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EfficientNet-Based Deep Learning for Malware Classification: A 

Dynamic Distribution Adaptation Approach 

Highlights 

❖ Malware Classification using the EfficientNet and Dynamic Distribution Adaptation Network approach 
❖ Applying data preprocessing   
❖ Detailing the model training and validation processes  
❖ Analyzing results with performance evaluation metrics  

Graphical Abstract 
In this study, the EfficientNet deep learning model was used to classify malware images. 
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Figure. Proposed Methodology 

Aim 

To investigate the effectiveness of EfficientNet deep learning model in detecting classifying malware images. 

Design & Methodology 

Steps included dataset analysis, data preprocessing, EfficientNet model and Dynamic Distribution Adaptation 

Network approach and performance evaluation. 

Originality 

This study is one of the rare works successfully applying EfficientNet model to classify malware images. 

Findings 

EfficientNet models are applied succesfully to malware classification. 

Conclusion 

EfficientNet has proven the effectiveness of deep learning in security by classfiying malware.  

Declaration of Ethical Standards 
The authors of this article declare that the materials and methods used in this study do not require ethical committee 

permission and/or legal-special permission. 
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ABSTRACT 

Malware is a general name given to all malicious software that threatens and prevents the use of information systems. Computers, 

which have become mandatory in daily life, are constantly under the threat of malware as well as facilitating human life. Therefore, 

the detection of malware that threatens computer systems is important. This study focuses on the classification of malware. In the 

study, a deep learning model based on the EfficientNet architecture and the Dynamic Distribution Adaptation Network approach 

were proposed and these proposed models were tested using the Microsoft Malware Classification Challenge (MMCC) and 

Dumpware10 datasets. In the study, the process of converting malware into images was discussed and the EfficientNet model was 

used as the basis for the classification of these images. The EfficientNet backbone-based Dynamic Distribution Adaptation Network 

achieved 97% accuracy in the MMCC dataset and 96% accuracy in the Dumpware10 dataset. As a result, the EfficientNet 

architecture proved the effectiveness of deep learning in the classification of malware and cybersecurity. 

Keywords: EfficientNet architecture, malware classification, data preprocessing, compound scaling.  

Kötü Amaçlı Yazılım Sınıflandırması için EfficientNet 

Tabanlı Derin Öğrenme: Dinamik Dağıtım Uyarlama 

Yaklaşımı 

ÖZ 

Malware, bilişim sistemlerini tehdit eden ve kullanımını engelleyen tüm kötü amaçlı yazılımlara verilen genel bir addır. Günlük 

hayatta kullanımı zorunlu hale gelen bilgisayarlar, insan hayatını kolaylaştırmanın yanı sıra kötü amaçlı yazılımların da sürekli 

tehdidi altındadır. Bu nedenle bilgisayar sistemlerini tehdit eden kötü amaçlı yazılımların tespiti önemlidir. Bu çalışmada kötü 

amaçlı yazılımların sınıflandırılması üzerine odaklanılmıştır. Çalışmada, EfficientNet mimarisine dayalı bir derin öğrenme modeli 

ve Dynamic Distribution Adaptation Network yaklaşımı önerilmiş ve bu önerilen modellemeler, Microsoft Kötü Amaçlı Yazılım 

Sınıflandırma Mücadelesi (MMCC) ve Dumpware10 veri kümeleri kullanılarak test edilmiştir. Çalışmada, kötü amaçlı yazılımların 

görüntülere dönüştürülme süreci ele alınmış ve bu görüntülerin sınıflandırılmasında EfficientNet modeli taban alınmıştır. 

EfficientNet backbone tabanlı Dynamic Distribution Adaptation Network, MMCC veri kümesinde %97, Dumpware10 veri 

kümesinde ise %96 doğruluk elde etmiştir. Sonuç olarak, EfficientNet mimarisi kötü amaçlı yazılımların sınıflandırılmasında ve 

siber güvenlikte derin öğrenmenin etkinliğini kanıtlamıştır.  

Anahtar Kelimeler: EfficientNet mimarisi, malware sınıflandırma, veri ön işleme, mimari ölçeklendirme.  

 

1. INTRODUCTION 

The transformation of the first historic ARPANet 

network into today's virtual network of millions of 

servers increases cyber threats. The first “bug” definition 

of a computer virus has evolved into specific cyber-attack 

software, and cyber-attack software has become 

widespread, divided into variable malware families. 

Malware families can infiltrate information system 

infrastructures, mobile electronic devices, digital 

blockchains and government databases. This situation 

requires the correct classification of malware families. In 

this context, incorrect malware classification can render 

cyber security analysis dysfunctional. The goal of this 

research is to utilize EfficientNet architecture to 

distribute malware image transformations to the correct 

malware family classes. In this research, EfficientNet 

Inverted Residual (MBConv) layer blocks are defined to 

MaxPooling experiments with Transfer Learning. 

Malware dataset collection, malware preprocessing, 

EfficientNet model development and experimental result 

analysis are included in the method modeling of the 

research. In the method modeling, malware datasets are 

collected, malware samples belonging to the malware 

sets are decomposed into tensor blocks in preprocessing, 

and the tensor blocks are converted into three-channel 

RGB and two-channel grayscale malware images. The 

*Sorumlu Yazar (Corresponding Author) 

e-mail : atekerek@gazi.edu.tr 
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malware images are then trained on EfficientNet 

architecture. In the Transfer Learning and MaxPooling 

experiments, layer depth, input resolution and layer width 

settings are studied and MaxPooling final layer 

replacement is tested. 

  

2. LITERATURE REVIEW 

In the literature, malware preprocessing, implementation 

of convolutional layer sequences, CNN - BiLSTM two-

tier model, LSTM layer integration with Convolution 

Dense layer, adaptation of Autoencoder neural network 

to grayscale malware images and random partitioning of 

malware dataset are investigated.  

Huaxin Deng, et al., used Markov transfer matrices in 

malware data preprocessing. In Markov transfer 

matrices, the team assigned the probabilities of 

combinations of both consecutive letters or numbers of 

machine codes, the first letter and the last two letters of 

opcode fragments to three matrix image channels, and 

obtained three-channel malware images. And the 

malware images are entered into 1 fully-connected dense 

layered architecture with 4 convolution layers, 4 pooling 

filtering layers, and 4 convolution layers.  The Markov 

method achieves 99.4% accuracy on the Microsoft 

Malware Challenge dataset [1]. Mumtaz Ahmed, et al., 

converted the malware data into a two-channel grayscale 

image. The team converted the malware byte files into 

hexadecimal numbers, transferred the binary 

hexadecimal numbers to pixels, and performed min-max 

normalization on the total pixel image. They then trained 

the pixel images on the InceptionV3 model with hidden 

layers frozen. The InceptionV3 model achieved 98.76% 

accuracy on the Microsoft Challenge BIG15 test set [2]. 

Sanjeev Kumar and Kajal Panda combined the feature 

outputs of VGG16, VGG19, ResNet50 and InceptionV3 

models in the SDIF-CNN method into a single feature 

output in horizontal space and filtered the redundant data 

from the feature output. The filtered feature output was 

passed to KNN, SVM, Random Forest, Multi-layer 

Perceptron (MLP), Extra Tree and Gaussian Naive Bayes 

classifiers. The Multi-layer Perceptron model recorded 

98.55% accuracy rate, 99% precision rate, 99% recall rate 

and 99% f1-score rate on the MalImg dataset [3]. Seok-

Jun Bu and Sung-Bae Cho solved the malware structure 

for classification in an evolutionary ternary network and 

optimized the mixed malware variation into groups of 

inter-representation distances using a genetic algorithm. 

In the genetic algorithm, the team entered the byte 

malware image into the evolutionary triple network and 

generated new weight-sharing convolutional networks in 

the space of weight changes. The triple triplet loss due to 

the genetic algorithm brought similar malware samples 

closer together while pushing different malware samples 

away [4]. In the multi-view multidimensional feature 

fusion approach, Rajasekhar Chaganti, et al. combined 

static, dynamic and image feature sets of malware. In the 

multidimensional feature fusion learning of the models, 

each feature set presents the discriminative semantic 

characteristics of the malware. The team fused PE 

Section and PE Import, dynamic PE API and PE Image 

malware attribute files into a convolutional neural 

network. The connected convolutional neural network 

included the convolution1D-Maxpooling-Dense layer 

block. The dynamic PE API based feature set achieved 

99% accuracy [5]. In the two-stage hybrid approach, 

Seungyeon Baek et al. vectorized opcode sequences in 

the static stage and decomposed them into benign file 

attributes in the Bi-LSTM model transition, and in the 

dynamic stage, they extracted process memory and API 

calls attributes by running the decomposed benign file 

attributes in a virtual Cuckoo Sandbox environment. 

Then, it transformed the attributes into a three-

dimensional tensor structure with process memory, 

category and API calls channels. Finally, the three-

dimensional tensor structure was classified in the 

EfficientNet-b3 model. The EfficientNet-b3 model 

achieved an accuracy rate of 94.98% [6]. Manish Kumar 

integrated convolutional neural network CNN with Bi-

LSTM network for malware detection. With dynamic 

malware API calls, process execution signals are 

converted into process tree vectors. The high-level vector 

output is decomposed in the embedded layer and the low-

level vector fragments are passed through the CNN1-

BiLSTM1-CNN2-BiLSTM2-Dense-Softmax chaining 

layer pattern. Convolution layers filtered the feature for 

the LSTM layers, and the dual CNN and dual BiLSTM 

modeling showed high success. The binary CNN-

BiLSTM modeling recorded an accuracy rate of 0.99 [7]. 

In the grayscale autoencoder approach, Xiaofei Xing, et 

al. encoded the APK code of the malware and benign file 

into decimal byte data and fixed it into a grayscale two-

dimensional matrix, and passed the grayscale malware 

image data through AE-1 and AE-2 autoencoder 

structures. The AE-1 autoencoder structured the feature 

extraction of the grayscale image into the actual malware 

classification. The AE-2 autoencoder handled the 

malware discrimination of the classified benign file. The 

AE-1 autoencoder architecture has convolution, filtering 

and upsampling layers. The AE-2 autoencoder 

architecture has a multi-layer perceptron network in 

addition to the AE-1 architecture layers. The multi-layer 

perceptron network achieved 96% accuracy [8]. 

In the LSTM-Dense method, Esraa Saleh Alomari et al. 

presented malware detection based on feature selection 

with deep learning and feature selection in the correlation 

matrix by processing datasets. Datasets of variable 

attribute selections were trained in the LSTM model with 

dense dense layer. In the training, 5 hidden layers in the 

Dense Dense Layer model are defined for ReLU 

activation between the input and output layers. The 

LSTM model replaced the first Dense layer of the Dense 

dense layer model with the ReLU activated LSTM layer. 

Narrowing the datasets by feature selection met the 

performance of almost the entire dataset [9]. R. 
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Vinayakumar et al. removed bias by applying different 

separations to the datasets along the bias-deep learning 

line. Removing bias from the datasets made the malware 

detection model training independent. Light GBM 100-

tree modeling, convolutional 1D layers and LSTM hybrid 

MalConv variants were investigated on the Ember 

dataset. Flexible and real-time hybrid deep learning 

models are used for malware preprocessing and 

classification. Ember dataset was randomly split into 

60% training and 40% test sets and introduced to the 

models [10]. Handhika Yanuar Pratama and Jeckson 

Sidabutar apply EfficientNet models - EfficientNet-b0, 

EfficientNet-b1, EfficientNet-b2, EfficientNet-b3, 

EfficientNet-b4, EfficientNet-b5, EfficientNet-b6 and 

EfficientNet-b7 - to two-channel grayscale and three-

channel RGB malware images from the Malware 

Classification Challenge (BIG 2015) dataset. 

EfficientNet models are able to perform successful deep 

learning classification on the ImageNet dataset. In the 

study experiments, EfficientNet-b7 architecture applied 

to three-channel RGB malware images achieves 99.63% 

accuracy rate, 98.36% precision rate, 98.35% recall rate, 

98.34% F1-score rate and 98.30% AUC rate [11]. Cyber 

breach detection systems are being developed to protect 

against DDoS attacks in SDN-based SCADA systems. 

Oyucu et al. proposed a Decision Tree-based Ensemble 

Learning technique that detects DDoS attacks in SDN-

based SCADA systems by distinguishing between 

normal data flow and DDoS attack. The proposed hybrid 

model using machine learning classification methods 

includes dataset generation, feature refinement, 

normalization and classification stages.  For the training 

and testing of ensemble learning models, normal traffic 

and DDoS attack data flow traffic are obtained from 

specific experimental network topology simulation. 

Minimum Redundancy Maximum Relevance (MrMR) 

method is adopted for feature balance in the dataset. 

Feature selection and hyperparameter tuning are used to 

optimize decision tree ensemble models. The 

experiments show that feature selection, different 

combinations of decision tree ensemble models, and 

hyperparameter tuning can lead to better detection 

performance against DDoS attacks. The team's Ensemble 

Boosted Trees method showed the highest accuracy 

performance of 92.9% [12]. Polat et al. proposed a multi-

stage learning model for DDoS attack detection in SDA-

based SCADA systems by combining 1-dimensional 

convolutional neural network (1D-CNN) and decision 

tree based classification. In the proposed model, the 

feature extracted from the 1D-CNN convolutional neural 

network model is input to the decision tree model. While 

the 1D-CNN network model performs deeper and more 

complex feature extraction, the decision tree model 

defines the features into the decision structure.  A new 

dataset of specific experimental network topology based 

on varying attack scenarios is used to train and test the 

model. The proposed model achieved an accuracy of 

97.8% in DDoS attack detection [13]. In addition to the 

literature studies, the proposed model utilizes all 

EfficientNet-b0-EfficientNet-b7 models for malware 

classification. In this study, two-channel grayscale 

malware images and three-channel RGB malware images 

were generated by processing bytes files of different 

datasets. 

In this study, two-channel grayscale malware images of 

the Microsoft Malware Classification Challenge (BIG 

2015) dataset are more successful with the EfficientNet-

b7 model, while three-channel RGB malware images are 

more successful with the EfficientNet-b5 model. For the 

Dumpware10 dataset, the EfficientNet-b6 architecture is 

more successful. In the model development, a deep 

learning model was created by using convolutional 

bottleneck and depthwise separable convolution in the 

inverse residual block structure. The EfficientNet 

architecture of the study effectively applies the layer 

structure that reduces the gradient computation while 

approaching full convolution to malware image datasets.  

The combination of the Microsoft Malware 

Classification Challenge (BIG 2015) dataset and the 

proprietary Dumpware10 dataset offers different 

perspectives in experimental testing. While the Microsoft 

Malware Classification Challenge (BIG 2015) dataset 

serves as a general benchmark, the Dumpware10 dataset 

provides a different benchmark evaluation of the working 

model. 

 

3. MATERIAL and METHOD 

3.1. Methods  

For malware detection, a deep learning model is built 

using convolutional bottleneck and depthwise separable 

convolution in the inverse residual block structure of the 

EfficientNet architecture. 

3.1.1. Transfer learning  

Transfer learning is the transfer of the activation 

hardware of the deep neural network architecture, 

previously subjected to the training cycle, to different 

tasks. The final Dense layer of the deep neural network 

architecture is changed according to the classification 

distribution of the task. The deep neural network layer 

architecture performs activation learning by pre-training 

on a large benchmark dataset such as ImageNet. The deep 

neural network layers can transfer the activation learning 

experienced on the ImageNet dataset to different 

classification tasks belonging to different datasets. For 

example, the weighted DenseNet121 neural network 

architecture, pre-trained on the ImageNet dataset, can be 

adapted to a dataset containing human facial expressions 

and aiming to classify human emotions - happiness, 

anger, sadness, neutral, surprise, fear, disgust. The 

DenseNet121 neural network architecture applies the 

edge, shape, color and associated texture pixel feature 

information learned from ImageNet image data to human 

emotion classification of facial expression images. The 

last Dense layer of the DenseNet121 neural network 
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architecture is replaced by a softmax layer which is 

divided into 7 human emotion classes. In the 

DenseNet121 architecture, the layers carrying low-level 

feature information do not participate in gradient 

generalization during training, but the last Dense layers 

carrying high-level feature information participate in 

gradient generalization. For successful softmax 

classification, activation function, optimization function, 

learning rate, momentum, number of epochs and weight 

decay function hyperparameters are added to improve the 

gradient generalization. As a result, the weights of the 

pre-trained DenseNet121 neural network architecture are 

task domain specific in the transfer learning domain. The 

hyperparameters drive the gradient generalization of the 

deep neural network training loop. Optimization 

functions such as Adam, SGD, Adagrad, RMSProp 

regulate the activation flow of the neural network 

architecture layers. The training cycle of the neural 

network architecture translates into more successful 

gradient generalization. Adjusting the learning rate, 

momentum, weight decay function and number of epochs 

shape the effect of optimization functions on the training 

cycle. Dense layer swapping and hyperparameter 

configuration are prominent in the transfer learning 

neural network architecture. High-performance neural 

network architectures such as DenseNet121, ResNet50, 

InceptionV3, Xception, AlexNet, EfficientNet-b0-b7 

transform Dense layer exchange and hyperparameter 

configuration in the transfer learning extension. It 

performs different training cycles according to the 

datasets. In this context, the transfer learning method 

approximates the neuron activations of pattern neural 

network architectures to the gradient generalization of the 

dataset and shows successful results in classification 

tasks. In this method, the neural network layers fix the 

gradient computation up to the Dense layer, or the 

gradient computation of layer blocks that process only 

low-level feature information. 

Transfer learning domain connected with deep neural 

networks through deeper layers of feature extraction and 

neural network based adaptation of big volume of 

prevalent knowledge domain to small volume of intuitive 

knowledge domain. For example, a researcher can use 

existent biological protein structure information with 

artificial intelligence for predicting protein structures. 

Information knowledge transfer through deep neural 

networks has deep transfer learning model-based 

methods with variety of frozen pre-trained layer blocks, 

added new layer blocks and regulation of layer gradient 

computations. Deep transfer learning model-based 

methods are divided into finetuning, freezing low-level 

CNN layers, and progressive learning approaches.       

Finetuning generalizes the neural network model, which 

has been pre-trained with data close to the target task 

scope, to the dataset of the target task. In this respect, 

Finetuning is the most common deep transfer learning 

approach. The finetuning approach can reduce the 

computational cost of the training cycle for the dataset 

and addresses the need for a large dataset for the target 

task. However, finetuning faces the problem of gradient 

loss during the training cycle. Freezing low-level CNN 

layers means that the low-level convolution layers of the 

neural network model are frozen and do not participate in 

the gradient calculation of the training cycle. Only the 

intermediate fully-connected layers participate in the 

gradient generalization in the training cycle of the target 

dataset. The low-level CNN layers undertake the feature 

extraction of the dataset, while the intermediate fully-

connected layers undertake the classification of the 

feature extraction. Progressive learning uses part or all of 

the layers of a pre-trained neural network model without 

entering the gradient generalization of the training cycle. 

The new layer configuration added to the neural network 

model is trained on the target dataset. The triple layer 

block autoencoder structure minimizes the mismatch 

between training and test feature data by applying a 

maximum mismatch term to the features of the training 

and target data [14]. 

In figure 1 previously explained deep transfer learning 

methods of finetuning, frozen CNN layers and 

progressive learning are depicted.  

3.1.2. EfficientNet  

The EfficientNet architecture consists of “compound 

scaling” modeling of resolution, layer width and layer 

depth in MBConv structures. This architecture gives 

MBConv structures the flexibility of multidimensional 

compound scaling expansion. The MBConv inverted 

residual block structure follows a convolutional layer 

path that shrinks at the beginning, expands in the middle, 

and shrinks again at the end. Initially it follows (1x1) 

convolution filtering, followed by (3x3) depthwise 

convolution block filtering. Then the (1x1) convolution 

filtering reduces the number of parameters in the middle 

layer. The MBConv block is an inverted residual block 

modeling that includes an inverted layer transformation 

with performance impact. 

 

MBConv block  

In figure 2 MBConv block structure and connections are 

shown. MBConv has a convolutional block architecture. 

MBConv convolutional block structure consists of 

depthwise separable convolutions, BatchNormalization, 

Squeeze and Excitation module, Projection phase, 

BatchNormalization, activation and Skip connection 

internals layer components. The full convolutional layer 

architecture is replaced by linear bottlenecks. The full 

convolutional operator neural network layer of the 

Depthwise separable convolutions block architecture 

decomposes the convolutional layer into two separate 

layers by factorization. The first layer is the depthwise 

convolution layer. This layer applies a lightweight single 

convolutional filtering for each input channel. The 

second decomposed layer is the (1x1) pointwise 

convolution layer, which combines new feature outputs 
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from linear computational combinations of input 

parameters. 

The standard convolution layer takes the input hixwixdi 

and Li tensor structure and processes K convolutional 

kernel filtering to produce the output Lj tensor structure 

hixwixdj. The standard convolution layer has a 

computational cost of hi*wi*di*dj*k*k*k, while the 

depthwise separable convolution layer has a lower 

computational cost in the formal convolution 

functionality. Depthwise and (1x1) pointwise 

convolution layers have lower running cost compared to 

the standard convolution layer. Depthwise separable 

convolution layer reduces the running cost by a factor of 

k^2 compared to traditional layers [15]. 

 

Inverted residual block 

In figure 4 inverted residual block has (1x1) Conv2d and 

(3x3) Depthwise blocks applying inverted residual block 

connecting bottleneck expansions. Bottleneck blocks 

have usage for reducing parameter density while 

maintaining sufficient portion of model's feature 

extraction capability. Bottleneck blocks closely resemble 

the structure of residual block architectures. According to 

Sandler’s research team a residual block has first 

widening then narrowing and widening again layer 

pipeline and begins with several bottleneck layers 

immediately after the input layer, while inverted residual 

block has first narrowing then widening and narrowing 

again pipeline connecting (1x1) Conv2d - (3x3) 

Depthwise block and (1x1) Conv structures. Bottleneck 

layers are connected to following expansion layer.  While 

the bottleneck layers capture essential feature 

information, the expansion layers are responsible for 

reviving non-linear feature details without weighting. In 

this setup, "shortcut" connections are established 

between the bottleneck layers to ensure smooth 

information flow. 

Model 

Model

 Apply finetuning for the target task to 
the same model trained with a more 

comprehensive dataset
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Figure 1. Deep transfer learning model-based methods 
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Figure 3. Linear Bottleneck Block 
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Figure 4. Inverted Residual Block  

EfficientNet architecture scaling 

EfficientNet architecture scaling enhances model 

performance by proportionally increasing the depth, 

width, and resolution of the neural network layers. This 

scaling is governed by the EfficientNet compound 

coefficient, which adjusts these dimensions 

simultaneously. At the same time, the neural network 

structure is expanded to the EfficientNet model series 

such as shallower EfficientNet-b0 and more complicated 

EfficientNet-b7. The convolutional design analyzes the 

transformation of neural network layers through layer 

width, channel count, input height and width parameters 

in a flexible manner. The depth (d), width (w), and 

resolution (r) scaling of the layers are interconnected with 

distinctive parameters. For instance, depth scaling is 

connected to layer number of relevant depth, width 

scaling is connected to neuron channel unit count and 

resolution scaling is connected to input width and height 

parameters. While EfficientNet-b0 has 224 resolution 

scaling and depth scaling that has 237 number of layers, 

EfficientNet-b7 has 600 resolution and depth scaling that 

has 813 number of layers. 

 

Depth (d) 

Scaling the depth of neural networks is frequently used in 

convolutional structures. With increasing depth, 

convolutional structures (ConvNet) can capture more 

complex and rich feature information. It can generalize 

better to unexperienced tasks. However, deep neural 

networks have a more difficult training cycle due to the 

vanishing gradient problem. Skip connections and batch 

normalization add-on dilute the gradient problem and 

reduce the training accuracy of deep neural networks 

[16].  

Width (w) 

Increase the width scaling of a neural network is a 

common technique, particularly for smaller models. 

Width scaling is influenced by neuron channel unit count 

across layers and increasing neuron channels improves 

feature extraction of model compatible with findings by 

Zagoruyko and Komodakis, wider networks are more 

effective at capturing detailed feature information and are 

easier to train. However, as the network width growth 
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forces model complexity and approximates training 

accuracy to plateau as it reaches the limit. 

 

Resolution (r) 

Convolutional layers can extract richer feature details 

through higher input resolution. Input resolution is 

connected to width and height of input image.  First going 

through smaller (224x224) input resolution to higher 

(300x300) input resolutions, convolutional layers bind 

higher resolution image pixels to create feature which has 

better classification accuracy.  Excessive input resolution 

causes poor accurracy increasement over time. 

 

Compound scaling 

In figure 5 compound scaling is depicted as width scaling, 

depth scaling and resolution scaling of baseline layer 

dimension parameters. The scaling of layer dimension 

parameters in a neural architecture is interdependent. For 

higher input resolution, increasing the network depth 

scaling enhances feature gain of neuron channel units and 

related neuron channel units capture similar feature 

patterns in images with higher pixel densities. This 

situation necessitates a joint approach to scaling, as 

scaling only one dimension without scaling other layer 

dimensions result in inadequate model performance. 

Increasing the neuron channel unit count connected to 

layer depth and input resolution increasement. For 

instance, going through from EfficientNet-b0 to 

EfficientNet-b7 architecture, layer depth and input 

resolution is increased together with convolution blocks 

of neuron channel units. 

Balancing the layer depth, width and resolution 

dimensions of the neural network structure is critical for 

more effective accuracy performance. The compound 

scaling method scales the layer depth, width and 

resolution dimensions of the neural network structure 

consistently with the help of the compound coefficient. 

Neural network layer depth, width and resolution 

dimension constants can be determined by “grid search” 

research. The compound coefficient is the dynamic value 

that controls the resource distribution in the scaling of the 

neural network structure. Depth, width and resolution 

dimension constants are the values that determine how 

the resource distribution will be transferred to the 

network depth, width and resolution [16]. 
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Figure 5. Compound scaling 

 

3.1.3. Dynamic distribution adaptation network 

(DDAN) and CORAL transfer learning algorithm  

For improving fluctuation of validation datasets and 

model’s generalization ability, we examine research 

studies about transfer learning algorithms and domain 

adaptations. In this research we chose dynamic 

distribution adaptation network with CORAL loss 

applied to backbone neural network.  

In effectiveness analysis of transfer learning for the 

concept drift problem in malware detection research 

study, malware samples were divided into source domain 

and target domain fields via temporal split. VirusShare 

dataset's malware samples from the years 2015, 2017, 

2019 and 2020 were transferred to source domain and 

target domain. Source domain contains malware samples 

belong to specific earlier year band, while target domain 

contains malware samples belong to later year band. 

Transfer learning algorithms were applied to the relevant 

source domain and target domain. Especially CORAL 

transfer learning algorithm approximates the feature 

covariance of the source domain to the feature covariance 

of the target domain. This is achieved by whitening the 

source data (reducing the feature correlation to 0) and 

activating the covariance of the target domain. The 

original feature domain is not changed. In the related 

research study, transfer learning algorithms were 

presented to develop new malware detections despite the 

insufficiency of labeled malware samples [17]. CORAL 

loss defines transferable measure of target domain and 

source domain in dynamic distribution adaptation 

network.  
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In transfer learning with dynamic distribution adaptation 

research study, Dynamic Distribution Adaptation (DDA) 

method is presented. Dynamic Distribution Adaptation 

method evaluates the quantitative weight of each feature 

distribution of data domains. Dynamic Distribution 

Adaptation can participate in the structural risk 

minimization of feature transitions in solution of transfer 

learning problems. The research study proposed 

Manifold Dynamic Distribution Adaptation (MDDA) for 

traditional transfer learning and Dynamic Distribution 

Adaptation Network (DDAN) learning algorithms for 

deep transfer learning on the basis of Dynamic 

Distribution Adaptation. Especially in deep transfer 

learning, the Dynamic Distribution Adaptation Network 

(DDAN) performs end-to-end learning of the feature g(.) 

learning function and the classification function f. DDAN 

learns feature representations with the end-to-end 

training cycle of deep neural networks. Backbone 

network applies domain adaptation with DDA method 

while learning useful feature representations [18].  

In the Dynamic Distribution Adaptation Network 

(DDAN) architecture, data samples from source domain 

and target domain are input to deep neural networks. 

CNN networks such as AlexNet and ResNet extract high-

level features from the data samples. The high-level 

features pass through the fully-connected layer and are 

assigned to the softmax classification. The unique 

architectural part is the convergence of the feature 

distributions of the source domain and the target domain 

using the dynamic distribution alignment. The DDAN 

architecture incorporates the mini-batch Stochastic 

Gradient Descent (SGD) algorithm into the deep neural 

network training cycle. Dynamic distribution adaptation 

is computed over batch parts of the domain [18].  

Deep and adversarial transfer learning  

Deep transfer learning has improved with more enhanced 

feature extraction capability of deep neural networks and 

parametric functions such as loss functions or 

optimization functions. Especially loss functions have 

become evaluation model for transfering source domain 

knowledge to feature separation of target domain. In 

addition, adaptation of source domain and target domain 

has realized through loss function.  For instance, the Deep 

Domain Confusion (DDC) method introduced MMD loss 

into deep networks, facilitating adaptation between 

domains. Similarly, Deep Adaptation Networks (DAN) 

integrated a multi-kernel MMD framework based on 

first-order formulation while the Deep CORAL network 

included CORAL loss based on second-order 

formulation. CORAL loss has usage in Dynamic 

Distribution Adaptation Network and measures 

adaptation of source domain and target domain during 

network training cycle. Apart from Dynamic Distribution 

Adaptation Network and loss functions such as CORAL, 

MMD, the adversarial learning approach promotes the 

learning of representative feature characteristics that 

have more potential to transfer between target domain 

and source domain. The Domain Adversarial Neural 

Network (DANN) uses domain adversarial loss rather 

than relying on loss functions like MMD connected to 

specific Maximum Mean Discrepancy distance 

distribution formulation. In this situation network can 

learn more distinctive feature characteristics between 

domains.  

3.2. Datasets 

3.2.1. Dumpware10 dataset  

The Dumpware10 dataset produced by Hacettepe 

University was created for the detection of malware with 

an image-based approach. It was combined with image 

descriptors such as GIST and Histogram of Gradients 

(HOG). Four different resolutions ranging from 224 to 

4096 pixels were used in the creation of malware images 

belonging to the Dumpware10 dataset. GIST and HOG 

image descriptors were evaluated both separately and 

together within the scope of information fusion. UMAP, 

a dimensional reduction and multi-faceted learning 

technique, was used within the scope of malware image 

transformation problems. This dataset has a total of 11 

classes, including 10 malware families and one benign 

software. The Dumpware10 dataset has a total of 4294 

data samples, 3433 training and 861 validation samples. 

The dataset contains files belonging to 10 different 

malware families, including Adposhel, Allaple.A, 

Amonetize, AutoRun-PU, BrowseFox, Dinwod, 

InstallCore.C, MultiPlug, VBA, and Vilsel. 

3.2.2. Microsoft malware classification challenge 

dataset 

Microsoft Malware Classification Challenge is a dataset 

for malware classification. The dataset provides 10868 

malware byte files as training data. Each byte file 

contains raw byte sequences representing a specific type 

of malware. This dataset helps researchers develop 

malware detection algorithms. The data is particularly 

suitable for research aimed at malware classification 

based on static file features. 

 

4. PROPOSED MODEL 

4.1. Data Preprocessing 

In the data preprocessing of the research, malware byte 

files belong to the Microsoft Malware Classification 

Challenge (BIG 2015) dataset are subjected to two-

channel grayscale malware image conversion and three-

channel RGB malware image conversion. Connected 

malware image conversions have paralel implementation 

as B2IMG algorithm.  

In figure 6 parsing of .bytes files, calculation of (a,b) data 

array size, converting sized data arrays to 8-bit 2D format 

and saving 8-bit 2D formats as (256x256) sized .jpg files 

phases of two-channel grayscale malware image 

conversion are depicted.  During two-channel grayscale 

malware image conversion, byte files are assigned to 8-

bit two-channel grayscale format by converting to (a,b) 

matrix modeling over a 16-column  array data and saved 

in fixed-size image files with .jpg or .png extensions [19]. 
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Data arrays are sized to 256x256 for fixed-size grayscale 

malware image generation.  

 

Malware BIG 2015 
dataset .bytes files of the 

dataset are parsed

(a,b) size is calculated for  
data arrays of .bytes files

(a,b) sized data arrays are 
converted to 8-bit 2D format

8-bit 2D formats  are saved as 
256x256  sized .JPG files

8 - bit

8 - bit

8 - bit

 
Figure 6. Two-channel Grayscale malware image conversion 

 

In figure 7 parsing of .bytes files, dividing bytes data into 

RGB channels, combining RGB channels into 

meaningful RGB data and saving RGB data as .png files 

phases of three-channel RGB image conversion are 

depicted. During three-channel RGB malware image 

conversion, the binary data processed from the byte files 

are divided into triple RGB channel blocks. Then, RGB 

channel blocks are combined to create new RGB data and 

the RGB data are saved in .png image files [19]. 

 

Malware BIG 2015 
dataset

.bytes files of the 
dataset are parsed

Bytes data are divided 
into RGB channels

 RGB data are created by 
combining RGB channels

RGB data are saved as .PNG files

8 - bit

8 - bit

8 - bit

 
Figure 7. Three-channel RGB malware image conversion 

 

In figure 8 modelling of EfficientNet neural network 

implementation is partitioned into data processing and 

EfficientNet feature extraction phases. And connected 

phases are detailed consecutively with steps and model 

architecture structures such as layers and functions.   

In data preprocessing, the malware dataset is parsed into 

byte files and converted to 8-bit matrix format and saved 

to malware images. Malware images are transferred to 

EfficientNet architecture and subjected to feature 

extraction. Data preprocessing and EfficientNet feature 

extraction ends with the softmax function connected to 

the fully-connected layer. The softmax function assigns 

the feature extractions to the malware family 

counterparts. EfficientNet feature extraction produces the 

classification characteristics of malware images. 

Parsing .bytes files
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Figure 8. EfficientNet neural network implementation with 

data preprocessing 

 

5. EXPERIMENTAL RESULTS 

10868 malware byte files of the Microsoft Malware 

Classification Challenge (BIG 2015) dataset are 

introduced to EfficientNet-b3 and EfficientNet-b4 neural 

network architectures. Stochastic Gradient Descent 

(SGD) and Adam optimizations with 0.01 learning rate 

are used in EfficientNet model trainings. Pre-trained 

ImageNet-1K dataset weights are used in EfficientNet 

transfer learning and during experiments Pre-trained 

ImageNet-1K dataset weights were specifically trained 

for EfficientNet architectures and pre-trained ImageNet-

1K dataset weights knowledge is transferred into 

EfficientNet malware classification by finetuning. 

Malware train data are converted to two-channel 
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grayscale malware images and three-channel RGB 

malware images and included in the EfficientNet model 

training cycle. Three-channel RGB malware images and 

two-channel grayscale malware images are separated into 

80% train set and 20% test set. Train set of malware 

images are trained with 20% validation separation. 

Grayscale malware images are 256x256 in size. RGB 

malware images are assigned to 32, 64, 128, 256, 384, 

512, 768, 1024 and 224 sizes according to variable file 

sizes. 

Table 1 results show that EfficientNet-b4 architecture 

trained with grayscale malware images achieves 0.90 

accuracy in SGD optimization. EfficientNet-b3 

architecture trained with RGB malware images achieves 

0.91 accuracy in SGD optimization. Adam optimization 

shows lower accuracy compared to SGD optimization. 

Deepening EfficientNet-b3 architecture to EfficientNet-

b4 architecture increases the accuracy rate in Adam 

optimization while decreasing it in SGD optimization for 

training RGB malware images. 
 

Table 1. EfficientNet-b3 and EfficientNet-b4 models Microsoft 

Malware Classification Challenge validation accuracies 

Malware 

image 
Model 

Learni

ng 

rate 

Optimizat

ion 

Accura

cy 

grayscale 

malware 

Efficient

Net-b3 
0.01 SGD 

0.8976

42 

grayscalemal

ware 

Efficient

Net-b4 
0.01 SGD 

0.9074

18 

grayscalemal

ware 

Efficient

Net-b3 
0.01 Adam 

0.7533

06 

grayscalemal

ware 

Efficient

Net-b4 
0.01 Adam 

0.8407

13 

rgb malware 
Efficient

Net-b3 
0.01 SGD 

0.9171

94 

rgb malware 
Efficient

Net-b4 
0.01 SGD 

0.8970

67 

rgb malware 
Efficient

Net-b3 
0.01 Adam 

0.8263

37 

rgb malware 
Efficient

Net-b4 
0.01 Adam 

0.8855

66 

Table 2 results show that EfficientNet-b3 and 

EfficientNet-b4 architectures trained with SGD 

optimization on grayscale malware image type have the 

highest test accuracy. 

Table 2. Microsoft Malware Classification Challenge 

EfficientNet-b3 and EfficientNet-b4 test accuracies  

Malware 

image 
Model 

Learning 

rate 

Optimizatio

n 

Accurac

y 

grayscale 

malware 

Efficient

Net-b3 
0.01 SGD 0.89 

grayscale 

malware  

Efficient

Net-b4 
0.01 SGD 0.89 

grayscale 

malware 

Efficient

Net-b3 
0.01 Adam 0.70 

     

     

grayscale 

malware 

Efficient

Net-b4 
0.01 Adam 0.80 

rgb 

malware 

Efficient

Net-b3 
0.01 SGD 0.88 

rgb 

malware 

Efficient

Net-b4 
0.01 SGD 0.86 

rgb 

malware 

Efficient

Net-b3 
0.01 Adam 0.80 

rgb 

malware 

Efficient

Net-b4 
0.01 Adam 0.86 

 

We use Microsoft Malware Classification Challenge 

(MMCC) grayscale malware images belong to the 

Malware Classification and Visualization Using 

EfficientNet and B2IMG Algorithm research study. 

Related grayscale malware images are assigned to equal 

width and height values of 32, 64, 128, 256, 384, 512, 

768, 1024 according to their file sizes [11]. In this 

research related research study’s grayscale malware 

images had already passed through B2IMG data 

preprocessing algorithm -paralel to our data 

preprocessing- just without (256x256) size fixation and   

are split into 80% train set and 20% test set. Then the 

grayscale malware images are inputted to EfficientNet-

b0...b7 architectures. The train set and test set are 

distributed into Gatak, Kelihos_ver1, Kelihos_ver3, 

Lollipop, Obfuscator.ACY, Ramnit, Simda, Tracur, 

Vundo 9 malware families. Train set of grayscale 

malware images was trained in 120 epochs with a 20% 

validation separation. This train cycle has SGD 

optimization with a 0.01 learning rate. The highest train 

accuracy was obtained in the EfficientNet-b7 

architecture.  

In this study during going though EfficientNet pre-

transformed Microsoft Malware Classification Challenge 

(MMCC) RGB malware images are sized to (224x224) 

random resized crops. Random parts of malware image 

are cropped and resized to (224x224). By these random 

resized crops EfficientNet model can interpret better 

characteristic textural analysis of malware image. RGB 

malware images are inputted to EfficientNet-b0, 

EfficientNet-b1, EfficientNet-b2, EfficientNet-b3, 

EfficientNet-b4, EfficientNet-b5, EfficientNet-b6, 

EfficientNet-b7 architectures. RGB malware images are 

separated into 80% train set and 20% test set. In this 

research, the train set of RGB malware images is trained 

in 120 epoch cycles with 20% validation separation. This 

training cycle has SGD optimization with a learning rate 

of 0.01. 

Table 3 shows Microsoft Malware Classification 

Challenge grayscale malware images achieve the most 

successful validation accuracy in the EfficientNet-b7 

architecture.  

 

Table 2. (cont.) Microsoft Malware Classification 

Challenge EfficientNet-b3 and EfficientNet-b4 test 

accuracies  
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Table 3. Validation accuracy of grayscale two-channel 

malware images in the EfficientNet-b7 architecture 

Malwar

e image 
Model 

Learnin

g rate 

Optimizati

on 

Accurac

y 

graysca

le 

malwar

e 

EfficientN

et-b7 
0.01 SGD 

0.95279

2 

 

Table 4 shows Microsoft Malware Classification 

Challenge RGB malware images achieve the most 

successful validation accuracy in the EfficientNet-b5 

architecture. 

Grayscale malware are less noisy than RGB data and 

focuses on the textural patterns of malware data. In this 

case, deeper EfficientNet-b7 can capture finer malware 

image details without complexity. RGB malware has 

three color channels and is more complex than grayscale 

malware. In this case, the simpler EfficientNet-b5 can 

resolve the added channel complexity into meaningful 

malware image details and realize successful 

performance metrics.   

 

Table 4. Validation accuracy of three-channel RGB malware 

images in EfficientNet-b5 architecture  

Malwar

e image 
Model 

Learnin

g rate  

Optimizati

on 

Accurac

y 

RGB 

malwar

e 

EfficientNe

t-b5 
0.01 SGD 

0.94479

6 

For Dumpware10 malware images, 300-pixel resolution 
and (300x300) image size were preferred. Dumpware10 
malware images were divided into 3433 training sets 
and 861 test sets and entered into EfficientNet-b0, 
EfficientNet-b1, EfficientNet-b2, EfficientNet-b3, 

EfficientNet-b4, EfficientNet-b5, EfficientNet-b6, 

EfficientNet-b7 architectures. In this research, 

Dumpware10 malware images were trained in 120 epoch 

cycles with a 20% validation separation. The training set 

and the test set were distributed to Adposhel, Allaple, 

Amonetize, AutoRun, BrowseFox, Dinwod, InstallCore, 

MultiPlug, Other, VBA, Vilsel classes. 

Table 5 shows Dumpware10 RGB malware images 

achieve the most successful validation accuracy in the 

EfficientNet-b6 architecture. Dumpware10 RGB images 

are focused on the simpler EfficientNet architecture than 

the Microsoft Malware Classification Challenge 

(MMCC) RGB malware images. 

 

Table 5. Validation accuracy of Dumpware10 RGB malware 

images on EfficientNet-b6 architecture 

Malware 

image 
Model  

Learnin

g rate 

Optimizat

ion 

Accur

acy 

RGB 

malware 

Efficien

tNet-b6 
0.01 SGD 

0.9344

98 

 

In training of grayscale malware images belong to the 

Malware Classification and Visualization Using 

EfficientNet and B2IMG Algorithm study, the 

EfficientNet-b7 architecture reaches the highest accuracy 

with a value of 95%. In training of RGB malware images 

belong to our research study, the EfficientNet-b5 

architecture reaches the highest accuracy with a value of 

94%. The EfficientNet-b6 architecture has the highest 

accuracy with of 93% for RGB malware images of the 

Dumpware10 dataset. 

Table 6 shows EfficientNet-b7 SGD optimization of 

Microsoft Malware Classification Challenge grayscale 

images achieve the highest success values. 

In figure 9 train loss of Microsoft Malware Classification 

Challenge (Grayscale) EfficientNet-b7 and in figure 10 

train accuracy of Microsoft Malware Classification 

Challenge (Grayscale) EfficientNet-b7 is depicted.  In 

figure 11 validation accuracy and in figure 12 validation 

loss of Microsoft Malware Classification Challenge 

(Grayscale) EfficientNet-b7 is depicted.  The validation 

loss and accuracies are more zigzag shaped. In this case, 

train data approaches a more consistent curve by being 

memorized in the model while validation data is more 

inconsistent as a result of overfitting. The model training 

has difficulty generalizing to unpredictable validation 

data. The overfitting status of the train data is reflected in 

the validation data.  

 

Table 6. Microsoft Malware Classification Challenge and Dumpware10 test accuracy, F1-score, recall and precision results  

  Model 
Malware 

image 

Learning 

Rate 
Optimization Accuracy 

F1 

Score 
Recall Precision 

MS 

EfficientNet-

b7 
Gray Scale 0.01 SGD 0.93 0.8963 0.9163 0.8815 

EfficientNet-

b5 
RGB 0.01 SGD 0.91 0.8646 0.8777 0.8550 

Dumpware10 
EfficientNet-

b6 
RGB 0.01 SGD 0.91 0.8786 0.8843 0.8811 
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Figure 9. Microsoft Malware Classification Challenge 

(Grayscale) EfficientNet-b7 train loss  

 

 
Figure 10. Microsoft Malware Classification Challenge 

(Grayscale) EfficientNet-b7 train accuracy  

 

 
Figure 11. Microsoft Malware Classification Challenge 

(Grayscale) EfficientNet-b7 validation accuracy  

 
Figure 12. Microsoft Malware Classification Challenge 

(Grayscale) EfficientNet-b7 validation loss  

In figure 13 confusion matrix of Microsoft Malware 

Classification Challenge (Grayscale) EfficientNet-b7 is 

depicted. When Microsoft Malware Classification 

Challenge (Grayscale) EfficientNet-b7 confusion matrix 

is examined, the lowest accuracy is seen in the Simda 

class, while the highest accuracy is seen in the 

Kelihos_ver1 class. In particular, the fact that the Simda 

class has a lower accuracy is due to insufficiency of data 

for the Simda class. 

 
Figure 13. Microsoft Malware Classification Challenge 

(Grayscale) EfficientNet-b7 confusion matrix 

In figure 14 train loss of Microsoft Malware 

Classification Challenge (RGB) EfficientNet-b5 and in 

figure 15 train accuracy of Microsoft Malware 

Classification Challenge (RGB) EfficientNet-b5 is 

depicted. In figure 16 validation loss and in figure 17 

validation accuracy of Microsoft Malware Classification 

Challenge (RGB) EfficientNet-b5 is depicted. When the 

figures are examined, it is seen that the validation loss 

and accuracies are more inconsistent than the train loss 

and accuracies. This situation transforms the overfitting 

problem of the train data into a zigzag curve in the 

validation data. RGB malware images are more 

consistent compared to grayscale malware images. 
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Figure 14. Microsoft Malware Classification Challenge (RGB) 

EfficientNet-b5 train loss  

 

 
Figure 15. Microsoft Malware Classification Challenge (RGB) 

EfficientNet-b5 train accuracy 

  

 
Figure 16. Microsoft Malware Classification Challenge (RGB) 

EfficientNet-b5 validation loss  

 
Figure 17. Microsoft Malware Classification Challenge (RGB) 

EfficientNet-b5 validation accuracy  

In figure 18 confusion matrix of Microsoft Malware 

Classification Challenge (RGB) EfficientNet-b5 is 

depicted. When the Microsoft Malware Classification 

Challenge (RGB) EfficientNet-b5 confusion matrix is 

examined, the lowest accuracy belongs to the Simda class 

while the highest accuracy belongs to the Kelihos_ver3 

class. This is due to the imbalance in the data distribution. 

 
Figure 18. Microsoft Malware Classification Challenge (RGB) 

EfficientNet-b5 confusion matrix 

In figure 19 validation loss of Dumpware10 EfficientNet-

b6 and in figure 20 validation accuracy of Dumpware10 

EfficientNet-b6 is depicted. In figure 21 train loss and in 

figure 22 train accuracy of Dumpware10 EfficientNet-b6 

is depicted. When Dumpware10 EfficientNet-b6 

validation accuracies and losses and train accuracies and 

losses are examined, it is shown that the train data has 

reached overfitting and the validation data has difficulty 

in generalization. In the model training, the batch parts 

can not learn the malware image characteristics in the 

gradient loop. This creates inconsistent curves in the 

validation data. 
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Figure 19. Dumpware10 EfficientNet-b6 validation loss 

  

 
Figure 20. Dumpware10 EfficientNet-b6 validation accuracy 

  

 
Figure 21. Dumpware10 EfficientNet-b6 train loss  

 
Figure 22. Dumpware10 EfficientNet-b6 train accuracy  

In figure 23 confusion matrix of Dumpware10 

EfficientNet-b6 is shown. In Dumpware10 EfficientNet-

b6 confusion matrix, the lowest accuracy belongs to 

Dinwod class while the highest accuracy belongs to VBA 

class. Imbalance of data distribution between classes 

causes this issue.  

 
Figure 23. Dumpware10 EfficientNet-b6 confusion matrix 

 

In transfer learning approach for malware classification 

research study, a convolutional transfer learning 

application (TL-CNN) was utilized for Android malware 

image classification. The transfer learning convolutional 

neural network architecture separated benign images and 

malicious malware images. In the transfer learning model 

of the research work, the pre-trained ResNet-50 classifier 

component was replaced with the original classification 

component. The classification component removed the 

ImageNet 1000 image classes and integrated the fully-

connected layer contains 25 malware classes. In the 

transfer learning ResNet-50 model, the MaxPooling layer 

with padding, (2x2) kernel filter size and 2 stride is 

introduced before the fully-connected layer of the 

classification component. The fully-connected layer and 
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the Softmax function performed the final malware 

classification [20].  

In this research, based on the transfer learning approach 

for malware images classification, the last Global 

Average Pooling layer of the feature extraction block of 

the EfficientNet architecture is replaced with the 

MaxPooling layer and connected to the classifier. 

EfficientNet architecture can be adapted to the 

MaxPooling layer with (7x7) kernel size and 1 step. The 

classifier classifier of the EfficientNet architecture 

requires (1x1) plane-sized input and the EfficientNet 

architecture does not meet the Max Pooling setting with 

(2x2) kernel filter size and 2 steps.   

MaxPooling EfficientNet-b7 (Microsoft Malware 

Classification Challenge - grayscale malware image) and 

EfficientNet-b5 (Microsoft Malware Classification 

Challenge - RGB malware image) EfficientNet-b6 

(Dumpware10 dataset) models were trained with 120 

epoch cycles in SGD optimization with 0.01 learning 

rate.  

Table 7 shows EfficientNet-b5 (RGB) has the highest 

evaluation accuracy among MaxPooling EfficientNet 

model trainings. When the MaxPooling change occurred, 

RGB malware images produced higher validation 

accuracy than grayscale malware images.   

 

Table 7. MaxPooling EfficientNet model validation accuracies  

Malwar

e image 
Model 

Learnin

g rate 

Optimizati

on 

Accurac

y 

Graysca

le 

malware  

EfficientN

et-b7 
0.01 SGD 

0.91825

0 

RGB 

malware 

EfficientN

et-b5 
0.01 SGD 

0.92639

4 

RGB 

malware 

EfficientN

et-b6 
0.01 SGD 

0.90393

0 

Table 8 shows EfficientNet-b7 (Grayscale) has the 

highest test accuracy. The fact that the EfficientNet-b7 

precision value is higher than the recall value shows that 

the correct class matching is high in the total correct class 

inference of the model. 

 

Table 8. MaxPooling EfficientNet model experiment test accuracy F1-score, recall and precision results  

Model Malware Image Learning rate Optimization Accuracy F1-score Recall Precision 

EfficientNet-b7 Grayscale 0.01 SGD 90% 0.8529 0.8434 0.8893 

EfficientNet-b5 RGB 0.01 SGD 89% 0.8288 0.8407 0.8207 

EfficientNet-b6 RGB 0.01 SGD 88% 0.8299 0.8275 0.8469 

In figure 24 confusion matrix of MaxPooling 

EfficientNet-b5 Microsoft Malware Classification 

Challenge (RGB) is depicted with class accuracy 

distributions. In MaxPooling EfficientNet-b5 Microsoft 

Malware Classification Challenge (RGB) confusion 

matrix, the highest accuracy belongs to the Kelihos_ver3 

class, while the lowest accuracy belongs to the Simda 

class. This is due to the data imbalance between classes. 

Simda class has insufficient number of data sample.  

 
Figure 24. MaxPooling EfficientNet-b5 Microsoft Malware 

Classification Challenge (RGB) confusion matrix 

In figure 25 MaxPooling EfficientNet-b7 Microsoft 

Malware Classification Challenge (Grayscale) confusion 

matrix shows that the accuracy of the Simda class is the 

lowest, while the accuracy of the Kelihos_ver3 class is 

the highest. Negative matching shifts are observed in the 

Simda class, and this breaks the accuracy. 

 
Figure 25. MaxPooling EfficientNet-b7 Microsoft Malware 

Classification Challenge (Grayscale) confusion matrix 

In figure 26 MaxPooling EfficientNet-b6 Dumpware10 

(RGB) confusion matrix shows that the highest accuracy 

belongs to the VBA class, while the lowest accuracy 
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belongs to the AutoRun class. The unbalanced 

distribution of Dumpware10 malware images among the 

classes affects accuracy.  

 
Figure 26. MaxPooling EfficientNet-b6 Dumpware10 (RGB) 

confusion matrix  

 

MaxPooling experiment results shows that EfficientNet-

b7 (Grayscale) extension of the Transfer Learning 

experiment has the highest success performance. The 

MaxPooling experiment did not provide a noticeable 

improvement in test accuracies and the 

GlobalAveragePooling layer of the EfficientNet 

architecture produced more successful results than the 

MaxPooling layer. 

CORAL transfer learning algorithm uses the source 

domain and target domain distinctions of the dataset 

under domain adaptation. Dumpware10, Microsoft 

Malware Classification Challenge RGB and Microsoft 

Malware Classification Challenge grayscale datasets are 

divided into source domain with 60% and target domain 

with 40%. Then the source domain and target domains 

are divided into “test domain” and “validation domain” 

with a rate of 20%. The source domain, target domain and 

validation domain of the datasets participate in the 

training of the Dynamic Distribution Adaptation 

Network with CORAL loss in domain partition logic of 

CORAL transfer learning algorithm.  

The backbone deep neural network (ResNet) in the 

Dynamic Distribution Adaptation Network extension is 

replaced by the EfficientNet architecture of this research 

work. Dumpware10 domain data is input to EfficientNet-

b6, Microsoft Malware Classification Challenge RGB 

domain data is input to EfficientNet-b5 and Microsoft 

Malware Classification grayscale domain data is input to 

EfficientNet-b6. The training cycle of EfficientNet 

architectures has SGD optimization with EarlyStopping 

support and 0.01 learning rate. Batch size is 16.  A 

bottleneck layer has been added to the Dynamic 

Distribution Adaptation Network Backbone architecture, 

improving performance. Dynamic Distribution 

Adaptation Backbone architecture assigns CORAL loss 

of source domain and target domain to transfer loss, 

CrossEntropy loss to classification loss, and the sum of 

transfer loss and classification loss to total loss. In the 

Dynamic Distribution Adaptation training cycle, the 

source domain and target domain get closer to each other 

and the transfer loss decreases. 

Table 9 shows that Microsoft Malware Classification 

Challenge grayscale EfficientNet-b6 backbone model has 

the highest validation accuracy rate. 

 

Table 9. Dynamic distribution adaptation network with 

CORAL loss experiment validation accuracies 

Malware dataset Malware 

image 

Backbone 

model 

Accurac

y 

Microsoft 

Malware 

Classification 

Challenge 

Grayscale EfficientNet

-b6 

0.9706 

Microsoft 

Malware 

Classification 

Challenge 

RGB EfficientNet

-b5 

0.9442 

Dumpware10 RGB EfficientNet

-b6 

0.9663 

Table 10 shows that the most successful results in test 

domain accuracy, precision, recall and F1-score metrics 

belong to Dumpware10 RGB EfficientNet-b6 model. 

Table 10. Dynamic distribution adaptation network with CORAL loss experiment test tesults  

Malware dataset Malware 

image 

Backbone 

model 

Accuracy Precision Recall F1-

score 

Microsoft Malware Classification Challenge 

dataset 

Grayscale EfficientNet-b6 0.95854 0.9009 0.8554 0.8647 

Microsoft Malware Classification Challenge 

dataset 

RGB EfficientNet-b5 0.95257 0.9484 0.8478 0.8596 

Dumpware10 RGB EfficientNet-b6 0.96064 0.9460 0.9556 0.9491 
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In figure 27 validation accuracy of DDAN with CORAL 

loss experiment Microsoft Malware Classification 

Challenge Grayscale EfficientNet-b6 is depicted and in 

figure 28 DDAN with CORAL loss experiment 

Microsoft Malware Classification Challenge (Grayscale) 

EfficientNet-b6 classification loss is depicted. Figure 29 

and figure 30 consecutively show transfer loss and total 

loss of DDAN with CORAL loss experiment Microsoft 

Malware Classification Challenge (Grayscale) 

EfficientNet-b6. When connected figures are examined, 

we see that the validation accuracy figure contains less 

zigzag changes. This situation demonstrates consistency 

of training. Also there is a sudden decreasement of 

accuracy that connected to model anomaly. However 

EarlyStopping mechanism had been already saved the 

model weight that highest accuracy rate. Therefore model 

weight did not influenced by sudden drop in accuracy.  

 

Figure 27. DDAN with CORAL loss experiment Microsoft 

Malware Classification Challenge (Grayscale) EfficientNet-b6 

validation accuracy  

 

Figure 28. DDAN with CORAL loss experiment Microsoft 

Malware Classification Challenge (Grayscale) EfficientNet-b6 

classification loss  

 
Figure 29. DDAN with CORAL loss experiment Microsoft 

Malware Classification Challenge (Grayscale) EfficientNet-b6 

transfer loss  

 
Figure 30. DDAN with CORAL loss experiment Microsoft 

Malware Classification Challenge (Grayscale) EfficientNet-b6 

total loss 

In figure 31 validation accuracy of DDAN with CORAL 

loss experiment Microsoft Malware Classification 

Challenge (RGB) EfficientNet-b5 is depicted and in 

figure 32 DDAN with CORAL loss experiment 

Microsoft Malware Classification Challenge (RGB) 

EfficientNet-b5 classification loss is depicted. Figure 33 

and figure 34 consecutively show transfer loss and total 

loss of DDAN with CORAL loss experiment Microsoft 

Malware Classification Challenge (RGB) EfficientNet-

b5.   When connected figures are examined, we see that 

fluctiations in validation accuracy figure is lesser than the 

previous experiments’ figures. Also examined that there 

is a abrupt drop in validation accuracy which shows a 

model anomaly. However EarlyStopping mechanism had 

been already saved mode weights that include the highest 

accuracy rate. Therefore sudden drop in validation 

accuracy did not affect the model weights.  
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Figure 31. DDAN with CORAL loss experiment Microsoft 

Malware Classification Challenge (RGB) EfficientNet-b5 

validation accuracy  

 
Figure 32. DDAN with CORAL loss experiment Microsoft 

Malware Classification Challenge (RGB) EfficientNet-b5 

classification loss  

 

Figure 33. DDAN with CORAL loss experiment Microsoft 

Malware Classification Challenge RGB EfficientNet-b5 

transfer loss  

 

Figure 34. DDAN with CORAL loss experiment Microsoft 

Malware Classification Challenge RGB EfficientNet-b5 total 

loss  

In figure 35 validation accuracy of DDAN with CORAL 

loss experiment Dumpware10 EfficientNet-b6 is 

depicted and in figure 36 DDAN with CORAL loss 

experiment Dumpware10 EfficientNet-b6 classification 

loss is depicted. Figure 37 and figure 38 consecutively 

show transfer loss and total loss of DDAN with CORAL 

loss experiment Dumpware10 EfficientNet-b6.   When 

connected figures are examined, we see that validation 

accuracy figure graph has less fluctiations beside the 

previous experiments’ figure graphs excluding DDAN 

with CORAL loss experiment. However sudden accuracy 

drop did not happened in DDAN with CORAL loss 

experiment Dumpware10 EfficientNet-b6.  

 

Figure 35. DDAN with CORAL loss experiment Dumpware10 

EfficientNet-b6 validation accuracy  
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Figure 36. DDAN with CORAL loss experiment Dumpware10 

EfficientNet-b6 classification loss  

 
Figure 37. DDAN with CORAL loss experiment Dumpware10 

EfficientNet-b6 transfer loss  

 
Figure 38. DDAN with CORAL loss experiment Dumpware10 

EfficientNet-b6 total loss  

In figure 39 DDAN with CORAL loss Microsoft 

Malware Classification Challenge (Grayscale) 

EfficientNet-b6 confusion matrix, we see that the highest 

accuracy is in Kelihos_ver3 and the lowest accuracy is in 

Simda. 

 

Figure 39. DDAN with CORAL loss experiment Microsoft 

Malware Classification Challenge (Grayscale) EfficientNet-b6 

confusion matrix  

In figure 40 DDAN with CORAL loss Microsoft 

Malware Classification Challenge (RGB) EfficientNet-

b5 confusion matrix, we see that Kelihos_ver3 has the 

highest accuracy while Simda has the lowest accuracy.  

 
Figure 40. DDAN with CORAL loss experiment Microsoft 

Malware Classification Challenge (RGB) EfficientNet-b5 

confusion matrix 

 

Figure 41. DDAN with CORAL loss experiment Dumpware10 

EfficientNet-b6 confusion matrix 
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In figure 41 DDAN with CORAL loss experiment 

Dumpware10 EfficientNet-b6 confusion matrix, we see 

that Allaple, BrowserFox and VBA have the highest 

accuracies while AutoRun has lowest accuracy.  

In table 11 summarizes the highest performance metrics 

for the Transfer Learning and MaxPooling experiments 

conducted in the research. The experiments were focused 

on malware classification using different EfficientNet 

models (EfficientNet-b5, b6, and b7) applied to both 

grayscale and RGB malware images. The datasets used 

for evaluation include the Microsoft Malware 

Classification Challenge (MMCC) and Dumpware10. 

The table presents key performance metrics such as test 

accuracy, F1 Score, recall, and precision, along with 

validation accuracy. EfficientNet-b7 (Grayscale) 

achieved the highest validation accuracy (95.27%) in the 

transfer learning experiments, with strong test accuracy 

(93%) and high precision (88.15%). EfficientNet-b6 

(RGB) on the Dumpware10 dataset performed well 

across both transfer learning and DDAN experiments, 

achieving the best test accuracy (96%) and strong 

precision (94.60%) with a validation accuracy of 96.63%. 

MaxPooling experiments yielded slightly lower results 

than transfer learning, with EfficientNet-b7 (Grayscale) 

showing a test accuracy of 90%. DDAN approach 

improved the test and validation accuracy metrics across 

both RGB and grayscale images, particularly excelling in 

handling the Dumpware10 dataset.  
 

Table 11.  Most successful results of the Transfer Learning and MaxPooling experiments 

Transfer 

Learning 
Model Malware image 

Test 

Accuracy 

F1 

Score 
Recall Precision 

Validasyon 

Accuracy 

MS 
EfficientNet-b7 Grayscale 0.93 0.8963 0.9163 0.8815 0.952792 

EfficientNet-b5 RGB 0.91 0.8646 0.8777 0.8550 0.944796 

Dumpware10 EfficientNet-b6 RGB 0.91 0.8786 0.8843 0.8811 0.934498 

MaxPooling  

MS 
EfficientNet-b7 Grayscale 0.90 0.8529 0.8434 0.8893 0.918250 

EfficientNet-b5 RGB 0.89 0.8288 0.8407 0.8207 0.926394 

Dumpware10 EfficientNet-b6 RGB 0.88 0.8299 0.8275 0.8469 0.903930 

        

DDAN  

 

MS 
EfficientNet-b5 RGB 0.95 0.8596 0.8478 0.9484 0.9442 

 EfficientNet-b6    Grayscale  0.95 0.8647 0.8554 0.9009 0.9706 

Dumpware10 EfficientNet-b6 RGB 0.96 0.9491 0.9556 0.9460 0.9663 

In Table 12 compares the results obtained from various 

experiments, including Transfer Learning, MaxPooling, 

and the Dynamic Distribution Adaptation Network 

(DDAN), for malware classification. EfficientNet-b7 

(grayscale) achieved the highest validation accuracy 

(95.27%) for the Microsoft Malware Classification 

Challenge. The RGB-based EfficientNet-b5 performed 

slightly lower with a validation accuracy of 94.48%. 

MaxPooling technique did not yield significantly better 

results compared to Transfer Learning. For grayscale 

images, EfficientNet-b7 scored 91.82% validation 

accuracy, and for RGB images, EfficientNet-b5 achieved 

92.63%. DDAN approach produced the highest results 

across the board. EfficientNet-b6 (grayscale) reached a 

validation accuracy of 97.06%, while for RGB images, 

EfficientNet-b5 and EfficientNet-b6 achieved validation 

accuracies of 94.42% and 96.63%, respectively. 

 

Table 12. Comparison of academic studies with DDAN experiment results 

Studies Dataset Accuracy DDAN EfficientNet-b6 (Grayscale) accuracy rate 

[11] MMCC 99.63% (train) 97% (validation) 95% (test) 

[2] MMCC 99.06% (train) 97% (validation) 95% (test) 

[1] MMCC 99.44% 97% (validation) 95% (test) 

[4] MMCC 99.58% 97% (validation) 95% (test) 

   DDAN EfficientNet-b6 (RGB) accuray rate 

[19] Dumpware10 99.60% 96% (validation) 96% (test) 

[21] Dumpware10 97% 96% (validation) 96% (test) 
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6. CONCLUSIONS 

In this study, a comprehensive research was conducted 

on the classification and visualization of malware using a 

model based on the EfficientNet deep learning 

architecture. The model created with EfficientNet's 

inverse residual block configuration achieved high 

accuracy rates, especially in the classification of malware 

images. Experiments conducted on the Microsoft 

Malware Classification Challenge and Dumpware10 

datasets used in the study show that the model gives 

successful results. 97% validation accuracy and 95% test 

accuracy were obtained in the Microsoft Malware 

Classification Challenge dataset, and 96% validation and 

test accuracy were obtained in the Dumpware10 dataset. 

EfficientNet's deep learning architecture showed high 

performance in classification studies on malware images. 

In particular, the methods used in the preprocessing of 

data and image transformations made significant 

contributions to the success of the model. The balanced 

scaling of EfficientNet's layer depth, width and resolution 

dimensions increased the accuracy of the model. This 

study reveals that deep learning techniques can be used 

effectively in malware detection in the field of cyber 

security. The flexibility of the EfficientNet architecture 

and the use of transfer learning techniques have increased 

the accuracy and generalization ability of the model. In 

future studies, the performance of the model can be 

further improved with different datasets and more 

complex malware detection methods. In conclusion, this 

study shows that the EfficientNet architecture can be 

successfully applied in the field of cybersecurity and can 

provide solutions for malware detection. 
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