

POLİTEKNİK DERGİSİ

JOURNAL of POLYTECHNIC

ISSN: 1302-0900 (PRINT), ISSN: 2147-9429 (ONLINE)

URL: http://dergipark.org.tr/politeknik

EfficientNet-based deep learning for malware

classification: A dynamic distribution

adaptation approach

Kötü amaçlı yazılım sınıflandırması için

efficientnet tabanlı derin öğrenme: Dinamik

dağıtım uyarlama yaklaşımı

Yazar(lar) (Author(s)): Ceren Umay ÖZTEN1, Adem TEKEREK2

ORCID1: 0000-0002-6962-9259

ORCID2: 0000-0002-0880-7955

To cite to this article: Özten C. U. ve Tekerek A., “EfficientNet-Based Deep Learning for Malware Classification: A

Dynamic Distribution Adaptation Approach”, Journal of Polytechnic, *(*): *, (*).

Bu makaleye şu şekilde atıfta bulunabilirsiniz: Özten C. U. ve Tekerek A., “Kötü Amaçlı Yazılım Sınıflandırması için

EfficientNet Tabanlı Derin Öğrenme: Dinamik Dağıtım Uyarlama Yaklaşımı”, Politeknik Dergisi, *(*): *, (*).

Erişim linki (To link to this article): http://dergipark.org.tr/politeknik/archive

DOI: 10.2339/politeknik.1536669

http://dergipark.org.tr/politeknik
http://dergipark.org.tr/politeknik/archive

EfficientNet-Based Deep Learning for Malware Classification:

A Dynamic Distribution Adaptation Approach

Highlights

❖ Malware Classification using the EfficientNet and Dynamic Distribution Adaptation Network

approach
❖ Applying data preprocessing
❖ Detailing the model training and validation processes
❖ Analyzing results with performance evaluation metrics

Graphical Abstract
In this study, the EfficientNet deep learning model was used to classify malware images.

P
a

rs
in

g
.b

yt
e

s
fi

le
s

D
iv

id
in

g
.b

yt
e

s
fi

le
s

in
to

 .b
yt

e
s

p
a

rt
s

C
o

n
ve

rt
in

g
.b

yt
e

s
p

a
rt

s
to

 8
-b

it

m
at

ri
x

d
a

ta
Sa

vi
n

g
.b

yt
e

s
m

a
tr

ix
 d

a
ta

 t
o

m

al
w

a
re

 im
a

ge
s

Dataset

C
o

n
v

3
x3

M
B

C
o

n
v1

 3
x3

M
B

C
o

n
v6

 5
x5

M
B

C
o

n
v6

 3
x3

M
B

C
o

n
v6

 3
x3

M
B

C
o

n
v6

 5
x5

M
B

C
o

n
v6

 3
x3

M
B

C
o

n
v6

 3
x3

M
B

C
o

n
v6

 3
x3

M
B

C
o

n
v6

 5
x5

M
B

C
o

n
v6

 5
x5

M
B

C
o

n
v6

 5
x5

M
B

C
o

n
v6

 5
x5

M
B

C
o

n
v6

 5
x5

M
B

C
o

n
v6

 5
x5

M
B

C
o

n
v6

 5
x5

M
B

C
o

n
v6

 3
x3

C
o

n
v1

x1
 +

 P
o

o
li

n
g

+
 F

C
..

.

So
ft

m
a

x
fu

n
ct

io
n

C
la

ss
if

ic
at

io
n

 O
u

tp
u

t

 O
u

tp
u

t
si

ze
 (

1
)

2
2

4
x2

2
4

x3

1
1

2x
1

1
2

x3
2

1
1

2x
1

1
2

x1
6

5
6

x5
6

x2
4

5
6

x5
6

x2
4

2
8

x2
8

x4
0

2
8

x2
8

x4
0

2
8

x2
8

x8
0

2
8

x2
8

x8
0

2
8

x2
8

x8
0

1
4

x1
4

x1
1

2

1
4

x1
4

x1
1

2

1
4

x1
4

x1
1

2

7
x7

x1
9

2

7
x7

x1
9

2

7
x7

x1
9

2

7
x7

x1
9

2

Basic EfficientNet Feature ExtractionData preprocessing
Fu

lly
 C

o
n

n
e

ct
e

d
 L

a
ye

r

7
x7

x3
2

0

Figure. Proposed Methodology

Aim

To investigate the effectiveness of EfficientNet deep learning model in detecting classifying malware images.

Design & Methodology

Steps included dataset analysis, data preprocessing, EfficientNet model and Dynamic Distribution Adaptation

Network approach and performance evaluation.

Originality

This study is one of the rare works successfully applying EfficientNet model to classify malware images.

Findings

EfficientNet models are applied succesfully to malware classification.

Conclusion

EfficientNet has proven the effectiveness of deep learning in security by classfiying malware.

Declaration of Ethical Standards
The authors of this article declare that the materials and methods used in this study do not require ethical

committee permission and/or legal-special permission.

EfficientNet-Based Deep Learning for Malware

Classification: A Dynamic Distribution Adaptation

Approach
Research Article

Ceren Umay ÖZTEN1, Adem TEKEREK2
1 Graduate School of Natural and Applied Sciences, Gazi University, Ankara, Türkiye

2 Computer Engineering Deparment, Technology Faculty, Gazi University, Ankara, Türkiye

(Received: 21.07.2024 ; Accepted: 07.10.2024 ; Early View : 13.10.2024)

ABSTRACT

Malware is a general name given to all malicious software that threatens and prevents the use of information systems.

Computers, which have become mandatory in daily life, are constantly under the threat of malware as well as facilitating

human life. Therefore, the detection of malware that threatens computer systems is important. This study focuses on the

classification of malware. In the study, a deep learning model based on the EfficientNet architecture and the Dynamic

Distribution Adaptation Network approach were proposed and these proposed models were tested using the Microsoft

Malware Classification Challenge (MMCC) and Dumpware10 datasets. In the study, the process of converting malware

into images was discussed and the EfficientNet model was used as the basis for the classification of these images. The

EfficientNet backbone-based Dynamic Distribution Adaptation Network achieved 97% accuracy in the MMCC dataset and

96% accuracy in the Dumpware10 dataset. As a result, the EfficientNet architecture proved the effectiveness of deep

learning in the classification of malware and cybersecurity.

Keywords: EfficientNet architecture, malware classification, data preprocessing, compound scaling.

Kötü Amaçlı Yazılım Sınıflandırması için

EfficientNet Tabanlı Derin Öğrenme: Dinamik

Dağıtım Uyarlama Yaklaşımı

ÖZ

Malware, bilişim sistemlerini tehdit eden ve kullanımını engelleyen tüm kötü amaçlı yazılımlara verilen genel bir addır.

Günlük hayatta kullanımı zorunlu hale gelen bilgisayarlar, insan hayatını kolaylaştırmanın yanı sıra kötü amaçlı

yazılımların da sürekli tehdidi altındadır. Bu nedenle bilgisayar sistemlerini tehdit eden kötü amaçlı yazılımların tespiti

önemlidir. Bu çalışmada kötü amaçlı yazılımların sınıflandırılması üzerine odaklanılmıştır. Çalışmada, EfficientNet

mimarisine dayalı bir derin öğrenme modeli ve Dynamic Distribution Adaptation Network yaklaşımı önerilmiş ve bu

önerilen modellemeler, Microsoft Kötü Amaçlı Yazılım Sınıflandırma Mücadelesi (MMCC) ve Dumpware10 veri kümeleri

kullanılarak test edilmiştir. Çalışmada, kötü amaçlı yazılımların görüntülere dönüştürülme süreci ele alınmış ve bu

görüntülerin sınıflandırılmasında EfficientNet modeli taban alınmıştır. EfficientNet backbone tabanlı Dynamic Distribution

Adaptation Network, MMCC veri kümesinde %97, Dumpware10 veri kümesinde ise %96 doğruluk elde etmiştir. Sonuç

olarak, EfficientNet mimarisi kötü amaçlı yazılımların sınıflandırılmasında ve siber güvenlikte derin öğrenmenin etkinliğini

kanıtlamıştır.

Anahtar Kelimeler: EfficientNet mimarisi, malware sınıflandırma, veri ön işleme, mimari ölçeklendirme.

1. INTRODUCTION

The transformation of the first historic ARPANet

network into today's virtual network of millions of

servers increases cyber threats. The first “bug”

definition of a computer virus has evolved into

specific cyber-attack software, and cyber-attack

software has become widespread, divided into

variable malware families. Malware families can

infiltrate information system infrastructures, mobile

electronic devices, digital blockchains and

government databases. This situation requires the

correct classification of malware families. In this

context, incorrect malware classification can render

cyber security analysis dysfunctional. The goal of this

research is to utilize EfficientNet architecture to

distribute malware image transformations to the

correct malware family classes. In this research,

EfficientNet Inverted Residual (MBConv) layer

blocks are defined to MaxPooling experiments with

Transfer Learning. Malware dataset collection,

malware preprocessing, EfficientNet model

development and experimental result analysis are

*Corresponding Author

e-mail : atekerek@gazi.edu.tr

included in the method modeling of the research. In

the method modeling, malware datasets are collected,

malware samples belonging to the malware sets are

decomposed into tensor blocks in preprocessing, and

the tensor blocks are converted into three-channel

RGB and two-channel grayscale malware images.

The malware images are then trained on EfficientNet

architecture. In the Transfer Learning and

MaxPooling experiments, layer depth, input

resolution and layer width settings are studied and

MaxPooling final layer replacement is tested.

2. LITERATURE REVIEW

In the literature, malware preprocessing,

implementation of convolutional layer sequences,

CNN - BiLSTM two-tier model, LSTM layer

integration with Convolution Dense layer, adaptation

of Autoencoder neural network to grayscale malware

images and random partitioning of malware dataset

are investigated.

Huaxin Deng, et al., used Markov transfer matrices in

malware data preprocessing. In Markov transfer

matrices, the team assigned the probabilities of

combinations of both consecutive letters or numbers

of machine codes, the first letter and the last two

letters of opcode fragments to three matrix image

channels, and obtained three-channel malware

images. And the malware images are entered into 1

fully-connected dense layered architecture with 4

convolution layers, 4 pooling filtering layers, and 4

convolution layers. The Markov method achieves

99.4% accuracy on the Microsoft Malware Challenge

dataset [1]. Mumtaz Ahmed, et al., converted the

malware data into a two-channel grayscale image.

The team converted the malware byte files into

hexadecimal numbers, transferred the binary

hexadecimal numbers to pixels, and performed min-

max normalization on the total pixel image. They then

trained the pixel images on the InceptionV3 model

with hidden layers frozen. The InceptionV3 model

achieved 98.76% accuracy on the Microsoft

Challenge BIG15 test set [2]. Sanjeev Kumar and

Kajal Panda combined the feature outputs of VGG16,

VGG19, ResNet50 and InceptionV3 models in the

SDIF-CNN method into a single feature output in

horizontal space and filtered the redundant data from

the feature output. The filtered feature output was

passed to KNN, SVM, Random Forest, Multi-layer

Perceptron (MLP), Extra Tree and Gaussian Naive

Bayes classifiers. The Multi-layer Perceptron model

recorded 98.55% accuracy rate, 99% precision rate,

99% recall rate and 99% f1-score rate on the MalImg

dataset [3]. Seok-Jun Bu and Sung-Bae Cho solved

the malware structure for classification in an

evolutionary ternary network and optimized the

mixed malware variation into groups of inter-

representation distances using a genetic algorithm. In

the genetic algorithm, the team entered the byte

malware image into the evolutionary triple network

and generated new weight-sharing convolutional

networks in the space of weight changes. The triple

triplet loss due to the genetic algorithm brought

similar malware samples closer together while

pushing different malware samples away [4]. In the

multi-view multidimensional feature fusion

approach, Rajasekhar Chaganti, et al. combined

static, dynamic and image feature sets of malware. In

the multidimensional feature fusion learning of the

models, each feature set presents the discriminative

semantic characteristics of the malware. The team

fused PE Section and PE Import, dynamic PE API and

PE Image malware attribute files into a convolutional

neural network. The connected convolutional neural

network included the convolution1D-Maxpooling-

Dense layer block. The dynamic PE API based

feature set achieved 99% accuracy [5]. In the two-

stage hybrid approach, Seungyeon Baek et al.

vectorized opcode sequences in the static stage and

decomposed them into benign file attributes in the Bi-

LSTM model transition, and in the dynamic stage,

they extracted process memory and API calls

attributes by running the decomposed benign file

attributes in a virtual Cuckoo Sandbox environment.

Then, it transformed the attributes into a three-

dimensional tensor structure with process memory,

category and API calls channels. Finally, the three-

dimensional tensor structure was classified in the

EfficientNet-b3 model. The EfficientNet-b3 model

achieved an accuracy rate of 94.98% [6]. Manish

Kumar integrated convolutional neural network CNN

with Bi-LSTM network for malware detection. With

dynamic malware API calls, process execution

signals are converted into process tree vectors. The

high-level vector output is decomposed in the

embedded layer and the low-level vector fragments

are passed through the CNN1-BiLSTM1-CNN2-

BiLSTM2-Dense-Softmax chaining layer pattern.

Convolution layers filtered the feature for the LSTM

layers, and the dual CNN and dual BiLSTM modeling

showed high success. The binary CNN-BiLSTM

modeling recorded an accuracy rate of 0.99 [7]. In the

grayscale autoencoder approach, Xiaofei Xing, et al.

encoded the APK code of the malware and benign file

into decimal byte data and fixed it into a grayscale

two-dimensional matrix, and passed the grayscale

malware image data through AE-1 and AE-2

autoencoder structures. The AE-1 autoencoder

structured the feature extraction of the grayscale

image into the actual malware classification. The AE-

2 autoencoder handled the malware discrimination of

the classified benign file. The AE-1 autoencoder

architecture has convolution, filtering and

upsampling layers. The AE-2 autoencoder

architecture has a multi-layer perceptron network in

addition to the AE-1 architecture layers. The multi-

layer perceptron network achieved 96% accuracy [8].

In the LSTM-Dense method, Esraa Saleh Alomari et

al. presented malware detection based on feature

selection with deep learning and feature selection in

the correlation matrix by processing datasets.

Datasets of variable attribute selections were trained

in the LSTM model with dense dense layer. In the

training, 5 hidden layers in the Dense Dense Layer

model are defined for ReLU activation between the

input and output layers. The LSTM model replaced

the first Dense layer of the Dense dense layer model

with the ReLU activated LSTM layer. Narrowing the

datasets by feature selection met the performance of

almost the entire dataset [9]. R. Vinayakumar et al.

removed bias by applying different separations to the

datasets along the bias-deep learning line. Removing

bias from the datasets made the malware detection

model training independent. Light GBM 100-tree

modeling, convolutional 1D layers and LSTM hybrid

MalConv variants were investigated on the Ember

dataset. Flexible and real-time hybrid deep learning

models are used for malware preprocessing and

classification. Ember dataset was randomly split into

60% training and 40% test sets and introduced to the

models [10]. Handhika Yanuar Pratama and Jeckson

Sidabutar apply EfficientNet models - EfficientNet-

b0, EfficientNet-b1, EfficientNet-b2, EfficientNet-

b3, EfficientNet-b4, EfficientNet-b5, EfficientNet-b6

and EfficientNet-b7 - to two-channel grayscale and

three-channel RGB malware images from the

Malware Classification Challenge (BIG 2015)

dataset. EfficientNet models are able to perform

successful deep learning classification on the

ImageNet dataset. In the study experiments,

EfficientNet-b7 architecture applied to three-channel

RGB malware images achieves 99.63% accuracy rate,

98.36% precision rate, 98.35% recall rate, 98.34%

F1-score rate and 98.30% AUC rate [11]. Cyber

breach detection systems are being developed to

protect against DDoS attacks in SDN-based SCADA

systems. Oyucu et al. proposed a Decision Tree-based

Ensemble Learning technique that detects DDoS

attacks in SDN-based SCADA systems by

distinguishing between normal data flow and DDoS

attack. The proposed hybrid model using machine

learning classification methods includes dataset

generation, feature refinement, normalization and

classification stages. For the training and testing of

ensemble learning models, normal traffic and DDoS

attack data flow traffic are obtained from specific

experimental network topology simulation. Minimum

Redundancy Maximum Relevance (MrMR) method

is adopted for feature balance in the dataset. Feature

selection and hyperparameter tuning are used to

optimize decision tree ensemble models. The

experiments show that feature selection, different

combinations of decision tree ensemble models, and

hyperparameter tuning can lead to better detection

performance against DDoS attacks. The team's

Ensemble Boosted Trees method showed the highest

accuracy performance of 92.9% [12]. Polat et al.

proposed a multi-stage learning model for DDoS

attack detection in SDA-based SCADA systems by

combining 1-dimensional convolutional neural

network (1D-CNN) and decision tree based

classification. In the proposed model, the feature

extracted from the 1D-CNN convolutional neural

network model is input to the decision tree model.

While the 1D-CNN network model performs deeper

and more complex feature extraction, the decision

tree model defines the features into the decision

structure. A new dataset of specific experimental

network topology based on varying attack scenarios

is used to train and test the model. The proposed

model achieved an accuracy of 97.8% in DDoS attack

detection [13]. In addition to the literature studies, the

proposed model utilizes all EfficientNet-b0-

EfficientNet-b7 models for malware classification. In

this study, two-channel grayscale malware images

and three-channel RGB malware images were

generated by processing bytes files of different

datasets.

In this study, two-channel grayscale malware images

of the Microsoft Malware Classification Challenge

(BIG 2015) dataset are more successful with the

EfficientNet-b7 model, while three-channel RGB

malware images are more successful with the

EfficientNet-b5 model. For the Dumpware10 dataset,

the EfficientNet-b6 architecture is more successful. In

the model development, a deep learning model was

created by using convolutional bottleneck and

depthwise separable convolution in the inverse

residual block structure. The EfficientNet architecture

of the study effectively applies the layer structure that

reduces the gradient computation while approaching

full convolution to malware image datasets. The

combination of the Microsoft Malware Classification

Challenge (BIG 2015) dataset and the proprietary

Dumpware10 dataset offers different perspectives in

experimental testing. While the Microsoft Malware

Classification Challenge (BIG 2015) dataset serves as

a general benchmark, the Dumpware10 dataset

provides a different benchmark evaluation of the

working model.

3. MATERIAL and METHOD

3.1. Methods

For malware detection, a deep learning model is built

using convolutional bottleneck and depthwise

separable convolution in the inverse residual block

structure of the EfficientNet architecture.

3.1.1. Transfer learning

Transfer learning is the transfer of the activation

hardware of the deep neural network architecture,

previously subjected to the training cycle, to different

tasks. The final Dense layer of the deep neural

network architecture is changed according to the

classification distribution of the task. The deep neural

network layer architecture performs activation

learning by pre-training on a large benchmark dataset

such as ImageNet. The deep neural network layers

can transfer the activation learning experienced on the

ImageNet dataset to different classification tasks

belonging to different datasets. For example, the

weighted DenseNet121 neural network architecture,

pre-trained on the ImageNet dataset, can be adapted

to a dataset containing human facial expressions and

aiming to classify human emotions - happiness,

anger, sadness, neutral, surprise, fear, disgust. The

DenseNet121 neural network architecture applies the

edge, shape, color and associated texture pixel feature

information learned from ImageNet image data to

human emotion classification of facial expression

images. The last Dense layer of the DenseNet121

neural network architecture is replaced by a softmax

layer which is divided into 7 human emotion classes.

In the DenseNet121 architecture, the layers carrying

low-level feature information do not participate in

gradient generalization during training, but the last

Dense layers carrying high-level feature information

participate in gradient generalization. For successful

softmax classification, activation function,

optimization function, learning rate, momentum,

number of epochs and weight decay function

hyperparameters are added to improve the gradient

generalization. As a result, the weights of the pre-

trained DenseNet121 neural network architecture are

task domain specific in the transfer learning domain.

The hyperparameters drive the gradient

generalization of the deep neural network training

loop. Optimization functions such as Adam, SGD,

Adagrad, RMSProp regulate the activation flow of the

neural network architecture layers. The training cycle

of the neural network architecture translates into more

successful gradient generalization. Adjusting the

learning rate, momentum, weight decay function and

number of epochs shape the effect of optimization

functions on the training cycle. Dense layer swapping

and hyperparameter configuration are prominent in

the transfer learning neural network architecture.

High-performance neural network architectures such

as DenseNet121, ResNet50, InceptionV3, Xception,

AlexNet, EfficientNet-b0-b7 transform Dense layer

exchange and hyperparameter configuration in the

transfer learning extension. It performs different

training cycles according to the datasets. In this

context, the transfer learning method approximates

the neuron activations of pattern neural network

architectures to the gradient generalization of the

dataset and shows successful results in classification

tasks. In this method, the neural network layers fix the

gradient computation up to the Dense layer, or the

gradient computation of layer blocks that process

only low-level feature information.

Transfer learning domain connected with deep neural

networks through deeper layers of feature extraction

and neural network based adaptation of big volume of

prevalent knowledge domain to small volume of

intuitive knowledge domain. For example, a

researcher can use existent biological protein

structure information with artificial intelligence for

predicting protein structures. Information knowledge

transfer through deep neural networks has deep

transfer learning model-based methods with variety

of frozen pre-trained layer blocks, added new layer

blocks and regulation of layer gradient computations.

Deep transfer learning model-based methods are

divided into finetuning, freezing low-level CNN

layers, and progressive learning approaches.

Finetuning generalizes the neural network model,

which has been pre-trained with data close to the

target task scope, to the dataset of the target task. In

this respect, Finetuning is the most common deep

transfer learning approach. The finetuning approach

can reduce the computational cost of the training

cycle for the dataset and addresses the need for a large

dataset for the target task. However, finetuning faces

the problem of gradient loss during the training cycle.

Freezing low-level CNN layers means that the low-

level convolution layers of the neural network model

are frozen and do not participate in the gradient

calculation of the training cycle. Only the

intermediate fully-connected layers participate in the

gradient generalization in the training cycle of the

target dataset. The low-level CNN layers undertake

the feature extraction of the dataset, while the

intermediate fully-connected layers undertake the

classification of the feature extraction. Progressive

learning uses part or all of the layers of a pre-trained

neural network model without entering the gradient

generalization of the training cycle. The new layer

configuration added to the neural network model is

trained on the target dataset. The triple layer block

autoencoder structure minimizes the mismatch

between training and test feature data by applying a

maximum mismatch term to the features of the

training and target data [14].

In figure 1 previously explained deep transfer

learning methods of finetuning, frozen CNN layers

and progressive learning are depicted.

Model

Model

 Apply finetuning for the target task to
the same model trained with a more

comprehensive dataset

C
N

N
 L

ay
er

C
N

N
 L

ay
er

C
N

N
 L

ay
er

Keep frozen CNN layers Update fully connected layers

Task 1 Task 2 Task 3

Finetuning

Frozen CNN Layers

Progressive Learning

Figure 1. Deep transfer learning model-based methods

3.1.2. EfficientNet

The EfficientNet architecture consists of “compound

scaling” modeling of resolution, layer width and layer

depth in MBConv structures. This architecture gives

MBConv structures the flexibility of

multidimensional compound scaling expansion. The

MBConv inverted residual block structure follows a

convolutional layer path that shrinks at the beginning,

expands in the middle, and shrinks again at the end.

Initially it follows (1x1) convolution filtering,

followed by (3x3) depthwise convolution block

filtering. Then the (1x1) convolution filtering reduces

the number of parameters in the middle layer. The

MBConv block is an inverted residual block

modeling that includes an inverted layer

transformation with performance impact.

MBConv block

In figure 2 MBConv block structure and connections

are shown. MBConv has a convolutional block

architecture. MBConv convolutional block structure

consists of depthwise separable convolutions,

BatchNormalization, Squeeze and Excitation module,

Projection phase, BatchNormalization, activation and

Skip connection internals layer components. The full

convolutional layer architecture is replaced by linear

bottlenecks. The full convolutional operator neural

network layer of the Depthwise separable

convolutions block architecture decomposes the

convolutional layer into two separate layers by

factorization. The first layer is the depthwise

convolution layer. This layer applies a lightweight

single convolutional filtering for each input channel.

The second decomposed layer is the (1x1) pointwise

convolution layer, which combines new feature

outputs from linear computational combinations of

input parameters. The standard convolution layer

takes the input hixwixdi and Li tensor structure and

processes K convolutional kernel filtering to produce

the output Lj tensor structure hixwixdj. The standard

convolution layer has a computational cost of

hi*wi*di*dj*k*k*k, while the depthwise separable

convolution layer has a lower computational cost in

the formal convolution functionality. Depthwise and

(1x1) pointwise convolution layers have lower

running cost compared to the standard convolution

layer. Depthwise separable convolution layer reduces

the running cost by a factor of k^2 compared to

traditional layers [15].

Conv 1x1

Squeeze
Excitation

Depthwise
Conv 3x3

Conv 1x1

Figure 2. MBConv Block

Linear bottleneck block

In figure 3 linear bottleneck block is depicted as

convolutional layer blocks with (1x1), (3x3)

Depthwise and (1x1) Linear filter dimensions and

ReLU layer transformations connected to neural

network activation tensor structures. The neural

network activation tensor structures are di

dimensional components with hixwi pixels and

generalize the full layer activations to the feature

fields. In neural networks, feature fields can be

transferred to low-dimensional components. In the d-

channel pixels in the deep convolution layer, the

numerical values encoded in the connected pixels are

integrated into the feature fields. These fields can be

defined into low-dimensional parts. Deep convolution

reduces the spatial dimension of the feature space by

reducing the layer size. This approach balances

computational cost and accuracy. The layer width

multiplier parameter is linked to efficient model

design. This parameter reduces the activation space

dimension in the deep architecture layer until the

neuron completes the feature space. However, non-

linear point coordinate transformations such as ReLU

are independent. The ReLU layer transformation has

a non-zero unit S generated from the linear

transformation of the dimensional output into the

input space B, and the non-zero unit S has a linear

transformation. Deep neural networks are limited by

the power of the linear classifier, which focuses on

this unit of the feature space [15].

ReLU transformation produces an interpretable line

of knowledge path through neural network channel

activations. İrregular nature of a specific channel

parameter in the ReLU transformation line causes

loss of corresponding neural network channel

activation. Multiple channel parameters can solve

channel activation loss issue by retaining the

activation information within other unaffected

channels. When high feature activations of input data

reflected on lower feature representation, high level

knowledge can package into lower dimensional

blocks. Similarly, depthwise separable convolution

blocks split huge chunks of convolution kernels into

lighter convolutions with preserved critic high level

knowledge and ReLU transformation of depthwise

convolutions connects activation information from

the channels while adding complex nonlinear

characteristics to the line of knowledge path.

Through this, the ReLU transformation retains the

essential input space details in the low-dimensional

activation space. Linear bottleneck layer blocks in

which have Depthwise (3x3) convolutions with ReLU

transformations are capable of capturing the relevant

low-dimensional feature blocks while preventing any

data loss from non-linear distributed projections.

Conv 1x1
ReLU6

Depthwise
3x3 ReLU6

Conv 1x1
Linear

Input

Figure 3. Linear Bottleneck Block

Inverted residual block

In figure 4 inverted residual block has (1x1) Conv2d

and (3x3) Depthwise blocks applying inverted

residual block connecting bottleneck expansions.

Bottleneck blocks have usage for reducing parameter

density while maintaining sufficient portion of

model's feature extraction capability. Bottleneck

blocks closely resemble the structure of residual

block architectures. According to Sandler’s research

team a residual block has first widening then

narrowing and widening again layer pipeline and

begins with several bottleneck layers immediately

after the input layer, while inverted residual block has

first narrowing then widening and narrowing again

pipeline connecting (1x1) Conv2d - (3x3) Depthwise

block and (1x1) Conv structures. Bottleneck layers

are connected to following expansion layer. While

the bottleneck layers capture essential feature

information, the expansion layers are responsible for

reviving non-linear feature details without weighting.

In this setup, "shortcut" connections are established

between the bottleneck layers to ensure smooth

information flow.

ReLU6 3x3 Depthwise Block

ReLU6 1x1 Conv2d Block

3x3

1x1

Figure 4. Inverted Residual Block

EfficientNet architecture scaling

EfficientNet architecture scaling enhances model

performance by proportionally increasing the depth,

width, and resolution of the neural network layers.

This scaling is governed by the EfficientNet

compound coefficient, which adjusts these

dimensions simultaneously. At the same time, the

neural network structure is expanded to the

EfficientNet model series such as shallower

EfficientNet-b0 and more complicated EfficientNet-

b7. The convolutional design analyzes the

transformation of neural network layers through layer

width, channel count, input height and width

parameters in a flexible manner. The depth (d), width

(w), and resolution (r) scaling of the layers are

interconnected with distinctive parameters. For

instance, depth scaling is connected to layer number

of relevant depth, width scaling is connected to

neuron channel unit count and resolution scaling is

connected to input width and height parameters.

While EfficientNet-b0 has 224 resolution scaling and

depth scaling that has 237 number of layers,

EfficientNet-b7 has 600 resolution and depth scaling

that has 813 number of layers.

Depth (d)

Scaling the depth of neural networks is frequently

used in convolutional structures. With increasing

depth, convolutional structures (ConvNet) can

capture more complex and rich feature information. It

can generalize better to unexperienced tasks.

However, deep neural networks have a more difficult

training cycle due to the vanishing gradient problem.

Skip connections and batch normalization add-on

dilute the gradient problem and reduce the training

accuracy of deep neural networks [16].

Width (w)

Increase the width scaling of a neural network is a

common technique, particularly for smaller models.

Width scaling is influenced by neuron channel unit

count across layers and increasing neuron channels

improves feature extraction of model compatible with

findings by Zagoruyko and Komodakis, wider

networks are more effective at capturing detailed

feature information and are easier to train. However,

as the network width growth forces model complexity

and approximates training accuracy to plateau as it

reaches the limit.

Resolution (r)

Convolutional layers can extract richer feature details

through higher input resolution. Input resolution is

connected to width and height of input image. First

going through smaller (224x224) input resolution to

higher (300x300) input resolutions, convolutional

layers bind higher resolution image pixels to create

feature which has better classification accuracy.

Excessive input resolution causes poor accurracy

increasement over time.

Compound scaling

In figure 5 compound scaling is depicted as width

scaling, depth scaling and resolution scaling of

baseline layer dimension parameters. The scaling of

layer dimension parameters in a neural architecture is

interdependent. For higher input resolution,

increasing the network depth scaling enhances feature

gain of neuron channel units and related neuron

channel units capture similar feature patterns in

images with higher pixel densities. This situation

necessitates a joint approach to scaling, as scaling

only one dimension without scaling other layer

dimensions result in inadequate model performance.

Increasing the neuron channel unit count connected to

layer depth and input resolution increasement. For

instance, going through from EfficientNet-b0 to

EfficientNet-b7 architecture, layer depth and input

resolution is increased together with convolution

blocks of neuron channel units.

Balancing the layer depth, width and resolution

dimensions of the neural network structure is critical

for more effective accuracy performance. The

compound scaling method scales the layer depth,

width and resolution dimensions of the neural

network structure consistently with the help of the

compound coefficient. Neural network layer depth,

width and resolution dimension constants can be

determined by “grid search” research. The compound

coefficient is the dynamic value that controls the

resource distribution in the scaling of the neural

network structure. Depth, width and resolution

dimension constants are the values that determine

how the resource distribution will be transferred to the

network depth, width and resolution [16].

resolution
HxW

layer_i

channels
width scaling

d
e

ep
er

h
igh

e
r

reso
lu

tio
n(a) baseline (b) width scaling

(c) depth scaling

(d) resolution
scaling

Figure 5. Compound scaling

3.1.3. Dynamic distribution adaptation network

(DDAN) and CORAL transfer learning algorithm

For improving fluctuation of validation datasets and

model’s generalization ability, we examine research

studies about transfer learning algorithms and domain

adaptations. In this research we chose dynamic

distribution adaptation network with CORAL loss

applied to backbone neural network.

In effectiveness analysis of transfer learning for the

concept drift problem in malware detection research

study, malware samples were divided into source

domain and target domain fields via temporal split.

VirusShare dataset's malware samples from the years

2015, 2017, 2019 and 2020 were transferred to source

domain and target domain. Source domain contains

malware samples belong to specific earlier year band,

while target domain contains malware samples

belong to later year band. Transfer learning

algorithms were applied to the relevant source

domain and target domain. Especially CORAL

transfer learning algorithm approximates the feature

covariance of the source domain to the feature

covariance of the target domain. This is achieved by

whitening the source data (reducing the feature

correlation to 0) and activating the covariance of the

target domain. The original feature domain is not

changed. In the related research study, transfer

learning algorithms were presented to develop new

malware detections despite the insufficiency of

labeled malware samples [17]. CORAL loss defines

transferable measure of target domain and source

domain in dynamic distribution adaptation network.

In transfer learning with dynamic distribution

adaptation research study, Dynamic Distribution

Adaptation (DDA) method is presented. Dynamic

Distribution Adaptation method evaluates the

quantitative weight of each feature distribution of

data domains. Dynamic Distribution Adaptation can

participate in the structural risk minimization of

feature transitions in solution of transfer learning

problems. The research study proposed Manifold

Dynamic Distribution Adaptation (MDDA) for

traditional transfer learning and Dynamic

Distribution Adaptation Network (DDAN) learning

algorithms for deep transfer learning on the basis of

Dynamic Distribution Adaptation. Especially in deep

transfer learning, the Dynamic Distribution

Adaptation Network (DDAN) performs end-to-end

learning of the feature g(.) learning function and the

classification function f. DDAN learns feature

representations with the end-to-end training cycle of

deep neural networks. Backbone network applies

domain adaptation with DDA method while learning

useful feature representations [18].

In the Dynamic Distribution Adaptation Network

(DDAN) architecture, data samples from source

domain and target domain are input to deep neural

networks. CNN networks such as AlexNet and

ResNet extract high-level features from the data

samples. The high-level features pass through the

fully-connected layer and are assigned to the softmax

classification. The unique architectural part is the

convergence of the feature distributions of the source

domain and the target domain using the dynamic

distribution alignment. The DDAN architecture

incorporates the mini-batch Stochastic Gradient

Descent (SGD) algorithm into the deep neural

network training cycle. Dynamic distribution

adaptation is computed over batch parts of the domain

[18].

Deep and adversarial transfer learning

Deep transfer learning has improved with more

enhanced feature extraction capability of deep neural

networks and parametric functions such as loss

functions or optimization functions. Especially loss

functions have become evaluation model for

transfering source domain knowledge to feature

separation of target domain. In addition, adaptation of

source domain and target domain has realized through

loss function. For instance, the Deep Domain

Confusion (DDC) method introduced MMD loss into

deep networks, facilitating adaptation between

domains. Similarly, Deep Adaptation Networks

(DAN) integrated a multi-kernel MMD framework

based on first-order formulation while the Deep

CORAL network included CORAL loss based on

second-order formulation. CORAL loss has usage in

Dynamic Distribution Adaptation Network and

measures adaptation of source domain and target

domain during network training cycle. Apart from

Dynamic Distribution Adaptation Network and loss

functions such as CORAL, MMD, the adversarial

learning approach promotes the learning of

representative feature characteristics that have more

potential to transfer between target domain and

source domain. The Domain Adversarial Neural

Network (DANN) uses domain adversarial loss rather

than relying on loss functions like MMD connected to

specific Maximum Mean Discrepancy distance

distribution formulation. In this situation network can

learn more distinctive feature characteristics between

domains.

3.2. Datasets

3.2.1. Dumpware10 dataset

The Dumpware10 dataset produced by Hacettepe

University was created for the detection of malware

with an image-based approach. It was combined with

image descriptors such as GIST and Histogram of

Gradients (HOG). Four different resolutions ranging

from 224 to 4096 pixels were used in the creation of

malware images belonging to the Dumpware10

dataset. GIST and HOG image descriptors were

evaluated both separately and together within the

scope of information fusion. UMAP, a dimensional

reduction and multi-faceted learning technique, was

used within the scope of malware image

transformation problems. This dataset has a total of

11 classes, including 10 malware families and one

benign software. The Dumpware10 dataset has a total

of 4294 data samples, 3433 training and 861

validation samples. The dataset contains files

belonging to 10 different malware families, including

Adposhel, Allaple.A, Amonetize, AutoRun-PU,

BrowseFox, Dinwod, InstallCore.C, MultiPlug,

VBA, and Vilsel.

3.2.2. Microsoft malware classification challenge

dataset

Microsoft Malware Classification Challenge is a

dataset for malware classification. The dataset

provides 10868 malware byte files as training data.

Each byte file contains raw byte sequences

representing a specific type of malware. This dataset

helps researchers develop malware detection

algorithms. The data is particularly suitable for

research aimed at malware classification based on

static file features.

4. PROPOSED MODEL

4.1. Data Preprocessing

In the data preprocessing of the research, malware

byte files belong to the Microsoft Malware

Classification Challenge (BIG 2015) dataset are

subjected to two-channel grayscale malware image

conversion and three-channel RGB malware image

conversion. Connected malware image conversions

have paralel implementation as B2IMG algorithm.

In figure 6 parsing of .bytes files, calculation of (a,b)

data array size, converting sized data arrays to 8-bit

2D format and saving 8-bit 2D formats as (256x256)

sized .jpg files phases of two-channel grayscale

malware image conversion are depicted. During two-

channel grayscale malware image conversion, byte

files are assigned to 8-bit two-channel grayscale

format by converting to (a,b) matrix modeling over a

16-column array data and saved in fixed-size image

files with .jpg or .png extensions [19]. Data arrays are

sized to 256x256 for fixed-size grayscale malware

image generation.

Malware BIG 2015
dataset .bytes files of the

dataset are parsed

(a,b) size is calculated for
data arrays of .bytes files

(a,b) sized data arrays are
converted to 8-bit 2D format

8-bit 2D formats are saved as
256x256 sized .JPG files

8 - bit

8 - bit

8 - bit

Figure 6. Two-channel Grayscale malware image

conversion

In figure 7 parsing of .bytes files, dividing bytes data

into RGB channels, combining RGB channels into

meaningful RGB data and saving RGB data as .png

files phases of three-channel RGB image conversion

are depicted. During three-channel RGB malware

image conversion, the binary data processed from the

byte files are divided into triple RGB channel blocks.

Then, RGB channel blocks are combined to create

new RGB data and the RGB data are saved in .png

image files [19].

Malware BIG 2015
dataset

.bytes files of the
dataset are parsed

Bytes data are divided
into RGB channels

 RGB data are created by
combining RGB channels

RGB data are saved as .PNG files

8 - bit

8 - bit

8 - bit

Figure 7. Three-channel RGB malware image conversion

In figure 8 modelling of EfficientNet neural network

implementation is partitioned into data processing

and EfficientNet feature extraction phases. And

connected phases are detailed consecutively with

steps and model architecture structures such as layers

and functions.

In data preprocessing, the malware dataset is parsed

into byte files and converted to 8-bit matrix format

and saved to malware images. Malware images are

transferred to EfficientNet architecture and subjected

to feature extraction. Data preprocessing and

EfficientNet feature extraction ends with the softmax

function connected to the fully-connected layer. The

softmax function assigns the feature extractions to the

malware family counterparts. EfficientNet feature

extraction produces the classification characteristics

of malware images.

Parsing .bytes files

Dividing .bytes files into .bytes parts

Converting .bytes parts to 8-bit matrix data

Saving .bytes matrix data to malware

images

Dataset

Conv 3x3

MBConv1 3x3

MBConv6 5x5

MBConv6 3x3

MBConv6 3x3

MBConv6 5x5

MBConv6 3x3

MBConv6 3x3

MBConv6 3x3

MBConv6 5x5

MBConv6 5x5

MBConv6 5x5

MBConv6 5x5

MBConv6 5x5

MBConv6 5x5

MBConv6 5x5

MBConv6 3x3

Conv1x1 + Pooling + FC ...

Softmax

functionClassification Output

 Output size (1)

224x224x3

112x112x32

112x112x16

56x56x24

56x56x24

28x28x40

28x28x40

28x28x80

28x28x80

28x28x80

14x14x112

14x14x112

14x14x112

7x7x192

7x7x192

7x7x192

7x7x192

B
a
si

c
 E

ff
ic

ie
n

tN
e
t

F
e
a
tu

re
 E

x
tr

a
c
ti

o
n

D
a
ta

 p
re

p
ro

c
e
ss

in
g

Fully Connected Layer

7x7x320

Figure 8. EfficientNet neural network implementation with

data preprocessing

5. EXPERIMENTAL RESULTS

10868 malware byte files of the Microsoft Malware

Classification Challenge (BIG 2015) dataset are

introduced to EfficientNet-b3 and EfficientNet-b4

neural network architectures. Stochastic Gradient

Descent (SGD) and Adam optimizations with 0.01

learning rate are used in EfficientNet model trainings.

Pre-trained ImageNet-1K dataset weights are used in

EfficientNet transfer learning and during experiments

Pre-trained ImageNet-1K dataset weights were

specifically trained for EfficientNet architectures and

pre-trained ImageNet-1K dataset weights knowledge

is transferred into EfficientNet malware classification

by finetuning. Malware train data are converted to

two-channel grayscale malware images and three-

channel RGB malware images and included in the

EfficientNet model training cycle. Three-channel

RGB malware images and two-channel grayscale

malware images are separated into 80% train set and

20% test set. Train set of malware images are trained

with 20% validation separation. Grayscale malware

images are 256x256 in size. RGB malware images are

assigned to 32, 64, 128, 256, 384, 512, 768, 1024 and

224 sizes according to variable file sizes.

Table 1 results show that EfficientNet-b4 architecture

trained with grayscale malware images achieves 0.90

accuracy in SGD optimization. EfficientNet-b3

architecture trained with RGB malware images

achieves 0.91 accuracy in SGD optimization. Adam

optimization shows lower accuracy compared to SGD

optimization. Deepening EfficientNet-b3 architecture

to EfficientNet-b4 architecture increases the accuracy

rate in Adam optimization while decreasing it in SGD

optimization for training RGB malware images.

Table 1. EfficientNet-b3 and EfficientNet-b4 models

Microsoft Malware Classification Challenge validation

accuracies

Malware

image
Model

Learn

ing

rate

Optimiz

ation

Accur

acy

grayscale

malware

Efficient

Net-b3
0.01 SGD

0.897

642

grayscalema

lware

Efficient

Net-b4
0.01 SGD

0.907

418

grayscalema

lware

Efficient

Net-b3
0.01 Adam

0.753

306

grayscalema

lware

Efficient

Net-b4
0.01 Adam

0.840

713

rgb malware
Efficient

Net-b3
0.01 SGD

0.917

194

rgb malware
Efficient

Net-b4
0.01 SGD

0.897

067

rgb malware
Efficient

Net-b3
0.01 Adam

0.826

337

rgb malware
Efficient

Net-b4
0.01 Adam

0.885

566

Table 2 results show that EfficientNet-b3 and

EfficientNet-b4 architectures trained with SGD

optimization on grayscale malware image type have

the highest test accuracy.

Table 2. Microsoft Malware Classification Challenge

EfficientNet-b3 and EfficientNet-b4 test accuracies

Malwa

re

image

Model
Learni

ng rate

Optimizati

on

Accura

cy

graysca

le

malwar

e

EfficientN

et-b3
0.01 SGD 0.89

graysca

le

malwar

e

EfficientN

et-b4
0.01 SGD 0.89

graysca

le

malwar

e

EfficientN

et-b3
0.01 Adam 0.70

graysca

le

EfficientN

et-b4
0.01 Adam 0.80

malwar

e

rgb

malwar

e

EfficientN

et-b3
0.01 SGD 0.88

rgb

malwar

e

EfficientN

et-b4
0.01 SGD 0.86

rgb

malwar

e

EfficientN

et-b3
0.01 Adam 0.80

rgb

malwar

e

EfficientN

et-b4
0.01 Adam 0.86

We use Microsoft Malware Classification Challenge

(MMCC) grayscale malware images belong to the

Malware Classification and Visualization Using

EfficientNet and B2IMG Algorithm research study.

Related grayscale malware images are assigned to

equal width and height values of 32, 64, 128, 256,

384, 512, 768, 1024 according to their file sizes [11].

In this research related research study’s grayscale

malware images had already passed through B2IMG

data preprocessing algorithm -paralel to our data

preprocessing- just without (256x256) size fixation

and are split into 80% train set and 20% test set. Then

the grayscale malware images are inputted to

EfficientNet-b0...b7 architectures. The train set and

test set are distributed into Gatak, Kelihos_ver1,

Kelihos_ver3, Lollipop, Obfuscator.ACY, Ramnit,

Simda, Tracur, Vundo 9 malware families. Train set

of grayscale malware images was trained in 120

epochs with a 20% validation separation. This train

cycle has SGD optimization with a 0.01 learning rate.

The highest train accuracy was obtained in the

EfficientNet-b7 architecture.

In this study during going though EfficientNet pre-

transformed Microsoft Malware Classification

Challenge (MMCC) RGB malware images are sized

to (224x224) random resized crops. Random parts of

malware image are cropped and resized to (224x224).

By these random resized crops EfficientNet model

can interpret better characteristic textural analysis of

malware image. RGB malware images are inputted to

EfficientNet-b0, EfficientNet-b1, EfficientNet-b2,

EfficientNet-b3, EfficientNet-b4, EfficientNet-b5,

EfficientNet-b6, EfficientNet-b7 architectures. RGB

malware images are separated into 80% train set and

20% test set. In this research, the train set of RGB

malware images is trained in 120 epoch cycles with

20% validation separation. This training cycle has

SGD optimization with a learning rate of 0.01.

Table 3 shows Microsoft Malware Classification

Challenge grayscale malware images achieve the

most successful validation accuracy in the

EfficientNet-b7 architecture.

Table 3. Validation accuracy of grayscale two-channel

malware images in the EfficientNet-b7 architecture

Malwa

re

image

Model
Learni

ng rate

Optimizati

on

Accura

cy

graysca

le

malwar

e

EfficientN

et-b7
0.01 SGD

0.9527

92

Table 4 shows Microsoft Malware Classification

Challenge RGB malware images achieve the most

successful validation accuracy in the EfficientNet-b5

architecture.

Grayscale malware are less noisy than RGB data and

focuses on the textural patterns of malware data. In

this case, deeper EfficientNet-b7 can capture finer

malware image details without complexity. RGB

malware has three color channels and is more

complex than grayscale malware. In this case, the

simpler EfficientNet-b5 can resolve the added

channel complexity into meaningful malware image

details and realize successful performance metrics.

Table 4. Validation accuracy of three-channel RGB

malware images in EfficientNet-b5 architecture

Malwa

re

image

Model
Learni

ng rate

Optimizati

on

Accura

cy

RGB

malwa

re

EfficientN

et-b5
0.01 SGD

0.9447

96

For Dumpware10 malware images, 300-pixel
resolution and (300x300) image size were preferred.
Dumpware10 malware images were divided into
3433 training sets and 861 test sets and entered into
EfficientNet-b0, EfficientNet-b1, EfficientNet-b2,

EfficientNet-b3, EfficientNet-b4, EfficientNet-b5,

EfficientNet-b6, EfficientNet-b7 architectures. In this

research, Dumpware10 malware images were trained

in 120 epoch cycles with a 20% validation separation.

The training set and the test set were distributed to

Adposhel, Allaple, Amonetize, AutoRun,

BrowseFox, Dinwod, InstallCore, MultiPlug, Other,

VBA, Vilsel classes.

Table 5 shows Dumpware10 RGB malware images

achieve the most successful validation accuracy in the

EfficientNet-b6 architecture. Dumpware10 RGB

images are focused on the simpler EfficientNet

architecture than the Microsoft Malware

Classification Challenge (MMCC) RGB malware

images.

Table 5. Validation accuracy of Dumpware10 RGB

malware images on EfficientNet-b6 architecture

Malware

image
Model

Learnin

g rate

Optimizat

ion

Accur

acy

RGB

malware

Efficien

tNet-b6
0.01 SGD

0.9344

98

In training of grayscale malware images belong to the

Malware Classification and Visualization Using

EfficientNet and B2IMG Algorithm study, the

EfficientNet-b7 architecture reaches the highest

accuracy with a value of 95%. In training of RGB

malware images belong to our research study, the

EfficientNet-b5 architecture reaches the highest

accuracy with a value of 94%. The EfficientNet-b6

architecture has the highest accuracy with of 93% for

RGB malware images of the Dumpware10 dataset.

Table 6 shows EfficientNet-b7 SGD optimization of

Microsoft Malware Classification Challenge

grayscale images achieve the highest success values.

In figure 9 train loss of Microsoft Malware

Classification Challenge (Grayscale) EfficientNet-b7

and in figure 10 train accuracy of Microsoft Malware

Classification Challenge (Grayscale) EfficientNet-b7

is depicted. In figure 11 validation accuracy and in

figure 12 validation loss of Microsoft Malware

Classification Challenge (Grayscale) EfficientNet-b7

is depicted. The validation loss and accuracies are

more zigzag shaped. In this case, train data

approaches a more consistent curve by being

memorized in the model while validation data is more

inconsistent as a result of overfitting. The model

training has difficulty generalizing to unpredictable

validation data. The overfitting status of the train data

is reflected in the validation data.

Table 6. Microsoft Malware Classification Challenge and Dumpware10 test accuracy, F1-score, recall and precision results

 Model
Malware

image

Learning

Rate
Optimization Accuracy

F1

Score
Recall Precision

MS

EfficientNet-

b7

Gray

Scale
0.01 SGD 0.93 0.8963 0.9163 0.8815

EfficientNet-

b5
RGB 0.01 SGD 0.91 0.8646 0.8777 0.8550

Dumpware10
EfficientNet-

b6
RGB 0.01 SGD 0.91 0.8786 0.8843 0.8811

Figure 9. Microsoft Malware Classification Challenge

(Grayscale) EfficientNet-b7 train loss

Figure 10. Microsoft Malware Classification Challenge

(Grayscale) EfficientNet-b7 train accuracy

Figure 11. Microsoft Malware Classification Challenge

(Grayscale) EfficientNet-b7 validation accuracy

Figure 12. Microsoft Malware Classification Challenge

(Grayscale) EfficientNet-b7 validation loss

In figure 13 confusion matrix of Microsoft Malware

Classification Challenge (Grayscale) EfficientNet-b7

is depicted. When Microsoft Malware Classification

Challenge (Grayscale) EfficientNet-b7 confusion

matrix is examined, the lowest accuracy is seen in the

Simda class, while the highest accuracy is seen in the

Kelihos_ver1 class. In particular, the fact that the

Simda class has a lower accuracy is due to

insufficiency of data for the Simda class.

Figure 13. Microsoft Malware Classification Challenge

(Grayscale) EfficientNet-b7 confusion matrix

In figure 14 train loss of Microsoft Malware

Classification Challenge (RGB) EfficientNet-b5 and

in figure 15 train accuracy of Microsoft Malware

Classification Challenge (RGB) EfficientNet-b5 is

depicted. In figure 16 validation loss and in figure 17

validation accuracy of Microsoft Malware

Classification Challenge (RGB) EfficientNet-b5 is

depicted. When the figures are examined, it is seen

that the validation loss and accuracies are more

inconsistent than the train loss and accuracies. This

situation transforms the overfitting problem of the

train data into a zigzag curve in the validation data.

RGB malware images are more consistent compared

to grayscale malware images.

Figure 14. Microsoft Malware Classification Challenge

(RGB) EfficientNet-b5 train loss

Figure 15. Microsoft Malware Classification Challenge

(RGB) EfficientNet-b5 train accuracy

Figure 16. Microsoft Malware Classification Challenge

(RGB) EfficientNet-b5 validation loss

Figure 17. Microsoft Malware Classification Challenge

(RGB) EfficientNet-b5 validation accuracy

In figure 18 confusion matrix of Microsoft Malware

Classification Challenge (RGB) EfficientNet-b5 is

depicted. When the Microsoft Malware Classification

Challenge (RGB) EfficientNet-b5 confusion matrix is

examined, the lowest accuracy belongs to the Simda

class while the highest accuracy belongs to the

Kelihos_ver3 class. This is due to the imbalance in the

data distribution.

Figure 18. Microsoft Malware Classification Challenge

(RGB) EfficientNet-b5 confusion matrix

In figure 19 validation loss of Dumpware10

EfficientNet-b6 and in figure 20 validation accuracy

of Dumpware10 EfficientNet-b6 is depicted. In figure

21 train loss and in figure 22 train accuracy of

Dumpware10 EfficientNet-b6 is depicted. When

Dumpware10 EfficientNet-b6 validation accuracies

and losses and train accuracies and losses are

examined, it is shown that the train data has reached

overfitting and the validation data has difficulty in

generalization. In the model training, the batch parts

can not learn the malware image characteristics in the

gradient loop. This creates inconsistent curves in the

validation data.

Figure 19. Dumpware10 EfficientNet-b6 validation loss

Figure 20. Dumpware10 EfficientNet-b6 validation

accuracy

Figure 21. Dumpware10 EfficientNet-b6 train loss

Figure 22. Dumpware10 EfficientNet-b6 train accuracy

In figure 23 confusion matrix of Dumpware10

EfficientNet-b6 is shown. In Dumpware10

EfficientNet-b6 confusion matrix, the lowest

accuracy belongs to Dinwod class while the highest

accuracy belongs to VBA class. Imbalance of data

distribution between classes causes this issue.

Figure 23. Dumpware10 EfficientNet-b6 confusion matrix

In transfer learning approach for malware

classification research study, a convolutional transfer

learning application (TL-CNN) was utilized for

Android malware image classification. The transfer

learning convolutional neural network architecture

separated benign images and malicious malware

images. In the transfer learning model of the research

work, the pre-trained ResNet-50 classifier component

was replaced with the original classification

component. The classification component removed

the ImageNet 1000 image classes and integrated the

fully-connected layer contains 25 malware classes. In

the transfer learning ResNet-50 model, the

MaxPooling layer with padding, (2x2) kernel filter

size and 2 stride is introduced before the fully-

connected layer of the classification component. The

fully-connected layer and the Softmax function

performed the final malware classification [20].

In this research, based on the transfer learning

approach for malware images classification, the last

Global Average Pooling layer of the feature

extraction block of the EfficientNet architecture is

replaced with the MaxPooling layer and connected to

the classifier. EfficientNet architecture can be

adapted to the MaxPooling layer with (7x7) kernel

size and 1 step. The classifier classifier of the

EfficientNet architecture requires (1x1) plane-sized

input and the EfficientNet architecture does not meet

the Max Pooling setting with (2x2) kernel filter size

and 2 steps.

MaxPooling EfficientNet-b7 (Microsoft Malware

Classification Challenge - grayscale malware image)

and EfficientNet-b5 (Microsoft Malware

Classification Challenge - RGB malware image)

EfficientNet-b6 (Dumpware10 dataset) models were

trained with 120 epoch cycles in SGD optimization

with 0.01 learning rate.

Table 7 shows EfficientNet-b5 (RGB) has the highest

evaluation accuracy among MaxPooling EfficientNet

model trainings. When the MaxPooling change

occurred, RGB malware images produced higher

validation accuracy than grayscale malware images.

Table 7. MaxPooling EfficientNet model validation

accuracies

Malwar

e image
Model

Learni

ng rate

Optimizat

ion

Accura

cy

Graysc

ale

malwar

e

EfficientN

et-b7
0.01 SGD

0.9182

50

RGB

malwar

e

EfficientN

et-b5
0.01 SGD

0.9263

94

RGB

malwar

e

EfficientN

et-b6
0.01 SGD

0.9039

30

Table 8 shows EfficientNet-b7 (Grayscale) has the

highest test accuracy. The fact that the EfficientNet-

b7 precision value is higher than the recall value

shows that the correct class matching is high in the

total correct class inference of the model.

Table 8. MaxPooling EfficientNet model experiment test accuracy F1-score, recall and precision results

Model Malware Image Learning rate Optimization Accuracy F1-score Recall Precision

EfficientNet-b7 Grayscale 0.01 SGD 90% 0.8529 0.8434 0.8893

EfficientNet-b5 RGB 0.01 SGD 89% 0.8288 0.8407 0.8207

EfficientNet-b6 RGB 0.01 SGD 88% 0.8299 0.8275 0.8469

In figure 24 confusion matrix of MaxPooling

EfficientNet-b5 Microsoft Malware Classification

Challenge (RGB) is depicted with class accuracy

distributions. In MaxPooling EfficientNet-b5

Microsoft Malware Classification Challenge (RGB)

confusion matrix, the highest accuracy belongs to the

Kelihos_ver3 class, while the lowest accuracy

belongs to the Simda class. This is due to the data

imbalance between classes. Simda class has

insufficient number of data sample.

Figure 24. MaxPooling EfficientNet-b5 Microsoft

Malware Classification Challenge (RGB) confusion matrix

In figure 25 MaxPooling EfficientNet-b7 Microsoft

Malware Classification Challenge (Grayscale)

confusion matrix shows that the accuracy of the

Simda class is the lowest, while the accuracy of the

Kelihos_ver3 class is the highest. Negative matching

shifts are observed in the Simda class, and this breaks

the accuracy.

Figure 25. MaxPooling EfficientNet-b7 Microsoft

Malware Classification Challenge (Grayscale) confusion

matrix

In figure 26 MaxPooling EfficientNet-b6

Dumpware10 (RGB) confusion matrix shows that the

highest accuracy belongs to the VBA class, while the

lowest accuracy belongs to the AutoRun class. The

unbalanced distribution of Dumpware10 malware

images among the classes affects accuracy.

Figure 26. MaxPooling EfficientNet-b6 Dumpware10 (RGB)

confusion matrix

MaxPooling experiment results shows that

EfficientNet-b7 (Grayscale) extension of the Transfer

Learning experiment has the highest success

performance. The MaxPooling experiment did not

provide a noticeable improvement in test accuracies

and the GlobalAveragePooling layer of the

EfficientNet architecture produced more successful

results than the MaxPooling layer.

CORAL transfer learning algorithm uses the source

domain and target domain distinctions of the dataset

under domain adaptation. Dumpware10, Microsoft

Malware Classification Challenge RGB and

Microsoft Malware Classification Challenge

grayscale datasets are divided into source domain

with 60% and target domain with 40%. Then the

source domain and target domains are divided into

“test domain” and “validation domain” with a rate of

20%. The source domain, target domain and

validation domain of the datasets participate in the

training of the Dynamic Distribution Adaptation

Network with CORAL loss in domain partition logic

of CORAL transfer learning algorithm.

The backbone deep neural network (ResNet) in the

Dynamic Distribution Adaptation Network extension

is replaced by the EfficientNet architecture of this

research work. Dumpware10 domain data is input to

EfficientNet-b6, Microsoft Malware Classification

Challenge RGB domain data is input to EfficientNet-

b5 and Microsoft Malware Classification grayscale

domain data is input to EfficientNet-b6. The training

cycle of EfficientNet architectures has SGD

optimization with EarlyStopping support and 0.01

learning rate. Batch size is 16. A bottleneck layer has

been added to the Dynamic Distribution Adaptation

Network Backbone architecture, improving

performance. Dynamic Distribution Adaptation

Backbone architecture assigns CORAL loss of source

domain and target domain to transfer loss,

CrossEntropy loss to classification loss, and the sum

of transfer loss and classification loss to total loss. In

the Dynamic Distribution Adaptation training cycle,

the source domain and target domain get closer to

each other and the transfer loss decreases.

Table 9 shows that Microsoft Malware Classification

Challenge grayscale EfficientNet-b6 backbone model

has the highest validation accuracy rate.

Table 9. Dynamic distribution adaptation network with

CORAL loss experiment validation accuracies

Malware

dataset

Malware

image

Backbone

model

Accurac

y

Microsoft

Malware

Classificatio

n Challenge

Grayscal

e

EfficientNe

t-b6

0.9706

Microsoft

Malware

Classificatio

n Challenge

RGB EfficientNe

t-b5

0.9442

Dumpware1

0

RGB EfficientNe

t-b6

0.9663

Table 10 shows that the most successful results in test

domain accuracy, precision, recall and F1-score

metrics belong to Dumpware10 RGB EfficientNet-b6

model.

Table 10. Dynamic distribution adaptation network with CORAL loss experiment test tesults

Malware dataset Malware

image

Backbone

model

Accuracy Precision Recall F1-

score

Microsoft Malware

Classification Challenge

dataset

Grayscale EfficientNet-

b6

0.95854 0.9009 0.8554 0.8647

Microsoft Malware

Classification Challenge

dataset

RGB EfficientNet-

b5

0.95257 0.9484 0.8478 0.8596

Dumpware10 RGB EfficientNet-

b6

0.96064 0.9460 0.9556 0.9491

In figure 27 validation accuracy of DDAN with

CORAL loss experiment Microsoft Malware

Classification Challenge Grayscale EfficientNet-b6 is

depicted and in figure 28 DDAN with CORAL loss

experiment Microsoft Malware Classification

Challenge (Grayscale) EfficientNet-b6 classification

loss is depicted. Figure 29 and figure 30

consecutively show transfer loss and total loss of

DDAN with CORAL loss experiment Microsoft

Malware Classification Challenge (Grayscale)

EfficientNet-b6. When connected figures are

examined, we see that the validation accuracy figure

contains less zigzag changes. This situation

demonstrates consistency of training. Also there is a

sudden decreasement of accuracy that connected to

model anomaly. However EarlyStopping mechanism

had been already saved the model weight that highest

accuracy rate. Therefore model weight did not

influenced by sudden drop in accuracy.

Figure 27. DDAN with CORAL loss experiment Microsoft

Malware Classification Challenge (Grayscale)

EfficientNet-b6 validation accuracy

Figure 28. DDAN with CORAL loss experiment Microsoft

Malware Classification Challenge (Grayscale)

EfficientNet-b6 classification loss

Figure 29. DDAN with CORAL loss experiment Microsoft

Malware Classification Challenge (Grayscale)

EfficientNet-b6 transfer loss

Figure 30. DDAN with CORAL loss experiment Microsoft

Malware Classification Challenge (Grayscale)

EfficientNet-b6 total loss

In figure 31 validation accuracy of DDAN with

CORAL loss experiment Microsoft Malware

Classification Challenge (RGB) EfficientNet-b5 is

depicted and in figure 32 DDAN with CORAL loss

experiment Microsoft Malware Classification

Challenge (RGB) EfficientNet-b5 classification loss

is depicted. Figure 33 and figure 34 consecutively

show transfer loss and total loss of DDAN with

CORAL loss experiment Microsoft Malware

Classification Challenge (RGB) EfficientNet-b5.

When connected figures are examined, we see that

fluctiations in validation accuracy figure is lesser than

the previous experiments’ figures. Also examined

that there is a abrupt drop in validation accuracy

which shows a model anomaly. However

EarlyStopping mechanism had been already saved

mode weights that include the highest accuracy rate.

Therefore sudden drop in validation accuracy did not

affect the model weights.

Figure 31. DDAN with CORAL loss experiment Microsoft

Malware Classification Challenge (RGB) EfficientNet-b5

validation accuracy

Figure 32. DDAN with CORAL loss experiment Microsoft

Malware Classification Challenge (RGB) EfficientNet-b5

classification loss

Figure 33. DDAN with CORAL loss experiment Microsoft

Malware Classification Challenge RGB EfficientNet-b5

transfer loss

Figure 34. DDAN with CORAL loss experiment Microsoft

Malware Classification Challenge RGB EfficientNet-b5

total loss

In figure 35 validation accuracy of DDAN with

CORAL loss experiment Dumpware10 EfficientNet-

b6 is depicted and in figure 36 DDAN with CORAL

loss experiment Dumpware10 EfficientNet-b6

classification loss is depicted. Figure 37 and figure 38

consecutively show transfer loss and total loss of

DDAN with CORAL loss experiment Dumpware10

EfficientNet-b6. When connected figures are

examined, we see that validation accuracy figure

graph has less fluctiations beside the previous

experiments’ figure graphs excluding DDAN with

CORAL loss experiment. However sudden accuracy

drop did not happened in DDAN with CORAL loss

experiment Dumpware10 EfficientNet-b6.

Figure 35. DDAN with CORAL loss experiment

Dumpware10 EfficientNet-b6 validation accuracy

Figure 36. DDAN with CORAL loss experiment

Dumpware10 EfficientNet-b6 classification loss

Figure 37. DDAN with CORAL loss experiment

Dumpware10 EfficientNet-b6 transfer loss

Figure 38. DDAN with CORAL loss experiment

Dumpware10 EfficientNet-b6 total loss

In figure 39 DDAN with CORAL loss Microsoft

Malware Classification Challenge (Grayscale)

EfficientNet-b6 confusion matrix, we see that the

highest accuracy is in Kelihos_ver3 and the lowest

accuracy is in Simda.

Figure 39. DDAN with CORAL loss experiment Microsoft

Malware Classification Challenge (Grayscale)

EfficientNet-b6 confusion matrix

In figure 40 DDAN with CORAL loss Microsoft

Malware Classification Challenge (RGB)

EfficientNet-b5 confusion matrix, we see that

Kelihos_ver3 has the highest accuracy while Simda

has the lowest accuracy.

Figure 40. DDAN with CORAL loss experiment Microsoft

Malware Classification Challenge (RGB) EfficientNet-b5

confusion matrix

Figure 41. DDAN with CORAL loss experiment

Dumpware10 EfficientNet-b6 confusion matrix

In figure 41 DDAN with CORAL loss experiment

Dumpware10 EfficientNet-b6 confusion matrix, we

see that Allaple, BrowserFox and VBA have the

highest accuracies while AutoRun has lowest

accuracy.

In table 11 summarizes the highest performance

metrics for the Transfer Learning and MaxPooling

experiments conducted in the research. The

experiments were focused on malware classification

using different EfficientNet models (EfficientNet-b5,

b6, and b7) applied to both grayscale and RGB

malware images. The datasets used for evaluation

include the Microsoft Malware Classification

Challenge (MMCC) and Dumpware10. The table

presents key performance metrics such as test

accuracy, F1 Score, recall, and precision, along with

validation accuracy. EfficientNet-b7 (Grayscale)

achieved the highest validation accuracy (95.27%) in

the transfer learning experiments, with strong test

accuracy (93%) and high precision (88.15%).

EfficientNet-b6 (RGB) on the Dumpware10 dataset

performed well across both transfer learning and

DDAN experiments, achieving the best test accuracy

(96%) and strong precision (94.60%) with a

validation accuracy of 96.63%. MaxPooling

experiments yielded slightly lower results than

transfer learning, with EfficientNet-b7 (Grayscale)

showing a test accuracy of 90%. DDAN approach

improved the test and validation accuracy metrics

across both RGB and grayscale images, particularly

excelling in handling the Dumpware10 dataset.

Table 11. Most successful results of the Transfer Learning and MaxPooling experiments

Transfer

Learning
Model Malware image

Test

Accuracy

F1

Score
Recall Precision

Validasyon

Accuracy

MS
EfficientNet-b7 Grayscale 0.93 0.8963 0.9163 0.8815 0.952792

EfficientNet-b5 RGB 0.91 0.8646 0.8777 0.8550 0.944796

Dumpware10 EfficientNet-b6 RGB 0.91 0.8786 0.8843 0.8811 0.934498

MaxPooling

MS
EfficientNet-b7 Grayscale 0.90 0.8529 0.8434 0.8893 0.918250

EfficientNet-b5 RGB 0.89 0.8288 0.8407 0.8207 0.926394

Dumpware10 EfficientNet-b6 RGB 0.88 0.8299 0.8275 0.8469 0.903930

DDAN

MS
EfficientNet-b5 RGB 0.95 0.8596 0.8478 0.9484 0.9442

 EfficientNet-b6 Grayscale 0.95 0.8647 0.8554 0.9009 0.9706

Dumpware10 EfficientNet-b6 RGB 0.96 0.9491 0.9556 0.9460 0.9663

In Table 12 compares the results obtained from

various experiments, including Transfer Learning,

MaxPooling, and the Dynamic Distribution

Adaptation Network (DDAN), for malware

classification. EfficientNet-b7 (grayscale) achieved

the highest validation accuracy (95.27%) for the

Microsoft Malware Classification Challenge. The

RGB-based EfficientNet-b5 performed slightly lower

with a validation accuracy of 94.48%. MaxPooling

technique did not yield significantly better results

compared to Transfer Learning. For grayscale

images, EfficientNet-b7 scored 91.82% validation

accuracy, and for RGB images, EfficientNet-b5

achieved 92.63%. DDAN approach produced the

highest results across the board. EfficientNet-b6

(grayscale) reached a validation accuracy of 97.06%,

while for RGB images, EfficientNet-b5 and

EfficientNet-b6 achieved validation accuracies of

94.42% and 96.63%, respectively.

Table 12. Comparison of academic studies with DDAN experiment results

Studies Dataset Accuracy DDAN EfficientNet-b6 (Grayscale) accuracy rate

[11] MMCC 99.63% (train) 97% (validation) 95% (test)

[2] MMCC 99.06% (train) 97% (validation) 95% (test)

[1] MMCC 99.44% 97% (validation) 95% (test)

[4] MMCC 99.58% 97% (validation) 95% (test)

 DDAN EfficientNet-b6 (RGB) accuray rate

[19] Dumpware10 99.60% 96% (validation) 96% (test)

[21] Dumpware10 97% 96% (validation) 96% (test)

6. CONCLUSIONS

In this study, a comprehensive research was

conducted on the classification and visualization of

malware using a model based on the EfficientNet

deep learning architecture. The model created with

EfficientNet's inverse residual block configuration

achieved high accuracy rates, especially in the

classification of malware images. Experiments

conducted on the Microsoft Malware Classification

Challenge and Dumpware10 datasets used in the

study show that the model gives successful results.

97% validation accuracy and 95% test accuracy were

obtained in the Microsoft Malware Classification

Challenge dataset, and 96% validation and test

accuracy were obtained in the Dumpware10 dataset.

EfficientNet's deep learning architecture showed high

performance in classification studies on malware

images. In particular, the methods used in the

preprocessing of data and image transformations

made significant contributions to the success of the

model. The balanced scaling of EfficientNet's layer

depth, width and resolution dimensions increased the

accuracy of the model. This study reveals that deep

learning techniques can be used effectively in

malware detection in the field of cyber security. The

flexibility of the EfficientNet architecture and the use

of transfer learning techniques have increased the

accuracy and generalization ability of the model. In

future studies, the performance of the model can be

further improved with different datasets and more

complex malware detection methods. In conclusion,

this study shows that the EfficientNet architecture can

be successfully applied in the field of cybersecurity

and can provide solutions for malware detection.

DECLARATION OF ETHICAL STANDARDS

The author(s) of this article declare that the materials

and methods used in this study do not require ethical

committee permission and/or legal-special

permission.

AUTHORS’ CONTRIBUTIONS

Adem TEKEREK Wrote the manuscript and

performed the model experiments and experiments’

analysis,Data preprocessing process and guided

through study research background and model

experiments.

Ceren Umay ÖZTEN Wrote the manuscript and

performed the model experiments and experiments’

analysis,Data preprocessing process and guided

through study research background and model

experiments.

CONFLICT OF INTEREST

There is no conflict of interest in this study.

REFERENCES
[1] Deng H., Guo C., Shen G., Cui Y., and Ping Y.,

"MCTVD: A malware classification method based on

three-channel visualization and deep learning",

Computers & Security, 126, (2023).

[2] Ahmed M., Afreen N., Ahmed M., Sameer M. and

Ahamed J., "An inception V3 approach for malware

classification using machine learning and transfer

learning", International Journal of Intelligent

Networks, 4: 11-18, (2023).

[3] Kumar S. and Panda K., "SDIF-CNN: Stacking deep

image features using fine-tuned convolution neural

network models for real-world malware detection and

classification", Applied Soft Computing, 146,

(2023).

[4] Bu S.-J. and Cho S.-B., "Malware classification with

disentangled representation learning of evolutionary

triplet network", Neurocomputing, 552, (2023).

[5] Chaganti R., Ravi V. and Pham T. D., "A multi-view

feature fusion approach for effective malware

classification using Deep learning", Journal of

Information Security and Applications, 72, (2023).

[6] Baek S., Jeon J., Jeong B. and Jeong Y.-S., "Two-

stage hybrid malware detection using Deep learning",

Human-centric Computing and Information

Sciences, 11, (2021).

[7] Kumar M., "Scalable Malware Detection System

Using Distributed Deep Learning", Cybernetics and

Systems, 54: 619–647, (2022).

[8] Xing X., Jin X., Elahi H., Jiang H. and Wang G., "A

malware detection approach using autoencoder in

deep learning", IEEE Access, 10: 25696-25706,

(2022).

[9] Alomari E. S., Nuiaa R. R., Alyasseri Z. A. A.,

Mohammed H. J., Sani N. S., Esa M. I. and Musawi

B. A., "A. Malware detection using deep learning and

correlation-based feature selection", Symmetry,

15:123, (2023).

[10] Vinayakumar R., Alazab M., Soman K. P.,

Poornachandran P. and Venkatraman S., "Robust

intelligent malware detection using deep learning",

IEEE Access, 7: 46717-46738, (2019).

[11] Pratama H. Y. and Sidabutar J., "Malware

classification and visualization using EfficientNet

and B2IMG algorithm", 2022 International

Conference on Advanced Computer Science and

Information Systems (ICACSIS), Depok, Indonesia,

75-80, (2022).

[12] Oyucu S., Polat O., Türkoğlu M., Polat H., Aksöz A.

and Ağdaş M. T., "Ensemble Learning Framework

for DDoS Detection in SDN-Based SCADA

Systems", Sensors, 24: 155, (2024).

[13] Polat O., Türkoğlu M., Polat H., Oyucu S., Üzen H.,

Yardımcı F. and Aksöz A., "Multi-Stage Learning

Framework Using Convolutional Neural Network

and Decision Tree-Based Classification for Detection

of DDoS Pandemic Attacks in SDN-Based SCADA

Systems", Sensors, 24: 1040, (2024).

[14] Iman M., Arabnia H. R. and Rasheed K., "A review

of deep transfer learning and recent advancements",

Technologies, 11: 40, (2023).

[15] Sandler M., Howard A., Zhu M., Zhmoginov A., and

Chen L.-C., "Mobilenetv2: Inverted residuals and

linear bottlenecks", 2018 IEEE/CVF Conference on

Computer Vision and Pattern Recognition

(CVPR), Salt Lake City, Utah, 4510-4520, (2018).

[16] Tan M. and Le Q., "EfficientNet: Rethinking model

scaling for convolutional neural

networks", International Conference on Machine

Learning, Long Beach Convention Center,

California, 6105-6114, (2019).

[17] Escudero García D., DeCastro-García N. and Muñoz

Castañeda A. L., "An effectiveness analysis of

transfer learning for the concept drift problem in

malware detection", Expert Systems with

Applications, 212, (2023).

[18] Wang J., Chen Y., Feng W., Yu H., Huang M. and

Yang Q., "Transfer learning with dynamic

distribution adaptation", ACM Transactions on

Intelligent Systems and Technology, 11: 6, (2020).

[19] Tekerek A. and Yapici M. M., "A novel malware

classification and augmentation model based on

convolutional neural network", Computers &

Security, 112, (2022).

[20] Bala Z., Zambuk F. U., Imam B. Y., Gital A. Y.,

Shittu F., Aliyu M. and Abdulrahman M. L.,

"Transfer learning approach for malware images

classification on Android devices using deep

convolutional neural network", Procedia Computer

Science, 212: 429-440, (2022).
[21] Prawiranata F. P. S. and Hadiprakoso R. B.,

"Comparison of Transfer Learning Performance in

Image-Based Malware File Classification on the

Dumpware10 Dataset", 2023 IEEE International

Conference on Cryptography, Informatics, and

Cybersecurity (ICoCICs), Bogor, Indonesia, 252-

257, (2023).

