

Ratio and Weight of Evidence. The efficacy of Logistic Regression in mapping erosion susceptibility is highlighted by its good 

performance in capturing the connection between predictors and the target variable. Furthermore, the trustworthiness of 

Frequency Ratio and Weight of Evidence as alternative modeling methodologies is highlighted by their constant performance. 

 

5. Conclusions 
 

Many statistical methods are used in earth science studies, especially in performing sensitivity analyses using computer 

technologies and modern techniques. In addition to these, there are actively preferred and extremely popular methods. These 

methods include deep learning, machine learning, artificial intelligence and different techniques produced depending on them. 

Thus, it plays an important role in evaluating the results obtained from many methods used and taking the necessary planning 

and precautions (Baiddah et al. 2023). 

 

In this study, erosion sensitivity analysis was conducted in the Çapakçur River basin, which is critical in terms of erosion. 

Logistic regression (LR), frequency ratio (FR), weight of evidence (WoE), and Shannon's entropy methods were used in 

conducting sensitivity analysis in the study area. Within the scope of sensitivity analysis, 19 methods were utilized, and it was 

decided to use 16 conditioning factors based on multicollinearity assessment method based on VIF and Tolerance values. These 

factors include topographic, climatic, anthropogenic, and environmental factors. Based on the results obtained in this study, it 

has been determined that the most efficient methods are Logistic Regression and Frequency Ratio, as well as the Weight of 

Evidence method. Dependent on these methods, erosion susceptibility models can be developed in river basins with similar 

lithological, geomorphological, and climatic characteristics. Consequently, measures and plans can be made to prevent the 

progression of existing erosion in both large and small-scale basins, based on the results of erosion susceptibility models.  

 

Also, these erosion susceptibility models provide valuable tools for authorities and policymakers to effectively address 

erosion issues and mitigate associated negative impacts such as sediment transport, soil degradation, and habitat destruction. By 

identifying areas sensitive to erosion, authorities can prioritize targeted interventions and implement appropriate land 

management practices to minimize erosion risks. In the future, research could explore both the integration of advanced machine 

learning techniques and remote sensing data to improve the accuracy and predictive capabilities of erosion susceptibility models 

using high resolution topographic, climatic datasets. Furthermore, incorporating real-time monitoring data and climate 

projections can offer insights into evolving erosion patterns and support proactive erosion prevention strategies. 
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