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EfficientNet-Based Deep Learning for Malware Classification: 

A Dynamic Distribution Adaptation Approach 

Highlights 

❖ Malware Classification using the EfficientNet and Dynamic Distribution Adaptation Network 

approach 
❖ Applying data preprocessing   
❖ Detailing the model training and validation processes  
❖ Analyzing results with performance evaluation metrics  

Graphical Abstract 
In this study, the EfficientNet deep learning model was used to classify malware images.  
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Figure. Proposed Methodology 

Aim 

To investigate the effectiveness of EfficientNet deep learning model in detecting classifying malware images. 

Design & Methodology 

Steps included dataset analysis, data preprocessing, EfficientNet model and Dynamic Distribution Adaptation 

Network approach and performance evaluation. 

Originality 

This study is one of the rare works successfully applying EfficientNet model to classify malware images. 

Findings 

EfficientNet models are applied succesfully to malware classification. 

Conclusion 

EfficientNet has proven the effectiveness of deep learning in security by classfiying malware.  

Declaration of Ethical Standards 
The authors of this article declare that the materials and methods used in this study do not require ethical 

committee permission and/or legal-special permission.   
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ABSTRACT 

Malware is a general name given to all malicious software that threatens and prevents the use of information systems. 

Computers, which have become mandatory in daily life, are constantly under the threat of malware as well as facilitating 

human life. Therefore, the detection of malware that threatens computer systems is important. This study focuses on the 

classification of malware. In the study, a deep learning model based on the EfficientNet architecture and the Dynamic 

Distribution Adaptation Network approach were proposed and these proposed models were tested using the Microsoft 

Malware Classification Challenge (MMCC) and Dumpware10 datasets. In the study, the process of converting malware 

into images was discussed and the EfficientNet model was used as the basis for the classification of these images. The 

EfficientNet backbone-based Dynamic Distribution Adaptation Network achieved 97% accuracy in the MMCC dataset and 

96% accuracy in the Dumpware10 dataset. As a result, the EfficientNet architecture proved the effectiveness of deep 

learning in the classification of malware and cybersecurity. 

Keywords: EfficientNet architecture, malware classification, data preprocessing, compound scaling.  

Kötü Amaçlı Yazılım Sınıflandırması için 

EfficientNet Tabanlı Derin Öğrenme: Dinamik 

Dağıtım Uyarlama Yaklaşımı 

ÖZ 

Malware, bilişim sistemlerini tehdit eden ve kullanımını engelleyen tüm kötü amaçlı yazılımlara verilen genel bir addır. 

Günlük hayatta kullanımı zorunlu hale gelen bilgisayarlar, insan hayatını kolaylaştırmanın yanı sıra kötü amaçlı 

yazılımların da sürekli tehdidi altındadır. Bu nedenle bilgisayar sistemlerini tehdit eden kötü amaçlı yazılımların tespiti 

önemlidir. Bu çalışmada kötü amaçlı yazılımların sınıflandırılması üzerine odaklanılmıştır. Çalışmada, EfficientNet 

mimarisine dayalı bir derin öğrenme modeli ve Dynamic Distribution Adaptation Network yaklaşımı önerilmiş ve bu 

önerilen modellemeler, Microsoft Kötü Amaçlı Yazılım Sınıflandırma Mücadelesi (MMCC) ve Dumpware10 veri kümeleri 

kullanılarak test edilmiştir. Çalışmada, kötü amaçlı yazılımların görüntülere dönüştürülme süreci ele alınmış ve bu 

görüntülerin sınıflandırılmasında EfficientNet modeli taban alınmıştır. EfficientNet backbone tabanlı Dynamic Distribution 

Adaptation Network, MMCC veri kümesinde %97, Dumpware10 veri kümesinde ise %96 doğruluk elde etmiştir. Sonuç 

olarak, EfficientNet mimarisi kötü amaçlı yazılımların sınıflandırılmasında ve siber güvenlikte derin öğrenmenin etkinliğini 

kanıtlamıştır.  

Anahtar Kelimeler: EfficientNet mimarisi, malware sınıflandırma, veri ön işleme, mimari ölçeklendirme.  

 

1. INTRODUCTION 

The transformation of the first historic ARPANet 

network into today's virtual network of millions of 

servers increases cyber threats. The first “bug” 

definition of a computer virus has evolved into 

specific cyber-attack software, and cyber-attack 

software has become widespread, divided into 

variable malware families. Malware families can 

infiltrate information system infrastructures, mobile 

electronic devices, digital blockchains and 

government databases. This situation requires the 

correct classification of malware families. In this 

context, incorrect malware classification can render 

cyber security analysis dysfunctional. The goal of this 

research is to utilize EfficientNet architecture to 

distribute malware image transformations to the 

correct malware family classes. In this research, 

EfficientNet Inverted Residual (MBConv) layer 

blocks are defined to MaxPooling experiments with 

Transfer Learning. Malware dataset collection, 

malware preprocessing, EfficientNet model 

development and experimental result analysis are 

*Corresponding Author 
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included in the method modeling of the research. In 

the method modeling, malware datasets are collected, 

malware samples belonging to the malware sets are 

decomposed into tensor blocks in preprocessing, and 

the tensor blocks are converted into three-channel 

RGB and two-channel grayscale malware images. 

The malware images are then trained on EfficientNet 

architecture. In the Transfer Learning and 

MaxPooling experiments, layer depth, input 

resolution and layer width settings are studied and 

MaxPooling final layer replacement is tested. 

  

2. LITERATURE REVIEW 

In the literature, malware preprocessing, 

implementation of convolutional layer sequences, 

CNN - BiLSTM two-tier model, LSTM layer 

integration with Convolution Dense layer, adaptation 

of Autoencoder neural network to grayscale malware 

images and random partitioning of malware dataset 

are investigated.  

Huaxin Deng, et al., used Markov transfer matrices in 

malware data preprocessing. In Markov transfer 

matrices, the team assigned the probabilities of 

combinations of both consecutive letters or numbers 

of machine codes, the first letter and the last two 

letters of opcode fragments to three matrix image 

channels, and obtained three-channel malware 

images. And the malware images are entered into 1 

fully-connected dense layered architecture with 4 

convolution layers, 4 pooling filtering layers, and 4 

convolution layers.  The Markov method achieves 

99.4% accuracy on the Microsoft Malware Challenge 

dataset [1]. Mumtaz Ahmed, et al., converted the 

malware data into a two-channel grayscale image. 

The team converted the malware byte files into 

hexadecimal numbers, transferred the binary 

hexadecimal numbers to pixels, and performed min-

max normalization on the total pixel image. They then 

trained the pixel images on the InceptionV3 model 

with hidden layers frozen. The InceptionV3 model 

achieved 98.76% accuracy on the Microsoft 

Challenge BIG15 test set [2]. Sanjeev Kumar and 

Kajal Panda combined the feature outputs of VGG16, 

VGG19, ResNet50 and InceptionV3 models in the 

SDIF-CNN method into a single feature output in 

horizontal space and filtered the redundant data from 

the feature output. The filtered feature output was 

passed to KNN, SVM, Random Forest, Multi-layer 

Perceptron (MLP), Extra Tree and Gaussian Naive 

Bayes classifiers. The Multi-layer Perceptron model 

recorded 98.55% accuracy rate, 99% precision rate, 

99% recall rate and 99% f1-score rate on the MalImg 

dataset [3]. Seok-Jun Bu and Sung-Bae Cho solved 

the malware structure for classification in an 

evolutionary ternary network and optimized the 

mixed malware variation into groups of inter-

representation distances using a genetic algorithm. In 

the genetic algorithm, the team entered the byte 

malware image into the evolutionary triple network 

and generated new weight-sharing convolutional 

networks in the space of weight changes. The triple 

triplet loss due to the genetic algorithm brought 

similar malware samples closer together while 

pushing different malware samples away [4]. In the 

multi-view multidimensional feature fusion 

approach, Rajasekhar Chaganti, et al. combined 

static, dynamic and image feature sets of malware. In 

the multidimensional feature fusion learning of the 

models, each feature set presents the discriminative 

semantic characteristics of the malware. The team 

fused PE Section and PE Import, dynamic PE API and 

PE Image malware attribute files into a convolutional 

neural network. The connected convolutional neural 

network included the convolution1D-Maxpooling-

Dense layer block. The dynamic PE API based 

feature set achieved 99% accuracy [5]. In the two-

stage hybrid approach, Seungyeon Baek et al. 

vectorized opcode sequences in the static stage and 

decomposed them into benign file attributes in the Bi-

LSTM model transition, and in the dynamic stage, 

they extracted process memory and API calls 

attributes by running the decomposed benign file 

attributes in a virtual Cuckoo Sandbox environment. 

Then, it transformed the attributes into a three-

dimensional tensor structure with process memory, 

category and API calls channels. Finally, the three-

dimensional tensor structure was classified in the 

EfficientNet-b3 model. The EfficientNet-b3 model 

achieved an accuracy rate of 94.98% [6]. Manish 

Kumar integrated convolutional neural network CNN 

with Bi-LSTM network for malware detection. With 

dynamic malware API calls, process execution 

signals are converted into process tree vectors. The 

high-level vector output is decomposed in the 

embedded layer and the low-level vector fragments 

are passed through the CNN1-BiLSTM1-CNN2-

BiLSTM2-Dense-Softmax chaining layer pattern. 

Convolution layers filtered the feature for the LSTM 

layers, and the dual CNN and dual BiLSTM modeling 

showed high success. The binary CNN-BiLSTM 

modeling recorded an accuracy rate of 0.99 [7]. In the 

grayscale autoencoder approach, Xiaofei Xing, et al. 

encoded the APK code of the malware and benign file 

into decimal byte data and fixed it into a grayscale 

two-dimensional matrix, and passed the grayscale 

malware image data through AE-1 and AE-2 

autoencoder structures. The AE-1 autoencoder 

structured the feature extraction of the grayscale 

image into the actual malware classification. The AE-

2 autoencoder handled the malware discrimination of 

the classified benign file. The AE-1 autoencoder 

architecture has convolution, filtering and 

upsampling layers. The AE-2 autoencoder 

architecture has a multi-layer perceptron network in 

addition to the AE-1 architecture layers. The multi-

layer perceptron network achieved 96% accuracy [8]. 



 

 

 

In the LSTM-Dense method, Esraa Saleh Alomari et 

al. presented malware detection based on feature 

selection with deep learning and feature selection in 

the correlation matrix by processing datasets. 

Datasets of variable attribute selections were trained 

in the LSTM model with dense dense layer. In the 

training, 5 hidden layers in the Dense Dense Layer 

model are defined for ReLU activation between the 

input and output layers. The LSTM model replaced 

the first Dense layer of the Dense dense layer model 

with the ReLU activated LSTM layer. Narrowing the 

datasets by feature selection met the performance of 

almost the entire dataset [9]. R. Vinayakumar et al. 

removed bias by applying different separations to the 

datasets along the bias-deep learning line. Removing 

bias from the datasets made the malware detection 

model training independent. Light GBM 100-tree 

modeling, convolutional 1D layers and LSTM hybrid 

MalConv variants were investigated on the Ember 

dataset. Flexible and real-time hybrid deep learning 

models are used for malware preprocessing and 

classification. Ember dataset was randomly split into 

60% training and 40% test sets and introduced to the 

models [10]. Handhika Yanuar Pratama and Jeckson 

Sidabutar apply EfficientNet models - EfficientNet-

b0, EfficientNet-b1, EfficientNet-b2, EfficientNet-

b3, EfficientNet-b4, EfficientNet-b5, EfficientNet-b6 

and EfficientNet-b7 - to two-channel grayscale and 

three-channel RGB malware images from the 

Malware Classification Challenge (BIG 2015) 

dataset. EfficientNet models are able to perform 

successful deep learning classification on the 

ImageNet dataset. In the study experiments, 

EfficientNet-b7 architecture applied to three-channel 

RGB malware images achieves 99.63% accuracy rate, 

98.36% precision rate, 98.35% recall rate, 98.34% 

F1-score rate and 98.30% AUC rate [11]. Cyber 

breach detection systems are being developed to 

protect against DDoS attacks in SDN-based SCADA 

systems. Oyucu et al. proposed a Decision Tree-based 

Ensemble Learning technique that detects DDoS 

attacks in SDN-based SCADA systems by 

distinguishing between normal data flow and DDoS 

attack. The proposed hybrid model using machine 

learning classification methods includes dataset 

generation, feature refinement, normalization and 

classification stages.  For the training and testing of 

ensemble learning models, normal traffic and DDoS 

attack data flow traffic are obtained from specific 

experimental network topology simulation. Minimum 

Redundancy Maximum Relevance (MrMR) method 

is adopted for feature balance in the dataset. Feature 

selection and hyperparameter tuning are used to 

optimize decision tree ensemble models. The 

experiments show that feature selection, different 

combinations of decision tree ensemble models, and 

hyperparameter tuning can lead to better detection 

performance against DDoS attacks. The team's 

Ensemble Boosted Trees method showed the highest 

accuracy performance of 92.9% [12]. Polat et al. 

proposed a multi-stage learning model for DDoS 

attack detection in SDA-based SCADA systems by 

combining 1-dimensional convolutional neural 

network (1D-CNN) and decision tree based 

classification. In the proposed model, the feature 

extracted from the 1D-CNN convolutional neural 

network model is input to the decision tree model. 

While the 1D-CNN network model performs deeper 

and more complex feature extraction, the decision 

tree model defines the features into the decision 

structure.  A new dataset of specific experimental 

network topology based on varying attack scenarios 

is used to train and test the model. The proposed 

model achieved an accuracy of 97.8% in DDoS attack 

detection [13]. In addition to the literature studies, the 

proposed model utilizes all EfficientNet-b0-

EfficientNet-b7 models for malware classification. In 

this study, two-channel grayscale malware images 

and three-channel RGB malware images were 

generated by processing bytes files of different 

datasets. 

In this study, two-channel grayscale malware images 

of the Microsoft Malware Classification Challenge 

(BIG 2015) dataset are more successful with the 

EfficientNet-b7 model, while three-channel RGB 

malware images are more successful with the 

EfficientNet-b5 model. For the Dumpware10 dataset, 

the EfficientNet-b6 architecture is more successful. In 

the model development, a deep learning model was 

created by using convolutional bottleneck and 

depthwise separable convolution in the inverse 

residual block structure. The EfficientNet architecture 

of the study effectively applies the layer structure that 

reduces the gradient computation while approaching 

full convolution to malware image datasets.  The 

combination of the Microsoft Malware Classification 

Challenge (BIG 2015) dataset and the proprietary 

Dumpware10 dataset offers different perspectives in 

experimental testing. While the Microsoft Malware 

Classification Challenge (BIG 2015) dataset serves as 

a general benchmark, the Dumpware10 dataset 

provides a different benchmark evaluation of the 

working model. 

 

3. MATERIAL and METHOD 

3.1. Methods  

For malware detection, a deep learning model is built 

using convolutional bottleneck and depthwise 

separable convolution in the inverse residual block 

structure of the EfficientNet architecture. 

3.1.1. Transfer learning  

Transfer learning is the transfer of the activation 

hardware of the deep neural network architecture, 

previously subjected to the training cycle, to different 

tasks. The final Dense layer of the deep neural 

network architecture is changed according to the 



 

  

classification distribution of the task. The deep neural 

network layer architecture performs activation 

learning by pre-training on a large benchmark dataset 

such as ImageNet. The deep neural network layers 

can transfer the activation learning experienced on the 

ImageNet dataset to different classification tasks 

belonging to different datasets. For example, the 

weighted DenseNet121 neural network architecture, 

pre-trained on the ImageNet dataset, can be adapted 

to a dataset containing human facial expressions and 

aiming to classify human emotions - happiness, 

anger, sadness, neutral, surprise, fear, disgust. The 

DenseNet121 neural network architecture applies the 

edge, shape, color and associated texture pixel feature 

information learned from ImageNet image data to 

human emotion classification of facial expression 

images. The last Dense layer of the DenseNet121 

neural network architecture is replaced by a softmax 

layer which is divided into 7 human emotion classes. 

In the DenseNet121 architecture, the layers carrying 

low-level feature information do not participate in 

gradient generalization during training, but the last 

Dense layers carrying high-level feature information 

participate in gradient generalization. For successful 

softmax classification, activation function, 

optimization function, learning rate, momentum, 

number of epochs and weight decay function 

hyperparameters are added to improve the gradient 

generalization. As a result, the weights of the pre-

trained DenseNet121 neural network architecture are 

task domain specific in the transfer learning domain. 

The hyperparameters drive the gradient 

generalization of the deep neural network training 

loop. Optimization functions such as Adam, SGD, 

Adagrad, RMSProp regulate the activation flow of the 

neural network architecture layers. The training cycle 

of the neural network architecture translates into more 

successful gradient generalization. Adjusting the 

learning rate, momentum, weight decay function and 

number of epochs shape the effect of optimization 

functions on the training cycle. Dense layer swapping 

and hyperparameter configuration are prominent in 

the transfer learning neural network architecture. 

High-performance neural network architectures such 

as DenseNet121, ResNet50, InceptionV3, Xception, 

AlexNet, EfficientNet-b0-b7 transform Dense layer 

exchange and hyperparameter configuration in the 

transfer learning extension. It performs different 

training cycles according to the datasets. In this 

context, the transfer learning method approximates 

the neuron activations of pattern neural network 

architectures to the gradient generalization of the 

dataset and shows successful results in classification 

tasks. In this method, the neural network layers fix the 

gradient computation up to the Dense layer, or the 

gradient computation of layer blocks that process 

only low-level feature information. 

Transfer learning domain connected with deep neural 

networks through deeper layers of feature extraction 

and neural network based adaptation of big volume of 

prevalent knowledge domain to small volume of 

intuitive knowledge domain. For example, a 

researcher can use existent biological protein 

structure information with artificial intelligence for 

predicting protein structures. Information knowledge 

transfer through deep neural networks has deep 

transfer learning model-based methods with variety 

of frozen pre-trained layer blocks, added new layer 

blocks and regulation of layer gradient computations. 

Deep transfer learning model-based methods are 

divided into finetuning, freezing low-level CNN 

layers, and progressive learning approaches.       

Finetuning generalizes the neural network model, 

which has been pre-trained with data close to the 

target task scope, to the dataset of the target task. In 

this respect, Finetuning is the most common deep 

transfer learning approach. The finetuning approach 

can reduce the computational cost of the training 

cycle for the dataset and addresses the need for a large 

dataset for the target task. However, finetuning faces 

the problem of gradient loss during the training cycle. 

Freezing low-level CNN layers means that the low-

level convolution layers of the neural network model 

are frozen and do not participate in the gradient 

calculation of the training cycle. Only the 

intermediate fully-connected layers participate in the 

gradient generalization in the training cycle of the 

target dataset. The low-level CNN layers undertake 

the feature extraction of the dataset, while the 

intermediate fully-connected layers undertake the 

classification of the feature extraction. Progressive 

learning uses part or all of the layers of a pre-trained 

neural network model without entering the gradient 

generalization of the training cycle. The new layer 

configuration added to the neural network model is 

trained on the target dataset. The triple layer block 

autoencoder structure minimizes the mismatch 

between training and test feature data by applying a 

maximum mismatch term to the features of the 

training and target data [14]. 

In figure 1 previously explained deep transfer 

learning methods of finetuning, frozen CNN layers 

and progressive learning are depicted.  
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Figure 1. Deep transfer learning model-based methods 

 

3.1.2. EfficientNet  

The EfficientNet architecture consists of “compound 

scaling” modeling of resolution, layer width and layer 

depth in MBConv structures. This architecture gives 

MBConv structures the flexibility of 

multidimensional compound scaling expansion. The 

MBConv inverted residual block structure follows a 

convolutional layer path that shrinks at the beginning, 

expands in the middle, and shrinks again at the end. 

Initially it follows (1x1) convolution filtering, 

followed by (3x3) depthwise convolution block 

filtering. Then the (1x1) convolution filtering reduces 

the number of parameters in the middle layer. The 

MBConv block is an inverted residual block 

modeling that includes an inverted layer 

transformation with performance impact. 

 

MBConv block  

In figure 2 MBConv block structure and connections 

are shown. MBConv has a convolutional block 

architecture. MBConv convolutional block structure 

consists of depthwise separable convolutions, 

BatchNormalization, Squeeze and Excitation module, 

Projection phase, BatchNormalization, activation and 

Skip connection internals layer components. The full 

convolutional layer architecture is replaced by linear 

bottlenecks. The full convolutional operator neural 

network layer of the Depthwise separable 

convolutions block architecture decomposes the 

convolutional layer into two separate layers by 

factorization. The first layer is the depthwise 

convolution layer. This layer applies a lightweight 

single convolutional filtering for each input channel. 

The second decomposed layer is the (1x1) pointwise 

convolution layer, which combines new feature 

outputs from linear computational combinations of 

input parameters. The standard convolution layer 

takes the input hixwixdi and Li tensor structure and 

processes K convolutional kernel filtering to produce 

the output Lj tensor structure hixwixdj. The standard 



 

  

convolution layer has a computational cost of 

hi*wi*di*dj*k*k*k, while the depthwise separable 

convolution layer has a lower computational cost in 

the formal convolution functionality. Depthwise and 

(1x1) pointwise convolution layers have lower 

running cost compared to the standard convolution 

layer. Depthwise separable convolution layer reduces 

the running cost by a factor of k^2 compared to 

traditional layers [15].  

Conv 1x1

Squeeze 
Excitation

Depthwise 
Conv 3x3

Conv 1x1

 
Figure 2. MBConv Block 

 

Linear bottleneck block  

In figure 3 linear bottleneck block is depicted as 

convolutional layer blocks with (1x1), (3x3) 

Depthwise and (1x1) Linear filter dimensions and 

ReLU layer transformations connected to neural 

network activation tensor structures.  The neural 

network activation tensor structures are di 

dimensional components with hixwi pixels and 

generalize the full layer activations to the feature 

fields. In neural networks, feature fields can be 

transferred to low-dimensional components. In the d-

channel pixels in the deep convolution layer, the 

numerical values encoded in the connected pixels are 

integrated into the feature fields. These fields can be 

defined into low-dimensional parts. Deep convolution 

reduces the spatial dimension of the feature space by 

reducing the layer size. This approach balances 

computational cost and accuracy. The layer width 

multiplier parameter is linked to efficient model 

design.  This parameter reduces the activation space 

dimension in the deep architecture layer until the 

neuron completes the feature space. However, non-

linear point coordinate transformations such as ReLU 

are independent. The ReLU layer transformation has 

a non-zero unit S generated from the linear 

transformation of the dimensional output into the 

input space B, and the non-zero unit S has a linear 

transformation. Deep neural networks are limited by 

the power of the linear classifier, which focuses on 

this unit of the feature space [15].  

ReLU transformation produces an interpretable line 

of knowledge path through neural network channel 

activations. İrregular nature of a specific channel 

parameter in the ReLU transformation line causes 

loss of corresponding neural network channel 

activation.  Multiple channel parameters can solve 

channel activation loss issue by retaining the 

activation information within other unaffected 

channels. When high feature activations of input data 

reflected on lower feature representation, high level 

knowledge can package into lower dimensional 

blocks.  Similarly, depthwise separable convolution 

blocks split huge chunks of convolution kernels into 

lighter convolutions with preserved critic high level 

knowledge and ReLU transformation of depthwise 

convolutions connects activation information from 

the channels while adding complex nonlinear 

characteristics to the line of knowledge path.  

Through this, the ReLU transformation retains the 

essential input space details in the low-dimensional 

activation space. Linear bottleneck layer blocks in 

which have Depthwise (3x3) convolutions with ReLU 

transformations are capable of capturing the relevant 

low-dimensional feature blocks while preventing any 

data loss from non-linear distributed projections.  
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Figure 3. Linear Bottleneck Block 



 

 

 

Inverted residual block 

In figure 4 inverted residual block has (1x1) Conv2d 

and (3x3) Depthwise blocks applying inverted 

residual block connecting bottleneck expansions. 

Bottleneck blocks have usage for reducing parameter 

density while maintaining sufficient portion of 

model's feature extraction capability. Bottleneck 

blocks closely resemble the structure of residual 

block architectures. According to Sandler’s research 

team a residual block has first widening then 

narrowing and widening again layer pipeline and 

begins with several bottleneck layers immediately 

after the input layer, while inverted residual block has 

first narrowing then widening and narrowing again 

pipeline connecting (1x1) Conv2d - (3x3) Depthwise 

block and (1x1) Conv structures. Bottleneck layers 

are connected to following expansion layer.  While 

the bottleneck layers capture essential feature 

information, the expansion layers are responsible for 

reviving non-linear feature details without weighting. 

In this setup, "shortcut" connections are established 

between the bottleneck layers to ensure smooth 

information flow. 

ReLU6 3x3 Depthwise  Block

ReLU6 1x1 Conv2d Block

3x3

1x1

 

Figure 4. Inverted Residual Block  

 

EfficientNet architecture scaling 

EfficientNet architecture scaling enhances model 

performance by proportionally increasing the depth, 

width, and resolution of the neural network layers. 

This scaling is governed by the EfficientNet 

compound coefficient, which adjusts these 

dimensions simultaneously. At the same time, the 

neural network structure is expanded to the 

EfficientNet model series such as shallower 

EfficientNet-b0 and more complicated EfficientNet-

b7. The convolutional design analyzes the 

transformation of neural network layers through layer 

width, channel count, input height and width 

parameters in a flexible manner. The depth (d), width 

(w), and resolution (r) scaling of the layers are 

interconnected with distinctive parameters. For 

instance, depth scaling is connected to layer number 

of relevant depth, width scaling is connected to 

neuron channel unit count and resolution scaling is 

connected to input width and height parameters. 

While EfficientNet-b0 has 224 resolution scaling and 

depth scaling that has 237 number of layers, 

EfficientNet-b7 has 600 resolution and depth scaling 

that has 813 number of layers. 

Depth (d) 

Scaling the depth of neural networks is frequently 

used in convolutional structures. With increasing 

depth, convolutional structures (ConvNet) can 

capture more complex and rich feature information. It 

can generalize better to unexperienced tasks. 

However, deep neural networks have a more difficult 

training cycle due to the vanishing gradient problem. 

Skip connections and batch normalization add-on 

dilute the gradient problem and reduce the training 

accuracy of deep neural networks [16].  

Width (w) 

Increase the width scaling of a neural network is a 

common technique, particularly for smaller models. 

Width scaling is influenced by neuron channel unit 

count across layers and increasing neuron channels 

improves feature extraction of model compatible with 

findings by Zagoruyko and Komodakis, wider 

networks are more effective at capturing detailed 

feature information and are easier to train. However, 

as the network width growth forces model complexity 

and approximates training accuracy to plateau as it 

reaches the limit. 

 

Resolution (r) 

Convolutional layers can extract richer feature details 

through higher input resolution. Input resolution is 

connected to width and height of input image.  First 

going through smaller (224x224) input resolution to 

higher (300x300) input resolutions, convolutional 

layers bind higher resolution image pixels to create 

feature which has better classification accuracy.  

Excessive input resolution causes poor accurracy 

increasement over time. 

 

Compound scaling 

In figure 5 compound scaling is depicted as width 

scaling, depth scaling and resolution scaling of 

baseline layer dimension parameters. The scaling of 

layer dimension parameters in a neural architecture is 

interdependent. For higher input resolution, 

increasing the network depth scaling enhances feature 

gain of neuron channel units and related neuron 

channel units capture similar feature patterns in 

images with higher pixel densities. This situation 

necessitates a joint approach to scaling, as scaling 

only one dimension without scaling other layer 

dimensions result in inadequate model performance. 

Increasing the neuron channel unit count connected to 

layer depth and input resolution increasement. For 

instance, going through from EfficientNet-b0 to 

EfficientNet-b7 architecture, layer depth and input 



 

  

resolution is increased together with convolution 

blocks of neuron channel units. 

Balancing the layer depth, width and resolution 

dimensions of the neural network structure is critical 

for more effective accuracy performance. The 

compound scaling method scales the layer depth, 

width and resolution dimensions of the neural 

network structure consistently with the help of the 

compound coefficient. Neural network layer depth, 

width and resolution dimension constants can be 

determined by “grid search” research. The compound 

coefficient is the dynamic value that controls the 

resource distribution in the scaling of the neural 

network structure. Depth, width and resolution 

dimension constants are the values that determine 

how the resource distribution will be transferred to the 

network depth, width and resolution [16].  

resolution 
HxW

layer_i

channels
width scaling

d
e

ep
er

h
igh

e
r 

reso
lu

tio
n(a) baseline (b) width scaling

(c) depth scaling

(d) resolution 
scaling

 

Figure 5. Compound scaling 

 

3.1.3. Dynamic distribution adaptation network 

(DDAN) and CORAL transfer learning algorithm  

For improving fluctuation of validation datasets and 

model’s generalization ability, we examine research 

studies about transfer learning algorithms and domain 

adaptations. In this research we chose dynamic 

distribution adaptation network with CORAL loss 

applied to backbone neural network.  

In effectiveness analysis of transfer learning for the 

concept drift problem in malware detection research 

study, malware samples were divided into source 

domain and target domain fields via temporal split. 

VirusShare dataset's malware samples from the years 

2015, 2017, 2019 and 2020 were transferred to source 

domain and target domain. Source domain contains 

malware samples belong to specific earlier year band, 

while target domain contains malware samples 

belong to later year band. Transfer learning 

algorithms were applied to the relevant source 

domain and target domain. Especially CORAL 

transfer learning algorithm approximates the feature 

covariance of the source domain to the feature 

covariance of the target domain. This is achieved by 

whitening the source data (reducing the feature 

correlation to 0) and activating the covariance of the 

target domain. The original feature domain is not 

changed. In the related research study, transfer 

learning algorithms were presented to develop new 

malware detections despite the insufficiency of 

labeled malware samples [17]. CORAL loss defines 

transferable measure of target domain and source 

domain in dynamic distribution adaptation network.  

In transfer learning with dynamic distribution 

adaptation research study, Dynamic Distribution 

Adaptation (DDA) method is presented. Dynamic 

Distribution Adaptation method evaluates the 

quantitative weight of each feature distribution of 

data domains. Dynamic Distribution Adaptation can 

participate in the structural risk minimization of 

feature transitions in solution of transfer learning 

problems. The research study proposed Manifold 

Dynamic Distribution Adaptation (MDDA) for 

traditional transfer learning and Dynamic 

Distribution Adaptation Network (DDAN) learning 

algorithms for deep transfer learning on the basis of 

Dynamic Distribution Adaptation. Especially in deep 

transfer learning, the Dynamic Distribution 

Adaptation Network (DDAN) performs end-to-end 

learning of the feature g(.) learning function and the 

classification function f. DDAN learns feature 

representations with the end-to-end training cycle of 

deep neural networks. Backbone network applies 

domain adaptation with DDA method while learning 

useful feature representations [18].  

In the Dynamic Distribution Adaptation Network 

(DDAN) architecture, data samples from source 

domain and target domain are input to deep neural 

networks. CNN networks such as AlexNet and 

ResNet extract high-level features from the data 

samples. The high-level features pass through the 



 

 

 

fully-connected layer and are assigned to the softmax 

classification. The unique architectural part is the 

convergence of the feature distributions of the source 

domain and the target domain using the dynamic 

distribution alignment. The DDAN architecture 

incorporates the mini-batch Stochastic Gradient 

Descent (SGD) algorithm into the deep neural 

network training cycle. Dynamic distribution 

adaptation is computed over batch parts of the domain 

[18].  

Deep and adversarial transfer learning  

Deep transfer learning has improved with more 

enhanced feature extraction capability of deep neural 

networks and parametric functions such as loss 

functions or optimization functions. Especially loss 

functions have become evaluation model for 

transfering source domain knowledge to feature 

separation of target domain. In addition, adaptation of 

source domain and target domain has realized through 

loss function.  For instance, the Deep Domain 

Confusion (DDC) method introduced MMD loss into 

deep networks, facilitating adaptation between 

domains. Similarly, Deep Adaptation Networks 

(DAN) integrated a multi-kernel MMD framework 

based on first-order formulation while the Deep 

CORAL network included CORAL loss based on 

second-order formulation. CORAL loss has usage in 

Dynamic Distribution Adaptation Network and 

measures adaptation of source domain and target 

domain during network training cycle. Apart from 

Dynamic Distribution Adaptation Network and loss 

functions such as CORAL, MMD, the adversarial 

learning approach promotes the learning of 

representative feature characteristics that have more 

potential to transfer between target domain and 

source domain. The Domain Adversarial Neural 

Network (DANN) uses domain adversarial loss rather 

than relying on loss functions like MMD connected to 

specific Maximum Mean Discrepancy distance 

distribution formulation. In this situation network can 

learn more distinctive feature characteristics between 

domains.  

3.2. Datasets 

3.2.1. Dumpware10 dataset  

The Dumpware10 dataset produced by Hacettepe 

University was created for the detection of malware 

with an image-based approach. It was combined with 

image descriptors such as GIST and Histogram of 

Gradients (HOG). Four different resolutions ranging 

from 224 to 4096 pixels were used in the creation of 

malware images belonging to the Dumpware10 

dataset. GIST and HOG image descriptors were 

evaluated both separately and together within the 

scope of information fusion. UMAP, a dimensional 

reduction and multi-faceted learning technique, was 

used within the scope of malware image 

transformation problems. This dataset has a total of 

11 classes, including 10 malware families and one 

benign software. The Dumpware10 dataset has a total 

of 4294 data samples, 3433 training and 861 

validation samples. The dataset contains files 

belonging to 10 different malware families, including 

Adposhel, Allaple.A, Amonetize, AutoRun-PU, 

BrowseFox, Dinwod, InstallCore.C, MultiPlug, 

VBA, and Vilsel. 

3.2.2. Microsoft malware classification challenge 

dataset 

Microsoft Malware Classification Challenge is a 

dataset for malware classification. The dataset 

provides 10868 malware byte files as training data. 

Each byte file contains raw byte sequences 

representing a specific type of malware. This dataset 

helps researchers develop malware detection 

algorithms. The data is particularly suitable for 

research aimed at malware classification based on 

static file features. 

 

4. PROPOSED MODEL 

4.1. Data Preprocessing 

In the data preprocessing of the research, malware 

byte files belong to the Microsoft Malware 

Classification Challenge (BIG 2015) dataset are 

subjected to two-channel grayscale malware image 

conversion and three-channel RGB malware image 

conversion. Connected malware image conversions 

have paralel implementation as B2IMG algorithm.  

In figure 6 parsing of .bytes files, calculation of (a,b) 

data array size, converting sized data arrays to 8-bit 

2D format and saving 8-bit 2D formats as (256x256) 

sized .jpg files phases of two-channel grayscale 

malware image conversion are depicted.  During two-

channel grayscale malware image conversion, byte 

files are assigned to 8-bit two-channel grayscale 

format by converting to (a,b) matrix modeling over a 

16-column  array data and saved in fixed-size image 

files with .jpg or .png extensions [19]. Data arrays are 

sized to 256x256 for fixed-size grayscale malware 

image generation.  

 

Malware BIG 2015 
dataset .bytes files of the 

dataset are parsed

(a,b) size is calculated for  
data arrays of .bytes files

(a,b) sized data arrays are 
converted to 8-bit 2D format

8-bit 2D formats  are saved as 
256x256  sized .JPG files

8 - bit

8 - bit

8 - bit

 

Figure 6. Two-channel Grayscale malware image 

conversion 



 

  

In figure 7 parsing of .bytes files, dividing bytes data 

into RGB channels, combining RGB channels into 

meaningful RGB data and saving RGB data as .png 

files phases of three-channel RGB image conversion 

are depicted. During three-channel RGB malware 

image conversion, the binary data processed from the 

byte files are divided into triple RGB channel blocks. 

Then, RGB channel blocks are combined to create 

new RGB data and the RGB data are saved in .png 

image files [19]. 
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Figure 7. Three-channel RGB malware image conversion 

In figure 8 modelling of EfficientNet neural network 

implementation is partitioned into data processing 

and EfficientNet feature extraction phases. And 

connected phases are detailed consecutively with 

steps and model architecture structures such as layers 

and functions.   

In data preprocessing, the malware dataset is parsed 

into byte files and converted to 8-bit matrix format 

and saved to malware images. Malware images are 

transferred to EfficientNet architecture and subjected 

to feature extraction. Data preprocessing and 

EfficientNet feature extraction ends with the softmax 

function connected to the fully-connected layer. The 

softmax function assigns the feature extractions to the 

malware family counterparts. EfficientNet feature 

extraction produces the classification characteristics 

of malware images. 
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Figure 8. EfficientNet neural network implementation with 

data preprocessing 

5. EXPERIMENTAL RESULTS 

10868 malware byte files of the Microsoft Malware 

Classification Challenge (BIG 2015) dataset are 

introduced to EfficientNet-b3 and EfficientNet-b4 

neural network architectures. Stochastic Gradient 

Descent (SGD) and Adam optimizations with 0.01 

learning rate are used in EfficientNet model trainings. 

Pre-trained ImageNet-1K dataset weights are used in 

EfficientNet transfer learning and during experiments 

Pre-trained ImageNet-1K dataset weights were 

specifically trained for EfficientNet architectures and 

pre-trained ImageNet-1K dataset weights knowledge 

is transferred into EfficientNet malware classification  

 

by finetuning. Malware train data are converted to 

two-channel grayscale malware images and three-

channel RGB malware images and included in the 

EfficientNet model training cycle. Three-channel 

RGB malware images and two-channel grayscale 

malware images are separated into 80% train set and 

20% test set. Train set of malware images are trained 

with 20% validation separation. Grayscale malware 

images are 256x256 in size. RGB malware images are 

assigned to 32, 64, 128, 256, 384, 512, 768, 1024 and 

224 sizes according to variable file sizes. 



 

 

 

Table 1 results show that EfficientNet-b4 architecture 

trained with grayscale malware images achieves 0.90 

accuracy in SGD optimization. EfficientNet-b3 

architecture trained with RGB malware images 

achieves 0.91 accuracy in SGD optimization. Adam 

optimization shows lower accuracy compared to SGD 

optimization. Deepening EfficientNet-b3 architecture 

to EfficientNet-b4 architecture increases the accuracy 

rate in Adam optimization while decreasing it in SGD 

optimization for training RGB malware images. 

Table 1. EfficientNet-b3 and EfficientNet-b4 models 

Microsoft Malware Classification Challenge validation 

accuracies 

Malware 

image 
Model 

Learn

ing 

rate 

Optimiz

ation 

Accur

acy 

grayscale 

malware 

Efficient

Net-b3 
0.01 SGD 

0.897

642 

grayscalema

lware 

Efficient

Net-b4 
0.01 SGD 

0.907

418 

grayscalema

lware 

Efficient

Net-b3 
0.01 Adam 

0.753

306 

grayscalema

lware 

Efficient

Net-b4 
0.01 Adam 

0.840

713 

rgb malware 
Efficient

Net-b3 
0.01 SGD 

0.917

194 

rgb malware 
Efficient

Net-b4 
0.01 SGD 

0.897

067 

rgb malware 
Efficient

Net-b3 
0.01 Adam 

0.826

337 

rgb malware 
Efficient

Net-b4 
0.01 Adam 

0.885

566 

Table 2 results show that EfficientNet-b3 and 

EfficientNet-b4 architectures trained with SGD 

optimization on grayscale malware image type have 

the highest test accuracy. 

Table 2. Microsoft Malware Classification Challenge 

EfficientNet-b3 and EfficientNet-b4 test accuracies  

Malwa

re 

image 

Model 
Learni

ng rate 

Optimizati

on 

Accura

cy 

graysca

le 

malwar

e 

EfficientN

et-b3 
0.01 SGD 0.89 

graysca

le 

malwar

e  

EfficientN

et-b4 
0.01 SGD 0.89 

graysca

le 

malwar

e 

EfficientN

et-b3 
0.01 Adam 0.70 

graysca

le 

EfficientN

et-b4 
0.01 Adam 0.80 

malwar

e 

rgb 

malwar

e 

EfficientN

et-b3 
0.01 SGD 0.88 

rgb 

malwar

e 

EfficientN

et-b4 
0.01 SGD 0.86 

rgb 

malwar

e 

EfficientN

et-b3 
0.01 Adam 0.80 

rgb 

malwar

e 

EfficientN

et-b4 
0.01 Adam 0.86 

 

We use Microsoft Malware Classification Challenge 

(MMCC) grayscale malware images belong to the 

Malware Classification and Visualization Using 

EfficientNet and B2IMG Algorithm research study. 

Related grayscale malware images are assigned to 

equal width and height values of 32, 64, 128, 256, 

384, 512, 768, 1024 according to their file sizes [11]. 

In this research related research study’s grayscale 

malware images had already passed through B2IMG 

data preprocessing algorithm -paralel to our data 

preprocessing- just without (256x256) size fixation 

and   are split into 80% train set and 20% test set. Then 

the grayscale malware images are inputted to 

EfficientNet-b0...b7 architectures. The train set and 

test set are distributed into Gatak, Kelihos_ver1, 

Kelihos_ver3, Lollipop, Obfuscator.ACY, Ramnit, 

Simda, Tracur, Vundo 9 malware families. Train set 

of grayscale malware images was trained in 120 

epochs with a 20% validation separation. This train 

cycle has SGD optimization with a 0.01 learning rate. 

The highest train accuracy was obtained in the 

EfficientNet-b7 architecture.  

In this study during going though EfficientNet pre-

transformed Microsoft Malware Classification 

Challenge (MMCC) RGB malware images are sized 

to (224x224) random resized crops. Random parts of 

malware image are cropped and resized to (224x224). 

By these random resized crops EfficientNet model 

can interpret better characteristic textural analysis of 

malware image. RGB malware images are inputted to 

EfficientNet-b0, EfficientNet-b1, EfficientNet-b2, 

EfficientNet-b3, EfficientNet-b4, EfficientNet-b5, 

EfficientNet-b6, EfficientNet-b7 architectures. RGB 

malware images are separated into 80% train set and 

20% test set. In this research, the train set of RGB 

malware images is trained in 120 epoch cycles with 

20% validation separation. This training cycle has 

SGD optimization with a learning rate of 0.01. 

Table 3 shows Microsoft Malware Classification 

Challenge grayscale malware images achieve the 

most successful validation accuracy in the 

EfficientNet-b7 architecture.  

 



 

  

Table 3. Validation accuracy of grayscale two-channel 

malware images in the EfficientNet-b7 architecture 

Malwa

re 

image 

Model 
Learni

ng rate 

Optimizati

on 

Accura

cy 

graysca

le 

malwar

e 

EfficientN

et-b7 
0.01 SGD 

0.9527

92 

 

Table 4 shows Microsoft Malware Classification 

Challenge RGB malware images achieve the most 

successful validation accuracy in the EfficientNet-b5 

architecture. 

Grayscale malware are less noisy than RGB data and 

focuses on the textural patterns of malware data. In 

this case, deeper EfficientNet-b7 can capture finer 

malware image details without complexity. RGB 

malware has three color channels and is more 

complex than grayscale malware. In this case, the 

simpler EfficientNet-b5 can resolve the added 

channel complexity into meaningful malware image 

details and realize successful performance metrics.   

 

Table 4. Validation accuracy of three-channel RGB 

malware images in EfficientNet-b5 architecture  

Malwa

re 

image 

Model 
Learni

ng rate  

Optimizati

on 

Accura

cy 

RGB 

malwa

re 

EfficientN

et-b5 
0.01 SGD 

0.9447

96 

For Dumpware10 malware images, 300-pixel 
resolution and (300x300) image size were preferred. 
Dumpware10 malware images were divided into 
3433 training sets and 861 test sets and entered into 
EfficientNet-b0, EfficientNet-b1, EfficientNet-b2, 

EfficientNet-b3, EfficientNet-b4, EfficientNet-b5, 

EfficientNet-b6, EfficientNet-b7 architectures. In this 

research, Dumpware10 malware images were trained 

in 120 epoch cycles with a 20% validation separation. 

The training set and the test set were distributed to 

Adposhel, Allaple, Amonetize, AutoRun, 

BrowseFox, Dinwod, InstallCore, MultiPlug, Other, 

VBA, Vilsel classes. 

Table 5 shows Dumpware10 RGB malware images 

achieve the most successful validation accuracy in the 

EfficientNet-b6 architecture. Dumpware10 RGB 

images are focused on the simpler EfficientNet 

architecture than the Microsoft Malware 

Classification Challenge (MMCC) RGB malware 

images. 

Table 5. Validation accuracy of Dumpware10 RGB 

malware images on EfficientNet-b6 architecture 

Malware 

image 
Model  

Learnin

g rate 

Optimizat

ion 

Accur

acy 

RGB 

malware 

Efficien

tNet-b6 
0.01 SGD 

0.9344

98 

 

In training of grayscale malware images belong to the 

Malware Classification and Visualization Using 

EfficientNet and B2IMG Algorithm study, the 

EfficientNet-b7 architecture reaches the highest 

accuracy with a value of 95%. In training of RGB 

malware images belong to our research study, the 

EfficientNet-b5 architecture reaches the highest 

accuracy with a value of 94%. The EfficientNet-b6 

architecture has the highest accuracy with of 93% for 

RGB malware images of the Dumpware10 dataset. 

Table 6 shows EfficientNet-b7 SGD optimization of 

Microsoft Malware Classification Challenge 

grayscale images achieve the highest success values. 

In figure 9 train loss of Microsoft Malware 

Classification Challenge (Grayscale) EfficientNet-b7 

and in figure 10 train accuracy of Microsoft Malware 

Classification Challenge (Grayscale) EfficientNet-b7 

is depicted.  In figure 11 validation accuracy and in 

figure 12 validation loss of Microsoft Malware 

Classification Challenge (Grayscale) EfficientNet-b7 

is depicted.  The validation loss and accuracies are 

more zigzag shaped. In this case, train data 

approaches a more consistent curve by being 

memorized in the model while validation data is more 

inconsistent as a result of overfitting. The model 

training has difficulty generalizing to unpredictable 

validation data. The overfitting status of the train data 

is reflected in the validation data.  

 

Table 6. Microsoft Malware Classification Challenge and Dumpware10 test accuracy, F1-score, recall and precision results  

  Model 
Malware 

image 

Learning 

Rate 
Optimization Accuracy 

F1 

Score 
Recall Precision 

MS 

EfficientNet-

b7 

Gray 

Scale 
0.01 SGD 0.93 0.8963 0.9163 0.8815 

EfficientNet-

b5 
RGB 0.01 SGD 0.91 0.8646 0.8777 0.8550 

Dumpware10 
EfficientNet-

b6 
RGB 0.01 SGD 0.91 0.8786 0.8843 0.8811 



 

 

 

 

Figure 9. Microsoft Malware Classification Challenge 

(Grayscale) EfficientNet-b7 train loss  

 

 

Figure 10. Microsoft Malware Classification Challenge 

(Grayscale) EfficientNet-b7 train accuracy  

 

 

Figure 11. Microsoft Malware Classification Challenge 

(Grayscale) EfficientNet-b7 validation accuracy  

 

Figure 12. Microsoft Malware Classification Challenge 

(Grayscale) EfficientNet-b7 validation loss  

In figure 13 confusion matrix of Microsoft Malware 

Classification Challenge (Grayscale) EfficientNet-b7 

is depicted. When Microsoft Malware Classification 

Challenge (Grayscale) EfficientNet-b7 confusion 

matrix is examined, the lowest accuracy is seen in the 

Simda class, while the highest accuracy is seen in the 

Kelihos_ver1 class. In particular, the fact that the 

Simda class has a lower accuracy is due to 

insufficiency of data for the Simda class. 

 

Figure 13. Microsoft Malware Classification Challenge 

(Grayscale) EfficientNet-b7 confusion matrix 

In figure 14 train loss of Microsoft Malware 

Classification Challenge (RGB) EfficientNet-b5 and 

in figure 15 train accuracy of Microsoft Malware 

Classification Challenge (RGB) EfficientNet-b5 is 

depicted. In figure 16 validation loss and in figure 17 

validation accuracy of Microsoft Malware 

Classification Challenge (RGB) EfficientNet-b5 is 

depicted. When the figures are examined, it is seen 

that the validation loss and accuracies are more 

inconsistent than the train loss and accuracies. This 



 

  

situation transforms the overfitting problem of the 

train data into a zigzag curve in the validation data. 

RGB malware images are more consistent compared 

to grayscale malware images. 

 

Figure 14. Microsoft Malware Classification Challenge 

(RGB) EfficientNet-b5 train loss  

 

Figure 15. Microsoft Malware Classification Challenge 

(RGB) EfficientNet-b5 train accuracy  

 

Figure 16. Microsoft Malware Classification Challenge 

(RGB) EfficientNet-b5 validation loss  

 

Figure 17. Microsoft Malware Classification Challenge 

(RGB) EfficientNet-b5 validation accuracy  

In figure 18 confusion matrix of Microsoft Malware 

Classification Challenge (RGB) EfficientNet-b5 is 

depicted. When the Microsoft Malware Classification 

Challenge (RGB) EfficientNet-b5 confusion matrix is 

examined, the lowest accuracy belongs to the Simda 

class while the highest accuracy belongs to the 

Kelihos_ver3 class. This is due to the imbalance in the 

data distribution. 

 

Figure 18. Microsoft Malware Classification Challenge 

(RGB) EfficientNet-b5 confusion matrix 

In figure 19 validation loss of Dumpware10 

EfficientNet-b6 and in figure 20 validation accuracy 

of Dumpware10 EfficientNet-b6 is depicted. In figure 

21 train loss and in figure 22 train accuracy of 

Dumpware10 EfficientNet-b6 is depicted. When 

Dumpware10 EfficientNet-b6 validation accuracies 

and losses and train accuracies and losses are 

examined, it is shown that the train data has reached 

overfitting and the validation data has difficulty in 

generalization. In the model training, the batch parts 

can not learn the malware image characteristics in the 



 

 

 

gradient loop. This creates inconsistent curves in the 

validation data. 

 

Figure 19. Dumpware10 EfficientNet-b6 validation loss  

 

Figure 20. Dumpware10 EfficientNet-b6 validation 

accuracy  

 
Figure 21. Dumpware10 EfficientNet-b6 train loss  

 

Figure 22. Dumpware10 EfficientNet-b6 train accuracy  

In figure 23 confusion matrix of Dumpware10 

EfficientNet-b6 is shown. In Dumpware10 

EfficientNet-b6 confusion matrix, the lowest 

accuracy belongs to Dinwod class while the highest 

accuracy belongs to VBA class. Imbalance of data 

distribution between classes causes this issue.  

 
Figure 23. Dumpware10 EfficientNet-b6 confusion matrix 

 

In transfer learning approach for malware 

classification research study, a convolutional transfer 

learning application (TL-CNN) was utilized for 

Android malware image classification. The transfer 

learning convolutional neural network architecture 

separated benign images and malicious malware 

images. In the transfer learning model of the research 

work, the pre-trained ResNet-50 classifier component 

was replaced with the original classification 

component. The classification component removed 

the ImageNet 1000 image classes and integrated the 

fully-connected layer contains 25 malware classes. In 

the transfer learning ResNet-50 model, the 

MaxPooling layer with padding, (2x2) kernel filter 

size and 2 stride is introduced before the fully-

connected layer of the classification component. The 



 

  

fully-connected layer and the Softmax function 

performed the final malware classification [20].  

In this research, based on the transfer learning 

approach for malware images classification, the last 

Global Average Pooling layer of the feature 

extraction block of the EfficientNet architecture is 

replaced with the MaxPooling layer and connected to 

the classifier. EfficientNet architecture can be 

adapted to the MaxPooling layer with (7x7) kernel 

size and 1 step. The classifier classifier of the 

EfficientNet architecture requires (1x1) plane-sized 

input and the EfficientNet architecture does not meet 

the Max Pooling setting with (2x2) kernel filter size 

and 2 steps.   

MaxPooling EfficientNet-b7 (Microsoft Malware 

Classification Challenge - grayscale malware image) 

and EfficientNet-b5 (Microsoft Malware 

Classification Challenge - RGB malware image) 

EfficientNet-b6 (Dumpware10 dataset) models were 

trained with 120 epoch cycles in SGD optimization 

with 0.01 learning rate.  

Table 7 shows EfficientNet-b5 (RGB) has the highest 

evaluation accuracy among MaxPooling EfficientNet 

model trainings. When the MaxPooling change 

occurred, RGB malware images produced higher 

validation accuracy than grayscale malware images.   

 

Table 7. MaxPooling EfficientNet model validation 

accuracies  

Malwar

e image 
Model 

Learni

ng rate 

Optimizat

ion 

Accura

cy 

Graysc

ale 

malwar

e  

EfficientN

et-b7 
0.01 SGD 

0.9182

50 

RGB 

malwar

e 

EfficientN

et-b5 
0.01 SGD 

0.9263

94 

RGB 

malwar

e 

EfficientN

et-b6 
0.01 SGD 

0.9039

30 

Table 8 shows EfficientNet-b7 (Grayscale) has the 

highest test accuracy. The fact that the EfficientNet-

b7 precision value is higher than the recall value 

shows that the correct class matching is high in the 

total correct class inference of the model. 

Table 8. MaxPooling EfficientNet model experiment test accuracy F1-score, recall and precision results  

Model Malware Image Learning rate Optimization Accuracy F1-score Recall Precision 

EfficientNet-b7 Grayscale 0.01 SGD 90% 0.8529 0.8434 0.8893 

EfficientNet-b5 RGB 0.01 SGD 89% 0.8288 0.8407 0.8207 

EfficientNet-b6 RGB 0.01 SGD 88% 0.8299 0.8275 0.8469 

In figure 24 confusion matrix of MaxPooling 

EfficientNet-b5 Microsoft Malware Classification 

Challenge (RGB) is depicted with class accuracy 

distributions. In MaxPooling EfficientNet-b5 

Microsoft Malware Classification Challenge (RGB) 

confusion matrix, the highest accuracy belongs to the 

Kelihos_ver3 class, while the lowest accuracy 

belongs to the Simda class. This is due to the data 

imbalance between classes. Simda class has 

insufficient number of data sample.  

 

Figure 24. MaxPooling EfficientNet-b5 Microsoft 

Malware Classification Challenge (RGB) confusion matrix 

In figure 25 MaxPooling EfficientNet-b7 Microsoft 

Malware Classification Challenge (Grayscale) 

confusion matrix shows that the accuracy of the 

Simda class is the lowest, while the accuracy of the 

Kelihos_ver3 class is the highest. Negative matching 



 

 

 

shifts are observed in the Simda class, and this breaks 

the accuracy. 

 
Figure 25. MaxPooling EfficientNet-b7 Microsoft 

Malware Classification Challenge (Grayscale) confusion 

matrix 

In figure 26 MaxPooling EfficientNet-b6 

Dumpware10 (RGB) confusion matrix shows that the 

highest accuracy belongs to the VBA class, while the 

lowest accuracy belongs to the AutoRun class. The 

unbalanced distribution of Dumpware10 malware 

images among the classes affects accuracy.  

 
Figure 26. MaxPooling EfficientNet-b6 Dumpware10 (RGB) 

confusion matrix  

 

MaxPooling experiment results shows that 

EfficientNet-b7 (Grayscale) extension of the Transfer 

Learning experiment has the highest success 

performance. The MaxPooling experiment did not 

provide a noticeable improvement in test accuracies 

and the GlobalAveragePooling layer of the 

EfficientNet architecture produced more successful 

results than the MaxPooling layer. 

CORAL transfer learning algorithm uses the source 

domain and target domain distinctions of the dataset 

under domain adaptation. Dumpware10, Microsoft 

Malware Classification Challenge RGB and 

Microsoft Malware Classification Challenge 

grayscale datasets are divided into source domain 

with 60% and target domain with 40%. Then the 

source domain and target domains are divided into 

“test domain” and “validation domain” with a rate of 

20%. The source domain, target domain and 

validation domain of the datasets participate in the 

training of the Dynamic Distribution Adaptation 

Network with CORAL loss in domain partition logic 

of CORAL transfer learning algorithm.  

The backbone deep neural network (ResNet) in the 

Dynamic Distribution Adaptation Network extension 

is replaced by the EfficientNet architecture of this 

research work. Dumpware10 domain data is input to 

EfficientNet-b6, Microsoft Malware Classification 

Challenge RGB domain data is input to EfficientNet-

b5 and Microsoft Malware Classification grayscale 

domain data is input to EfficientNet-b6. The training 

cycle of EfficientNet architectures has SGD 

optimization with EarlyStopping support and 0.01 

learning rate. Batch size is 16.  A bottleneck layer has 

been added to the Dynamic Distribution Adaptation 

Network Backbone architecture, improving 

performance. Dynamic Distribution Adaptation 

Backbone architecture assigns CORAL loss of source 

domain and target domain to transfer loss, 

CrossEntropy loss to classification loss, and the sum 

of transfer loss and classification loss to total loss. In 

the Dynamic Distribution Adaptation training cycle, 

the source domain and target domain get closer to 

each other and the transfer loss decreases. 

Table 9 shows that Microsoft Malware Classification 

Challenge grayscale EfficientNet-b6 backbone model 

has the highest validation accuracy rate. 

 

Table 9. Dynamic distribution adaptation network with 

CORAL loss experiment validation accuracies 

Malware 

dataset 

Malware 

image 

Backbone 

model 

Accurac

y 

Microsoft 

Malware 

Classificatio

n Challenge 

Grayscal

e 

EfficientNe

t-b6 

0.9706 

Microsoft 

Malware 

Classificatio

n Challenge 

RGB EfficientNe

t-b5 

0.9442 

Dumpware1

0 

RGB EfficientNe

t-b6 

0.9663 

Table 10 shows that the most successful results in test 

domain accuracy, precision, recall and F1-score 

metrics belong to Dumpware10 RGB EfficientNet-b6 

model. 



 

  

Table 10. Dynamic distribution adaptation network with CORAL loss experiment test tesults  

Malware dataset Malware 

image 

Backbone 

model 

Accuracy Precision Recall F1-

score 

Microsoft Malware 

Classification Challenge 

dataset 

Grayscale EfficientNet-

b6 

0.95854 0.9009 0.8554 0.8647 

Microsoft Malware 

Classification Challenge 

dataset 

RGB EfficientNet-

b5 

0.95257 0.9484 0.8478 0.8596 

Dumpware10 RGB EfficientNet-

b6 

0.96064 0.9460 0.9556 0.9491 

In figure 27 validation accuracy of DDAN with 

CORAL loss experiment Microsoft Malware 

Classification Challenge Grayscale EfficientNet-b6 is 

depicted and in figure 28 DDAN with CORAL loss 

experiment Microsoft Malware Classification 

Challenge (Grayscale) EfficientNet-b6 classification 

loss is depicted. Figure 29 and figure 30 

consecutively show transfer loss and total loss of 

DDAN with CORAL loss experiment Microsoft 

Malware Classification Challenge (Grayscale) 

EfficientNet-b6. When connected figures are 

examined, we see that the validation accuracy figure 

contains less zigzag changes. This situation 

demonstrates consistency of training. Also there is a 

sudden decreasement of accuracy that connected to 

model anomaly. However EarlyStopping mechanism 

had been already saved the model weight that highest 

accuracy rate. Therefore model weight did not 

influenced by sudden drop in accuracy.  

 

Figure 27. DDAN with CORAL loss experiment Microsoft 

Malware Classification Challenge (Grayscale) 

EfficientNet-b6 validation accuracy  

 

Figure 28. DDAN with CORAL loss experiment Microsoft 

Malware Classification Challenge (Grayscale) 

EfficientNet-b6 classification loss  

 
Figure 29. DDAN with CORAL loss experiment Microsoft 

Malware Classification Challenge (Grayscale) 

EfficientNet-b6 transfer loss  



 

 

 

 
Figure 30. DDAN with CORAL loss experiment Microsoft 

Malware Classification Challenge (Grayscale) 

EfficientNet-b6 total loss 

In figure 31 validation accuracy of DDAN with 

CORAL loss experiment Microsoft Malware 

Classification Challenge (RGB) EfficientNet-b5 is 

depicted and in figure 32 DDAN with CORAL loss 

experiment Microsoft Malware Classification 

Challenge (RGB) EfficientNet-b5 classification loss 

is depicted. Figure 33 and figure 34 consecutively 

show transfer loss and total loss of DDAN with 

CORAL loss experiment Microsoft Malware 

Classification Challenge (RGB) EfficientNet-b5.   

When connected figures are examined, we see that 

fluctiations in validation accuracy figure is lesser than 

the previous experiments’ figures. Also examined 

that there is a abrupt drop in validation accuracy 

which shows a model anomaly. However 

EarlyStopping mechanism had been already saved 

mode weights that include the highest accuracy rate. 

Therefore sudden drop in validation accuracy did not 

affect the model weights.  

 
Figure 31. DDAN with CORAL loss experiment Microsoft 

Malware Classification Challenge (RGB) EfficientNet-b5 

validation accuracy  

 
Figure 32. DDAN with CORAL loss experiment Microsoft 

Malware Classification Challenge (RGB) EfficientNet-b5 

classification loss  

  

Figure 33. DDAN with CORAL loss experiment Microsoft 

Malware Classification Challenge RGB EfficientNet-b5 

transfer loss  

 

Figure 34. DDAN with CORAL loss experiment Microsoft 

Malware Classification Challenge RGB EfficientNet-b5 

total loss  

In figure 35 validation accuracy of DDAN with 

CORAL loss experiment Dumpware10 EfficientNet-

b6 is depicted and in figure 36 DDAN with CORAL 



 

  

loss experiment Dumpware10 EfficientNet-b6 

classification loss is depicted. Figure 37 and figure 38 

consecutively show transfer loss and total loss of 

DDAN with CORAL loss experiment Dumpware10 

EfficientNet-b6.   When connected figures are 

examined, we see that validation accuracy figure 

graph has less fluctiations beside the previous 

experiments’ figure graphs excluding DDAN with 

CORAL loss experiment. However sudden accuracy 

drop did not happened in DDAN with CORAL loss 

experiment Dumpware10 EfficientNet-b6.  

 

Figure 35. DDAN with CORAL loss experiment 

Dumpware10 EfficientNet-b6 validation accuracy  

 

Figure 36. DDAN with CORAL loss experiment 

Dumpware10 EfficientNet-b6 classification loss  

 
Figure 37. DDAN with CORAL loss experiment 

Dumpware10 EfficientNet-b6 transfer loss  

 
Figure 38. DDAN with CORAL loss experiment 

Dumpware10 EfficientNet-b6 total loss  

In figure 39 DDAN with CORAL loss Microsoft 

Malware Classification Challenge (Grayscale) 

EfficientNet-b6 confusion matrix, we see that the 

highest accuracy is in Kelihos_ver3 and the lowest 

accuracy is in Simda. 

 

Figure 39. DDAN with CORAL loss experiment Microsoft 

Malware Classification Challenge (Grayscale) 

EfficientNet-b6 confusion matrix  



 

 

 

In figure 40 DDAN with CORAL loss Microsoft 

Malware Classification Challenge (RGB) 

EfficientNet-b5 confusion matrix, we see that 

Kelihos_ver3 has the highest accuracy while Simda 

has the lowest accuracy.  

 
Figure 40. DDAN with CORAL loss experiment Microsoft 

Malware Classification Challenge (RGB) EfficientNet-b5 

confusion matrix 

Figure 41. DDAN with CORAL loss experiment 

Dumpware10 EfficientNet-b6 confusion matrix  

In figure 41 DDAN with CORAL loss experiment 

Dumpware10 EfficientNet-b6 confusion matrix, we 

see that Allaple, BrowserFox and VBA have the 

highest accuracies while AutoRun has lowest 

accuracy.  

In table 11 summarizes the highest performance 

metrics for the Transfer Learning and MaxPooling 

experiments conducted in the research. The 

experiments were focused on malware classification 

using different EfficientNet models (EfficientNet-b5, 

b6, and b7) applied to both grayscale and RGB 

malware images. The datasets used for evaluation 

include the Microsoft Malware Classification 

Challenge (MMCC) and Dumpware10. The table 

presents key performance metrics such as test 

accuracy, F1 Score, recall, and precision, along with 

validation accuracy. EfficientNet-b7 (Grayscale) 

achieved the highest validation accuracy (95.27%) in 

the transfer learning experiments, with strong test 

accuracy (93%) and high precision (88.15%). 

EfficientNet-b6 (RGB) on the Dumpware10 dataset 

performed well across both transfer learning and 

DDAN experiments, achieving the best test accuracy 

(96%) and strong precision (94.60%) with a 

validation accuracy of 96.63%. MaxPooling 

experiments yielded slightly lower results than 

transfer learning, with EfficientNet-b7 (Grayscale) 

showing a test accuracy of 90%. DDAN approach 

improved the test and validation accuracy metrics 

across both RGB and grayscale images, particularly 

excelling in handling the Dumpware10 dataset.  

 

Table 11.  Most successful results of the Transfer Learning and MaxPooling experiments 

Transfer 

Learning 
Model Malware image 

Test 

Accuracy 

F1 

Score 
Recall Precision 

Validasyon 

Accuracy 

MS 
EfficientNet-b7 Grayscale 0.93 0.8963 0.9163 0.8815 0.952792 

EfficientNet-b5 RGB 0.91 0.8646 0.8777 0.8550 0.944796 

Dumpware10 EfficientNet-b6 RGB 0.91 0.8786 0.8843 0.8811 0.934498 

MaxPooling  

MS 
EfficientNet-b7 Grayscale 0.90 0.8529 0.8434 0.8893 0.918250 

EfficientNet-b5 RGB 0.89 0.8288 0.8407 0.8207 0.926394 

Dumpware10 EfficientNet-b6 RGB 0.88 0.8299 0.8275 0.8469 0.903930 

        

DDAN  

 

MS 
EfficientNet-b5 RGB 0.95 0.8596 0.8478 0.9484 0.9442 

 EfficientNet-b6    Grayscale  0.95 0.8647 0.8554 0.9009 0.9706 

Dumpware10 EfficientNet-b6 RGB 0.96 0.9491 0.9556 0.9460 0.9663 



 

  

In Table 12 compares the results obtained from 

various experiments, including Transfer Learning, 

MaxPooling, and the Dynamic Distribution 

Adaptation Network (DDAN), for malware 

classification. EfficientNet-b7 (grayscale) achieved 

the highest validation accuracy (95.27%) for the 

Microsoft Malware Classification Challenge. The 

RGB-based EfficientNet-b5 performed slightly lower 

with a validation accuracy of 94.48%. MaxPooling 

technique did not yield significantly better results 

compared to Transfer Learning. For grayscale 

images, EfficientNet-b7 scored 91.82% validation 

accuracy, and for RGB images, EfficientNet-b5 

achieved 92.63%. DDAN approach produced the 

highest results across the board. EfficientNet-b6 

(grayscale) reached a validation accuracy of 97.06%, 

while for RGB images, EfficientNet-b5 and 

EfficientNet-b6 achieved validation accuracies of 

94.42% and 96.63%, respectively. 

 

Table 12. Comparison of academic studies with DDAN experiment results 

Studies Dataset Accuracy DDAN EfficientNet-b6 (Grayscale) accuracy rate 

[11] MMCC 99.63% (train) 97% (validation) 95% (test) 

[2] MMCC 99.06% (train) 97% (validation) 95% (test) 

[1] MMCC 99.44% 97% (validation) 95% (test) 

[4] MMCC 99.58% 97% (validation) 95% (test) 

   DDAN EfficientNet-b6 (RGB) accuray rate 

[19] Dumpware10 99.60% 96% (validation) 96% (test) 

[21] Dumpware10 97% 96% (validation) 96% (test) 

6. CONCLUSIONS 

In this study, a comprehensive research was 

conducted on the classification and visualization of 

malware using a model based on the EfficientNet 

deep learning architecture. The model created with 

EfficientNet's inverse residual block configuration 

achieved high accuracy rates, especially in the 

classification of malware images. Experiments 

conducted on the Microsoft Malware Classification 

Challenge and Dumpware10 datasets used in the 

study show that the model gives successful results. 

97% validation accuracy and 95% test accuracy were 

obtained in the Microsoft Malware Classification 

Challenge dataset, and 96% validation and test 

accuracy were obtained in the Dumpware10 dataset. 

EfficientNet's deep learning architecture showed high 

performance in classification studies on malware 

images. In particular, the methods used in the 

preprocessing of data and image transformations 

made significant contributions to the success of the 

model. The balanced scaling of EfficientNet's layer 

depth, width and resolution dimensions increased the 

accuracy of the model. This study reveals that deep 

learning techniques can be used effectively in 

malware detection in the field of cyber security. The 

flexibility of the EfficientNet architecture and the use 

of transfer learning techniques have increased the 

accuracy and generalization ability of the model. In 

future studies, the performance of the model can be 

further improved with different datasets and more 

complex malware detection methods. In conclusion, 

this study shows that the EfficientNet architecture can 

be successfully applied in the field of cybersecurity 

and can provide solutions for malware detection. 
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