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 This article studies the buckling properties of nickel foam nanoplate. This research used nonlocal 

strain gradient elasticity and the new theory of sinusoidal higher-order deformation. After deriving 

the nanoplate's equations of motion from Hamilton's principle, the Navier technique was used to 

solve them. Two different kinds of foam models, uniform and symmetric, can be used to depict 

the nanoplate. Examining the nanoplate's dimensionless fundamental natural frequencies was the 

study's primary goal. The effects of temperature difference, nonlocal parameters, foam void ratio, 

and two different kinds of foam were considered in this investigation. In this context, the 

nanoplate's natural frequency decreases by 23.78% in the symmetric foam model and 51.5% in the 

uniform foam model as the foam void ratio increases. The research provides valuable insights for 

the development of nanoelectromechanical systems (NEMS), nanosensors, and transducers 

intended for high-temperature environments. By analyzing the impact of temperature and foam 

void ratio on nanoplate stability, the study informs material selection and structural design for 

applications where performance under thermal stress is critical, such as in aerospace and energy 

sectors. 
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1. Introduction 

The vibration analysis of nanoplates can be effectively 

studied through nonlocal viscoelasticity models [1]. These 

models consider factors like viscoelasticity and 

piezoelectricity, which are crucial in understanding the 

dynamic characteristics of nanoscale structures. 

Researchers have explored the behavior of various 

nanomaterials like carbon nanotubes under different 

conditions, such as longitudinal magnetic fields, 

emphasizing the importance of nonlocal theories in 

predicting wave propagation and dynamic characteristics 

[2]. Additionally, using smart materials like self-healing 

polymer composites has gained attention for repairing 

microcracks in nanoplates, showcasing the practical 

applications of advanced materials in maintaining 

structural integrity [3]. Further research on the size-

dependent vibration of nanoplates reinforced with carbon 

nanotubes under various influences like longitudinal 

magnetic fields can provide valuable insights into their 

dynamic behavior [4]. 

Nanoplates, as nanoscale structures, possess unique 

properties that can be influenced by various factors, 

including thermal effects. The thermal properties of 

nanoplates play a crucial role in their applications, such as 

in heat dissipation, thermal energy conversion, and 

thermal stability. The thermal conductivity of nanoplates 

is a key characteristic that affects their ability to transfer 

heat efficiently [5]. Similarly, incorporating BN 

nanoplates into composite materials has been shown to 

enhance heat conduction and transfer capabilities, as 

evidenced by increased thermal conductivity and thermal 

diffusivity [6]. Furthermore, the thermal behavior of 

nanoplates can impact their photothermal conversion 

efficiency. Graphite nanoplates, for instance, have been 

demonstrated to convert solar light into thermal energy 

through lattice vibrations of the carbon backbone [7]. 

Moreover, the thermal properties of nanoplates can 

influence their electrical and thermoelectric performance. 

For example, the fabrication of Au-Sb2Te3 nanoplates with 

optimized interface barriers and phonon scattering has 

resulted in synergistically optimal electrical and thermal 

properties [8]. Additionally, the growth of ultrathin Bi2Te3 

nanoplates and subsequent fabrication of nanostructured 

thermoelectric materials have been reported, highlighting 

the importance of thermal management in enhancing 

thermoelectric efficiency [9]. Studies have shown that 
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adding graphene nanoplates to nanofluids can improve 

thermal efficiency and heat transfer characteristics in heat 

exchangers [10, 11]. Similarly, metal-containing 

nanofluids with nanoplates have been investigated for 

thermal energy storage applications, demonstrating 

enhanced specific heat due to interfacial layering effects 

[12]. 

An expanding field of study, foam nanoplates have great 

promise for various engineering contexts. Nanoplate 

structures' vibration properties can be greatly affected by 

foams. Al-Waily et al. investigated micro aluminum 

powder-reinforced foam sandwich plates using free 

vibration analysis [13]. Functionally graded nanoporous 

metal foam nanoplates showed exceptional fracture 

toughness and electrical solid conductivities, making them 

appropriate for thin-film elements [14]. The study focused 

on free vibration and buckling in the FG porous beam's 

response to thermal effects and magnetic fields [15]. Zhao 

et al. investigated the sandwich plates with aluminum 

foam cores experimentally and numerically [16]. Sun et al. 

used carbon fiber/epoxy stitched reinforcements with a 

precisely adjusted fiber volume fraction to strengthen 

foam core sandwich constructions [17]. Also, aluminum 

facesheets were utilized with polyurethane and 

polystyrene foam cores [18]. 

As demonstrated in a recent study, the use of additives 

in biodiesel and the coating of tractor engine components 

can significantly reduce fuel consumption and exhaust 

emissions, while promoting more environmentally 

friendly agricultural practices [19]. As investigated in a 

recent study, blending hexane and water with diesel fuel in 

ceramic-coated and uncoated diesel engines can improve 

emission and performance parameters, with the ceramic 

coating proving to be the most effective factor for all tested 

parameters [20]. 

Nanosensors and nanoelectromechanical systems are 

widely used in high-temperature applications due to 

nanotechnology's widespread use. To ensure exact 

measurement and operation of these systems, new designs 

or configurations, such as the sandwich arrangement, must 

be developed. This study must make unique contributions 

due to a dearth of literature. This study examined foam 

nanoplate thermomechanical vibration to meet the criteria. 

The nanoplates are nickel foam. The initiative aims to 

build and test high-temperature nanoplates. 

 

2. Modelling of Foam Nanoplate  

The equations of motion for the nanoplate analyzed in this 

paper were derived using the Hamiltonian approach. This 

method allows for examining the nanoplate's dynamic 

behaviour in the temperature environment. Fig. 1 shows the 

physical depiction of a rectangular nanoplate positioned in 

the x, y, z coordinate system. The nanoplate consists of a 

single layer. The dimensions of the nanoplate in the y and x 

directions are specified as a and b, respectively. The 

thickness is denoted by the variable h. 

This study investigates the dynamic characteristics of a 

nanoplate composed exclusively of nickel foam. Fig. 1 

displays two distinct varieties of foam nanoplates within this 

environment. Fig. 1a depicts a homogenous foam model, 

whereas Fig. 1b shows a foam model with concentrated 

surface regions. The Young Modulus E and densities of the 

aforementioned models are provided as follows [21–24]. 

Uniform foam (Fig. 1a): 

𝐸(𝑧) = 𝐸1(1 − 𝛼𝜓)

𝜌(𝑧) = 𝜌1√(1 − 𝛼𝜓)
 

𝜓 =
1

𝛼
−
1

𝛼
(
2√(1 − 𝛼𝜓)

𝜋
−
2

𝜋
+ 1)

2

 

(1) 

Symmetric foam (Fig. 2a): 

𝐸(𝑧) = 𝐸1[1 − 𝛼cos(𝜋𝑧/ℎ)] 

𝜌(𝑧) = 𝜌1[1 − 𝛼𝑑cos(𝜋𝑧/ℎ)] 

𝛼𝑑 = 1 − √(1 − 𝛼) 
(2) 

ρ1 and E1 denote the density and young modulus of the 

nickel foam, respectively. The symbol α represents the 

foam's void ratio. 

Uniform foam models represent a consistent distribution of 

voids throughout the structure, making them suitable for 

applications requiring isotropic mechanical properties and 

ease of manufacturing. On the other hand, symmetric foam 

models account for graded distributions of voids, which are 

more representative of advanced fabrication techniques, such 

as additive manufacturing or layer-by-layer deposition.  

 

 

 

Figure 1. Configuration of nickel nanoplate a) Uniform foam 

model b) Symmetric foam model 
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These models offer enhanced control over material 

properties, allowing for tailored responses to specific 

operational requirements, such as improved thermal 

resistance or localized stiffness. By analyzing both models, 

the study provides a comprehensive understanding of how 

different foam configurations influence the structural 

performance of nanoplates, offering insights for designing 

materials optimized for specific engineering applications. 

2.1 The temperature effect on nanoplate 

Temperature parameters are necessary as the impact of 

temperature on the behaviour of the nanoplate is considered. 

The equation provided describes the non-linear relationship 

between the material characteristics, such as the temperature-

dependent elastic modulus and Poisson's ratio [25]. 

𝑃 = 𝑃0(𝑃−1𝑇
−1 + 1 + 𝑃1𝑇 + 𝑃2𝑇

2 + 𝑃3𝑇
3) (3) 

In this context, the symbol P indicates an ingredient that 

varies with temperature, whereas P0 represents the matching 

material. Table 1 presents the P-1, P1, P2, and P3 values that 

correlate to the temperature T. 

The temperature distribution of the nanoplate in the z 

direction can be described by the following linear equation. 

Here, T1 and T2 denote the temperature of the lower and 

upper surfaces, respectively, and the temperature rise is 

considered to be from T1 to T2 [26]. 

𝑇(𝑧) = 𝑇1 + (𝑇2 − 𝑇1) (
ℎ + 2𝑧

2ℎ
) (4) 

The non-linear temperature rise in the nanoplate is 

demonstrated by solving the heat transfer equation. The 

expression is as follows: [27]. 

−
𝑑

𝑑𝑧
(𝜅(𝑧)

𝑑𝑇

𝑑𝑧
) = 0, 𝑇 (

ℎ

2
) = 𝑇2,    𝑇 (−

ℎ

2
) = 𝑇1 (5) 

 

𝑇(𝑧) = 𝑇1 +
(𝑇2 − 𝑇1)

∫   
1

𝜓(𝑧)
𝑑(𝑧)

ℎ

2

−
ℎ

2

∫ 𝜓(𝑧)𝑑𝑧
𝑧

−
ℎ

2

 
(6) 

 

Table 1. Coefficients that vary with temperature for Nickel (Ni) 
characteristics 

 

Property P-1 P0 P1 P2 P3 

ρ 
(kg/m3) 

0 8900 0 0 0 

E (Pa) 0 223x109 -2.79x10-4 3.99x10-7 0 

υ 0 0.31 0 0 0 

α (1K-1) 0 9.9x10-6 8.70x10-4 0 0 

ψ 

(W/mK) 

0 58.74 -4.6x10-4 6.67x10-7 -1.52x10-10 

2.2 The theory of nonlocal strain gradient theory (NSGT) 

Eringen's research suggests that the stress within a body 

is intrinsically connected to all other locations, and the 

structure's stiffness is influenced by the material size factor 

and the nonlocal density [28]. The stress tensors σ and 𝝈(𝒉) 

in NSGT are expressed by the following equations [29]. 

𝜎 = ∫𝛼0(
𝑉

𝒙′, 𝒙, 𝑒0𝑎)𝑪 ∶ 𝜀
′(𝒙′)𝑑𝑉′ (7a) 

 

𝜎(ℎ) = 𝑙𝑚
2 ∫𝛼1(

𝑉

𝒙′, 𝒙, 𝑒1𝑎)𝑪 ∶ ∇𝜀
′(𝒙′)𝑑𝑉′ (7b) 

In this context, 𝛼0 and 𝛼1 denote the conventional kernel 

and nonlocal functions of higher order, while ∇ and C 

correspond the Laplacian operator (∇=∂/∂x+∂/∂y) and the 

fourth-order material coefficient, respectively. The terms ∇ε 

and ε denote the classical strain tensors and the strain 

gradient, respectively. The symbols e0 and e1 represent the 

nonlocal coefficients, while lm represents the material size 

factor. The symbol ":" represents the tensor’s double-dot 

product. The tensor of stress obtained from the Navier 

equations can be expressed as [29, 30]. 

𝜎𝑡 = 𝜎 − ∇2𝜎(1) (8) 

Given that the concepts of 𝛼1(𝒙
′, 𝒙, 𝑒1𝑎) and 

𝛼0(𝒙
′, 𝒙, 𝑒0𝑎) align with the Ref. [31] and that e0=e1=e0a, 

using the linear differentiation operator yields the following 

result. 

[1 − ( 𝑒0𝑎 )
2 ∇2] σ = C : ε , [1 

− (  𝑒0𝑎 )
2 ∇2] 𝜎(1)  =𝑙𝑚

2  C : ∇ε   
(9) 

 

Eq. 9 can be employed to compute the overall stress in the 

following manner: 

[1 − (  𝑒0𝑎 )
2 ∇2] 𝜎  =C : ε -𝑙𝑚

2  ∇C : ∇ε  (10) 

Stress-strain relations of plate are calculated by Refs. [29, 

32]: 

 

[1 − ( 𝑒0𝑎 )
2 ∇2]𝜎𝑥𝑥   = [1 − 𝑙𝑚

2  ∇2]𝐸(z)𝜀𝑥𝑥 (11a) 
 

[1 − (  𝑒0𝑎 )
2 ∇2]𝜎𝑦𝑦  = [1 − 𝑙𝑚

2  ∇2]𝐸(z)𝜀𝑦𝑦 (11b) 
 

[1 − ( 𝑒0𝑎 )
2 ∇2]𝜎𝑥𝑧  = [1 − 𝑙𝑚

2  ∇2]𝐺(z)𝛾𝑥𝑧 (11c) 
 

[1 − (  𝑒0𝑎 )
2 ∇2]𝜎𝑦𝑧  = [1 − 𝑙𝑚

2  ∇2]𝐺(z)𝛾𝑦𝑧 (11d) 

The equations provided above define the strains and 

stresses in the y and x directions as 𝜎𝑥𝑥, 𝜎𝑦𝑦 , 𝜀𝑥𝑥, and 𝜀𝑦𝑦, 

respectively. The shear stresses and strains are represented 

by σxz, σyz, and γxz, γyz. E(z) and G(z) denote the elasticity and 

shear modulus, correspondingly. The classical continuum 

theory's stress-strain relations can be calculated by setting 



 

 
the nonlocal parameters in these equations to zero [31]. 

2.3 Kinematic relation 

Sinusoidal higher-order shear deformation theory was 

used in the analysis of this structure consisting of a single-

layered rectangular plate [33]. For plane displacements u and 

v, u0 represents extension, ws represents shear, and w0 

represents bending. To account for bending w0 and shear ws 

components of transverse stresses (σxz, σyz, σzz) and strains (εxz, 

εyz, εzz), the transverse displacement w is adjusted. 

Incorporating shear components increases the trigonometric 

variation of shear stresses (σxz, σyz) and strains (εxz, εyz) over 

plate thickness. As to this idea, the nanoplate's displacement 

field is: 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢0(𝑥, 𝑦, 𝑡) − 𝑧
𝜕𝑤0(𝑥, 𝑦, 𝑡)

𝜕𝑥

− 𝑓(𝑧)
𝜕𝑤𝑠(𝑥, 𝑦, 𝑡)

𝜕𝑥
 

𝑣(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣0(𝑥, 𝑦, 𝑡) − 𝑧
𝜕𝑤0(𝑥, 𝑦, 𝑡)

𝜕𝑦

− 𝑓(𝑧)
𝜕𝑤𝑠(𝑥, 𝑦, 𝑡)

𝜕𝑦
 

𝑤(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤0(𝑥, 𝑦, 𝑡) + 𝑤𝑠(𝑥, 𝑦, 𝑡)
+ 𝑤𝑠𝑡(𝑥, 𝑦, 𝑧, 𝑡) 

(12) 

Let's establish the definitions of the f(z), wst, and g(z) as 

follows: 

𝑓(𝑧) = 𝑧 −
ℎ

𝜋
sin (

𝜋𝑧

ℎ
) 

𝑤𝑠𝑡(𝑥, 𝑦, 𝑧, 𝑡) = g(𝑧)∅(𝑥, 𝑦, 𝑡),  

𝑔(𝑧) = 𝑐𝑜𝑠 (
𝜋𝑧

ℎ
)  

(13) 

The total displacements represented by the variables u, v, 

and w in the displacement equations. A midplane of the 

unshaped plate is represented by the symbols u0, v0, and w0, 

which stand for in-plane and transverse displacements, 

respectively. While the w displacement indicates the bending 

deflection of the plate, the u and v displacements are linked 

to its extensional deformation. In terms of the displacement 

field, the following is a general form for the strain-

displacement interactions: 

{

𝜀𝑥𝑥
𝜀𝑦𝑦
2𝜀𝑥𝑦

} = {

𝜀𝑥𝑥
(0)

𝜀𝑦𝑦
(𝑜)

𝛾𝑥𝑦
(0)

} + 𝑧 {

𝜀𝑥𝑥
(𝑏)

𝜀𝑦𝑦
(𝑏)

𝛾𝑥𝑦
(𝑠)

} 

{
2𝜀𝑥𝑧
2𝜀𝑦𝑧

} = 𝑔(𝑧) {
𝛾𝑥𝑧
(0)

𝛾𝑦𝑧
(0)}  

𝜀𝑧𝑧 = 𝑔′(𝑧)𝜀𝑧𝑧
(0)
  

(14) 

The strain components are as follows: 

{

𝜀𝑥𝑥
(0)

𝜀𝑦𝑦
(0)

𝛾𝑥𝑦
(0)

} =

{
  
 

  
 

𝜕𝑢0
𝜕𝑥
𝜕𝑣0
𝜕𝑦

𝜕𝑢0
𝜕𝑦

 +
𝜕𝑣𝑜
𝜕𝑥 }
  
 

  
 

, {

𝜀𝑥𝑥
(𝑏)

𝜀𝑦𝑦
(𝑏)

𝛾𝑥𝑦
(𝑏)

}

=

{
  
 

  
 −

𝜕2𝑤0
𝜕𝑥2

−
𝜕2𝑤0
𝜕𝑦2

−2
𝜕2𝑤0
𝜕𝑥𝜕𝑦}

  
 

  
 

  

{
𝛾𝑥𝑧
(0)

𝛾𝑦𝑧
(𝑜)} =

{
 

 (1 − 𝑓′(𝑧))
𝜕𝑤𝑠
𝜕𝑥

+ 𝑔(𝑧)
𝜕∅

𝜕𝑥

(1 − 𝑓′(𝑧))
𝜕𝑤𝑠
𝜕𝑦

+ 𝑔(𝑧)
𝜕∅

𝜕𝑦}
 

 

=

{
 

 𝑔(𝑧) (
𝜕𝑤𝑠
𝜕𝑥

+
𝜕∅

𝜕𝑥
)

𝑔(𝑧) (
𝜕𝑤𝑠
𝜕𝑦

+
𝜕∅

𝜕𝑦
)
}
 

 

  

𝜀𝑧𝑧
(0)
= ∅ 

(15) 

The stresses can be obtained from the constitutive 

relations using the given formula. 

{
 
 

 
 
𝜎𝑥
𝜎𝑦
𝜎𝑧
𝜎𝑥𝑦
𝜎𝑥𝑧
𝜎𝑦𝑧}

 
 

 
 

=

[
 
 
 
 
 
𝐶11 𝐶12 𝐶13 0 0 0
𝐶12 𝐶22 𝐶23 0 0 0
𝐶13 𝐶23 𝐶33 0 0 0
0 0 0 𝐶66 0 0
0 0 0 0 𝐶55 0
0 0 0 0 0 𝐶44]

 
 
 
 
 

{
 
 

 
 
𝜀𝑥
𝜀𝑦
𝜀𝑧
𝛾𝑥𝑦
𝛾𝑥𝑧
𝛾𝑦𝑧}

 
 

 
 

 
(16) 

which are defined as the three-dimensional elastic 

constants Cij 

𝐶11 = 𝐶22 = 𝐶33 =
(1 − 𝑣)𝐸

(1 − 2𝑣)(1 + 𝑣)
 

𝐶12 = 𝐶13 = 𝐶23 =
𝑣𝐸

(1 − 2𝑣)(1 + 𝑣)
 

𝐶44 = 𝐶55 = 𝐶66 =
𝐸

2(1 + 𝑣)
 

(17) 

Rewriting the constitutive relations 

{
 
 

 
 
𝜎𝑥
𝜎𝑦
𝜎𝑥𝑦
𝜎𝑦𝑧
𝜎𝑥𝑧}

 
 

 
 

=
𝐸

1 − 𝑣2

[
 
 
 
 
 
 
 
1 𝑣 0 0 0
𝑣 1 0 0 0

0 0
(1 − 𝑣)

2
0 0

0 0 0
(1 − 𝑣)

2
0

0 0 0 0
(1 − 𝑣)

2 ]
 
 
 
 
 
 
 

{
 
 

 
 
𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦
𝛾𝑦𝑧
𝛾𝑥𝑧}
 
 

 
 

 

(18) 
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where nanoplate Young's modulus is E and Poisson's ratio 

is v. For simplicity's sake, we'll assume that Poisson's ratio v 

is constant, since it has a negligible effect on nanoplate 

responses. 

The strain energy 

𝑈 =
1

2
∫
𝐴
 ∫
−ℎ/2

ℎ/2
 (𝜎𝑥𝜀𝑥 + 𝜎𝑦𝜀𝑦 + 𝜎𝑧𝜀𝑧 + 𝜎𝑥𝑦𝛾𝑥𝑦

+ 𝜎𝑥𝑧𝛾𝑥𝑧 + 𝜎𝑦𝑧𝛾𝑦𝑧)𝑑𝐴𝑑𝑧 
(19) 

The strain energy can be rewritten as below: 

𝑈 =
1

2
∫ 
𝐴

  [𝑁𝑥
∂𝑢

∂𝑥
−𝑀𝑥

𝑏
∂2𝑤𝑏
∂𝑥2

+ 𝑁𝑦
∂𝑣

∂𝑦
− 𝑀𝑦

𝑏
∂2𝑤𝑏
∂𝑦2

+ 𝑅𝑧𝑤𝑧 + 𝑁𝑥𝑦 (
∂𝑢

∂𝑦
+
∂𝑣

∂𝑥
)

− 2𝑀𝑥𝑦
𝑏
∂2𝑤𝑏
∂𝑥 ∂𝑦

+ 𝑄𝑧 (
∂𝑤𝑠
∂x

+
∂𝑤𝑧
∂𝑥

)

+ 𝑄𝑦 (
∂𝑤𝑠
∂y

+
∂𝑤𝑧
∂𝑦

)] 

(20) 

as the stress resultants N, M, Q, and R are defined by 

(𝑁𝑥, 𝑁𝑦 , 𝑁𝑥𝑦) = ∫  

ℎ

2

−
ℎ

2

  (𝜎𝑥, 𝜎𝑦 , 𝜎𝑥𝑦)𝑑𝑧 

(𝑀𝑥
𝑏 , 𝑀𝑦

𝑏 , 𝑀𝑥𝑦
𝑏 ) = ∫  

ℎ/2

−ℎ/2

  (𝜎𝑥, 𝜎𝑦 , 𝜎𝑥𝑦)𝑧𝑑𝑧 

(𝑄𝑥 , 𝑄𝑦) = ∫  

ℎ

2

−
ℎ

2

  (𝜎𝑥𝑧 , 𝜎𝑦𝑧)𝑔(𝑧)𝑑𝑧 

𝑅𝑧 = ∫  
ℎ/2

−ℎ/2

 𝜎𝑧𝑔
′(𝑧)𝑑𝑧 

(21) 

Stress results is given as below: 

𝑁𝑥 =𝐴11
∂𝑢

∂𝑥
+ 𝐴12

∂𝑣

∂𝑦
− 𝐵11

∂2𝑤𝑏
∂𝑥2

− 𝐵12
∂2𝑤𝑏
∂𝑦2

+ 𝑋13𝑤𝑧 

𝑁𝑦 = 𝐴12
∂𝑢

∂𝑥
+ 𝐴22

∂𝑣

∂𝑦
− 𝐵12

∂2𝑤𝑏
∂𝑥2

− 𝐵22
∂2𝑤𝑏
∂𝑦2

+ 𝑋23𝑤𝑧 

𝑁𝑥𝑦 = 𝐴66 (
∂𝑢

∂𝑦
+
∂𝑣

∂𝑥
) − 2𝐵66

∂2𝑤𝑏
∂𝑥 ∂𝑦

 

𝑀𝑥
𝑏 =𝐵11

∂𝑢

∂𝑥
+ 𝐵12

∂𝑣

∂𝑦
− 𝐷11

∂2𝑤𝑏
∂𝑥2

− 𝐷12
∂2𝑤𝑏
∂𝑦2

+ 𝑌13𝑤𝑧 

𝑀𝑦
𝑏 =𝐵12

∂𝑢

∂𝑥
+ 𝐵22

∂𝑣

∂𝑦
− 𝐷12

∂2𝑤𝑏
∂𝑥2

− 𝐷22
∂2𝑤𝑏
∂𝑦2

+ 𝑌23𝑤𝑧 

𝑀𝑥𝑦
𝑏 = 𝐵66 (

∂𝑢

∂𝑦
+
∂𝑣

∂𝑥
) − 2𝐷66

∂2𝑤𝑏
∂𝑥 ∂𝑦

 

(22) 

𝑅𝑧 = 𝑋13
∂𝑢

∂𝑥
+ 𝑋23

∂𝑣

∂𝑦
− 𝑌13

∂2𝑤𝑏
∂𝑥2

− 𝑌23
∂2𝑤𝑏
∂𝑦2

+ 𝑍33𝑤𝑧 

where 

(𝐴𝑖𝑗 , 𝐵𝑖𝑗 , 𝐷𝑖𝑗 , 𝐻𝑖𝑗
𝑠 )

= ∫  

ℎ

2

−
ℎ

2

  (1, 𝑔2, 𝑧, 𝑓, 𝑧2, 𝑓𝑧, 𝑓2)𝐶𝑖𝑗𝑑𝑧 

(𝑋𝑖𝑗 , 𝑌𝑖𝑗 , 𝑍𝑖𝑗) = ∫  
ℎ/2

−ℎ/2

  (𝑔′, 𝑔′𝑧, 𝑔′𝑓, 𝑔′2)𝐶𝑖𝑗𝑑𝑧 

(23) 

Work is done by externally transverse loads q by the use 

of 

𝑉 = −∫ 
𝐴

 𝑞(𝑤𝑏 + 𝑤𝑠 + 𝑔𝑤𝑧)𝑑𝐴 
(24) 

The kinetic energy; 

𝐾 =
1

2
∫ 
𝐴

 ∫  
ℎ/2

−ℎ/2

 𝜌(�̇�1
2 + �̇�2

2 + �̇�3
2)𝑑𝐴𝑑𝑧 (25) 

where ρ is the effective mass density of plates and the dot-

superscript convention shows the differentiation concerning 

the time variable t. The equations of motion are determined 

using Hamilton's principle. The principle can be indicated 

analytically in one approach as 

∫  
𝑇

0

 𝛿(𝑈 + 𝑉 − 𝐾)𝑑𝑡 = 0 
(26) 

δ is the variational operator. 

To obtain the following motion equations, we take the U, 

V, and K expressions, and then gather the coefficients of (δu, 

δv, δwb, δws, δwz). 

𝛿𝑢:
∂𝑁𝑥
∂𝑥

+
∂𝑁𝑥𝑦

∂𝑦
= 𝐼0�̈� − 𝐼1

∂�̈�𝑏
∂𝑥

− 𝐽1
∂�̈�𝑠
∂𝑥

 

𝛿𝑣:
∂𝑁𝑥𝑦

∂𝑥
+
∂𝑁𝑦

∂𝑦
= 𝐼0�̈� − 𝐼1

∂�̈�𝑏
∂𝑦

− 𝐽1
∂�̈�𝑠
∂𝑦

 

𝛿𝑤𝑏:
∂2𝑀𝑥

𝑏

∂𝑥2
+ 2

∂2𝑀𝑥𝑦
𝑏

∂𝑥 ∂𝑦
+
∂2𝑀𝑦

𝑏

∂𝑦2
+ 𝑞

= 𝐼0(�̈�𝑏 + �̈�𝑠) + 𝐽0�̈�𝑧

+ 𝐼1 (
∂�̈�

∂𝑥
+
∂�̈�

∂𝑦
) − 𝐼2∇

2�̈�𝑏

− 𝐽2∇
2�̈�𝑠 

𝛿𝑤𝑠:  
∂𝑄𝑥𝑧
∂𝑥

+
∂𝑄𝑦𝑧

∂𝑦
+ 𝑞

= 𝐼0(�̈�𝑏 + �̈�𝑠) + 𝐽0�̈�𝑧

+ 𝐽1 (
∂�̈�

∂𝑥
+
∂�̈�

∂𝑦
) − 𝐽2∇

2�̈�𝑏

− 𝐾2∇
2�̈�𝑠 

(27) 
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𝛿𝑤𝑧:
∂𝑄𝑥𝑧
∂𝑥

+
∂𝑄𝑦𝑧

∂𝑦
− 𝑅𝑧 + 𝑔𝑞

= 𝐽0(�̈�𝑏 + �̈�𝑠) + 𝐾0�̈�𝑧 

2.4 Analytical Solution 

By using Navier's approach with simple boundary 

conditions, we may estimate displacements u(x,t), w(x,t) and 

ϕ(x,t) with a periodic solution in time. 

𝑢(𝑥, 𝑦, 𝑡) = ∑∑𝑈𝑚𝑛𝑒
𝑖𝜔𝑛𝑡 cos 𝛼𝑥 sin 𝛽𝑦

∞

𝑛=1

∞

𝑚=1

 

𝑣(𝑥, 𝑦, 𝑡) = ∑∑𝑉𝑚𝑛𝑒
𝑖𝜔𝑛𝑡 sin 𝛼𝑥 cos𝛽𝑦

∞

𝑛=1

∞

𝑚=1

 

𝑤𝑏(𝑥, 𝑦, 𝑡) = ∑∑𝑊𝑏𝑚𝑛𝑒
𝑖𝜔𝑛𝑡 sin 𝛼𝑥 sin 𝛽𝑦

∞

𝑛=1

∞

𝑚=1

, 

𝑤𝑠(𝑥, 𝑦, 𝑡) = ∑∑𝑊𝑠𝑚𝑛𝑒
𝑖𝜔𝑛𝑡 sin 𝛼𝑥 sin 𝛽𝑦

∞

𝑛=1

∞

𝑚=1

 

𝑤𝑧(𝑥, 𝑦, 𝑡) = ∑∑𝑊𝑧𝑚𝑛𝑒
𝑖𝜔𝑛𝑡 sin 𝛼𝑥 sin 𝛽𝑦

∞

𝑛=1

∞

𝑚=1

 

𝛽 = (
𝑛𝜋

𝐿
)          α= (

𝑚𝜋

𝐿
) 

(28) 

The coefficients (Umn, Vmn, Wbmn, Wsmn, Wzmn) and natural 

frequency ωn are represented. Eq. (28) solves for Un, Wn, and 

Φn at x=0 and x=L, satisfying both classical and non-classical 

boundary conditions. 

The closed-form answers are derived below: 

(

 
 

[
 
 
 
 
𝑠11 𝑠12 𝑠13 𝑠14 𝑠15
𝑠12 𝑠22 𝑠23 𝑠24 𝑠25
𝑠13 𝑠23 𝑠33 𝑠34 𝑠35
𝑠14 𝑠24 𝑠34 𝑠44 𝑠45
𝑠15 𝑠25 𝑠35 𝑠45 𝑠55]

 
 
 
 

− 𝜔2

[
 
 
 
 
𝑚11 0 𝑚13 𝑚14 0
0 𝑚22 𝑚23 𝑚24 0
𝑚13 𝑚23 𝑚33 𝑚34 𝑚35

𝑚14 𝑚24 𝑚34 𝑚44 𝑚45

0 0 𝑚35 𝑚45 𝑚55]
 
 
 
 

)

 
 

 

{
 
 

 
 
𝑈𝑚𝑛
𝑉𝑚𝑛
𝑊𝑏𝑚𝑛

𝑊𝑠𝑚𝑛
𝑊𝑧𝑚𝑛}

 
 

 
 

= 0 

(29) 

In Eq. (28), i is the imaginary unit. The symbol ωn 

represents the nth natural vibration frequencies. 

(𝐒 − 𝜔𝑛
2𝐌)𝐝 = 0 (30) 

For this context, the vector of defined unknowns is 𝐝 =

{𝑈𝑛 𝑊𝑛 Φ𝑛}
𝑻 . Matrix S symbolizes stiffness and M 

mass. These matrices' coefficients are in Appendix A. 

 

2.2 Verification 

Table 2. Comparison of dimensionless frequency �̅�  in SSSS 
rectangular plates 
 

Mode Ref. [35] Ref. [36] Present Study 

(1,1) 10.024 9.525 10.158 

(2,2) 32.571 28.762 31.853 

(3,3) 66.284 50.966 63.356 

(4,4) 104.006 131.186 112.967 

(5,5) 129.647 139.106 134.589 

 

A comparative study was managed to verify the current 

methodology by comparing the central deflections of 

rectangular and square plates using three nonlocal plate 

theories. This study builds upon previous research [34]. The 

center deflection �̅� is standardized by employing the 

equation for the point load q0 and the uniform load 𝑄0. 

�̅� = −𝑤(
𝐸ℎ2

𝑞0𝑎
4
) 102 , �̅� = −𝑤 (

𝐸ℎ2

𝑄0𝑎
4
)102 (31) 

The plate parameters are b, h, E, and ρ, signifying length, 

height, elasticity modulus, and density. Table 2 presents a 

comparison of central deflections for SSSS isotropic plates 

with a length of a=10, modulus of elasticity E=30x106 MPa, 

and Poisson's ratio v=0.3, under a point load q0=1N. The 

table includes the central deflections obtained using various 

theories. 

To assess the correctness of the suggested method, the 

findings were compared with data from the literature Ref. [35] 

and Ref. [36]. Table 2 demonstrates a strong concordance 

between the findings of this investigation and those of the 

comparative studies. This validates the precision and 

dependability of the suggested procedure. The method 

demonstrates high accuracy in both analytical and numerical 

approaches. This comparison demonstrates that the 

suggested model exhibits competitive performance relative 

to existing methods in the literature and is suitable for safe 

application in engineering contexts. 

 

3. Results 

This study examined the fundamental dimensionless 

natural frequencies of the nanoplate at various temperatures. 

The nanoplate is composed of Nickel materials. In Fig. 1, 

The nanoplate can be classified into two unique foam types: 

the uniform foam model and the symmetric foam model. The 

frequencies are provided for foam void ratios (FVR) and two 

distinct foam types. The length of the nanoplate is b=500 nm, 

and its height is one-tenth of its length. The width of the plate 

is also the same as its length. In addition, the nanoplate was 

subjected to extreme temperature variations from all 

directions. 

Fig. 2 illustrates the relationship between the fundamental 

natural frequencies of the nanoplate and both the foam void 
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ratio (FVR) and temperature variations. As the FVR rises, 

the natural frequencies decrease, indicating a reduction in the 

nanoplate's stiffness and structural stability. Similarly, as the 

ΔT rises, natural frequencies diminish further, eventually 

reaching zero at ΔT=3484, signaling the onset of buckling. 

This behavior underscores the critical role of thermal effects 

and material porosity in the structural integrity of nanoplates. 

Specifically, Fig. 2a shows that for a uniform foam model at 

ΔT=0, the dimensionless natural frequency of the nanoplate 

is λ(1,1)=6.39, 5.34, 4.45, and 3.10 for foam void ratio α=0, 

0.3, 0.6, and 0.9, respectively. This corresponds to a 51.5% 

reduction in the natural frequency as the FVR increases from 

0 to 0.9, reflecting a significant weakening of the nanoplate's 

dynamic response due to increased void content. Fig. 2b 

highlights the symmetric foam model under the same FVR 

range, where the natural frequencies are λ(1,1)=6.39, 5.69, 

5.16, and 4.87 for α=0, 0.3, 0.6, and 0.9, respectively. Here, 

the reduction in natural frequency is comparatively lower at 

23.78%, suggesting better retention of structural stability 

under increased FVRs. In Fig. 2c, the dependence of the 

natural frequencies on temperature variations for both foam 

types is presented at α=0.6. At ΔT=0, the natural frequency 

is λ(1,1)=4.45 for uniform foam and 5.16 for symmetric foam. 

The plots indicate that the symmetric foam model exhibits 

higher frequency stability under temperature changes, while 

the uniform foam model is more susceptible to thermal 

effects. These observations highlight the importance of foam 

type and thermal considerations in designing nanoplates for 

applications requiring high stability, such as in thermal 

environments or precision instruments. The dimensionless 

natural frequencies of the nanoplate are investigated in Fig. 

3, which illustrates the effect of α and temperature difference 

ΔT on its mechanical behavior. The analysis includes four 

different temperature variances and two types of foam. From 

the graphs, it is clear that the natural frequency of the 

nanoplate decreases as both the temperature difference and 

foam void ratio increase. The decrease in natural frequency 

with higher temperature differences can be attributed to the 

increased thermal stresses that reduce the structural stiffness 

of the nanoplate. In Fig. 3a, the natural frequency of the 

nanoplate for the uniform foam type at ΔT=0, 300, 600, and 

1000 is λ(1,1)=6.39, 6.1, 5.79, and 5.36, respectively. At a 

foam void ratio of 0.9, the frequencies are λ(1,1)=3.1, 2.96, 

2.81, and 2.6, showing a significant decrease of 

approximately 51% as the foam void ratio increases. The 

trend in Fig. 3b further emphasizes this, with a considerable 

decrease in the nanoplate’s natural frequency as the foam 

void ratio increases. Fig. 3c compares the natural frequencies 

of uniform and symmetric foam types at a temperature 

difference of 600. The natural frequency values for both 

foam types are consistent when the α is zero, which signifies 

a solid material with no voids. As the foam void ratio 

increases, the natural frequency values decrease. 

 

 

 
Figure. 2. Changing of the 𝜆(1,1) depending on the ΔT and four distinct foam void ratios (𝛼=0, 0.3, 0.6, 0.9) 

181 



 

 
For α=0, the natural frequency for both foam types is 5.79, 

whereas at α=0.9, the frequencies are 2.8 for uniform foam 

and 4.41 for symmetric foam. This demonstrates that while 

both foam types experience a reduction in natural frequency 

with increasing void ratio, the symmetric foam shows a 

comparatively smaller decrease, indicating that its structure 

might retain more stiffness and stability than the uniform 

foam under thermal and mechanical loading. 

Figure 4 analyzes the effect of altering the temperature 

difference on the intrinsic natural frequency of the nanoplate. 

This is accomplished by analyzing four nonlocal parameters 

designated as e0a=0, 1, 2, and 4. The graphical 

representations indicate that an increase in the nonlocal 

parameter and ΔT leads to a decrease in the natural frequency. 

Furthermore, it is crucial to note that even with a temperature 

differential of ΔT=3485, the nanoplate continues to undergo 

buckling. Analysis of Fig. 4a reveals that augmenting the 

nonlocal parameter from e0a=0 to e0a=4 nm² leads to a 25.28% 

reduction in the natural frequency, decreasing from λ=5.34 

to λ=3.99. In Fig. 4b, the λ of the nanoplate is ascertained to 

be 5.69, with a nonlocal parameter e0a of 0 and a ΔT of 0. 

Fig. 4c presents a comparative analysis of two different types 

of foam based on a singular nonlocal parameter. The 

variation in the fundamental frequencies of the nanoplate, 

seen in Fig. 5, is obtained by analyzing four distinct material 

size factors (lm=0, 1, 2, and 4) alongside the temperature 

differential. Data analysis reveals that the dimensions of the 

material significantly influence the natural frequencies. In 

Fig. 5a, with parameters lm=0 and ΔT=0, the natural 

frequency is determined to be λ=5.34. However, when the 

value of lm is adjusted to 4 nm², the natural frequency rises to 

λ=7.14. Notably, when the material size grows, the natural 

frequency experiences an estimated 34% increase. In Fig. 5b, 

the natural frequencies of the symmetric foam model rise by 

around 33% with an increase in the material size factor. 

Furthermore, as the ΔT increases, the inherent frequencies 

across all dimensions of the material decrease. 

At a temperature difference of 3484, the natural frequency 

values diminish to zero, leading to buckling. Moreover, 

when the nonlocal parameter increases in the graph above, 

the natural frequency of the nanoplate decreases, whereas it 

increases with a rise in material size factor. The graph in Fig. 

5c depicts a comparison between two different types of foam, 

depending on a single factor of material size. 

 

 

 
Figure 3. Changing of the 𝜆(1,1) depending on the foam void ratio 𝛼 and four distinct ΔT (ΔT=0, 300, 600, 1000) 
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Figure 4 . Changing of the 𝜆(1,1) depending on the ΔT and four distinct nonlocal parameters (e0a=0, e0a=0.3, e0a=0.6, e0a=0.9) 

 

 

 

 
Figure 5 Changing of the 𝜆(1,1) depending on the ΔT and four distinct material size factors (lm=0, lm=0.3, lm=0.6, lm=0.9) 
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3. Conclusions 

In the current study, the buckling characteristics of a 

nanoplate made of nickel are investigated, with a particular 

focus on how temperature changes influence the buckling 

process. The study also examines the modeling of two 

distinct foam structures, the uniform and symmetric foam 

models, and explores how their material properties impact 

buckling behavior under thermal loading. Trigonometric 

functions are utilized to determine the thermal buckling 

characteristics of nanoplates within the framework of 

sinusoidal higher-order shear deformation theory. 

A thorough analysis was conducted on the effects of 

several parameters, including temperature variations, foam 

type, foam void ratio, and the influence of material properties 

such as thermal expansion coefficients and stiffness. 

Nonlocal and material size factors were considered, 

highlighting their role in the nanoplate's stability under 

temperature-induced stresses. The findings provide valuable 

insights into the interplay between temperature changes and 

material characteristics, offering a deeper understanding of 

their impact on buckling behavior. 

The results are consistent with previous studies that 

examined the influence of foam structures on the dynamic 

response and thermal stability of nanoplates. Similar to the 

findings in studies on nanocomposites and nanostructured 

materials, the present work emphasizes the importance of 

material properties, such as thermal expansion coefficients, 

in governing the thermomechanical behavior of foam 

nanoplates. This study contributes to the ongoing research on 

high-temperature applications and highlights the potential of 

foam nanoplates for engineering applications, especially in 

systems exposed to thermal loads. 

Additionally, future studies may explore using advanced 

composite materials and hybrid nanostructures to investigate 

their potential for improving the mechanical properties and 

thermal stability of foam nanoplates under extreme 

conditions. Finally, exploring the effects of additional 

environmental factors such as humidity and pressure could 

provide a more comprehensive understanding of the 

nanoplate's performance in real-world applications. 

•In the context of the symmetric foam model, the 

nanoplate's natural frequency experiences a decrease of 

23.78% as the FVR grows. In contrast, the uniform foam 

model results in a more significant decrease of 51.5% in the 

nanoplate's natural frequency. 

•When the FVR is 0, the component has no empty spaces. 

As the FVR increases, the natural frequency decreases. 

•An observed correlation exists between the rise in the 

nonlocal parameter and the temperature difference, reflected 

in the reduction of the natural frequency. 

•The natural frequency of the nanoplate reduces as the 

nonlocal parameter increases, whereas it increases when the 

material size factor is included in the equation. 
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Appendix 

The coefficient of the S and M matrices: 

𝑠11 = (𝐴11𝑘1
2 + 𝐴66𝑘2

2)𝑐2,

𝑠12 = (𝐴12 + 𝐴66)𝑘1𝑘2𝑐2,    𝑠13
= (−𝐵11𝑘1

3 − (𝐵12 + 2𝐵66)𝑘1𝑘2
2)𝑐2 

𝑠14 = (−𝐵11
𝑠 𝑘1

3 − (𝐵12
𝑠 )𝑘1𝑘2

2)𝑐2, 𝑠15 = (−𝑋13𝑘1)𝑐2,

𝑠22 = (𝐴66𝑘1
3 + 𝐴22𝑘2

2)𝑐2 

𝑠23 = (−𝐵2𝑘2
3 − (𝐵12 + 2𝐵66)𝑘1

2𝑘2)𝑐2,    𝑠25
= (−𝑋23𝑘2)𝑐2 

𝑠33 = (𝐷11𝑘1
4 + 2(𝐷12 + 2𝐷66)𝑘1

2𝑘2
2 + 𝐷22𝑘2

4

+ (−𝑁𝑇)(𝑘1
2 + 𝑘2

2))𝑐1,   

𝑠34 = ((−𝑁
𝑇)(𝑘1

2 + 𝑘2
2))𝑐1,

𝑠55
= (𝐴55

𝑠 𝑘1
2 + 𝐴44

𝑠 𝑘2
2 + 𝑍33

+ 𝑔(−𝑁𝑇)(𝑘1
2 + 𝑘2

2))𝑐1 

𝑠35 = (𝑌13𝑘1
2 + 𝑌23𝑘2

2)𝑐2, 𝑠44 = ((−𝑁
𝑇)(𝑘1

2 + 𝑘2
2))𝑐1 

 

𝑚11 = 𝐼0𝑐1, 𝑚13 = −𝑘1𝐼1𝑐1, 𝑚14 = −𝑘1𝐽1𝑐1,

𝑚22 = 𝐼0𝑐1, 𝑚23 = −𝑘2𝐼1𝑐1,

𝑚24 = −𝑘2𝐽1𝑐1 

𝑚33 = (𝐼0 + 𝐼2(𝑘1
2 + 𝑘2

2))𝑐1,

𝑚34 = (𝐼0 + 𝐽1(𝑘1
2 + 𝑘2

2))𝑐1,

𝑚35 = 𝐽0𝑐1 

𝑚44 = (𝐼0 + 𝐾2(𝑘1
2 + 𝑘2

2))𝑐1, 𝑚45 = 𝐽0𝑐1,

𝑚55 = 𝐾0𝑐1 

𝑐1 = (1 + 𝑙𝑚
2 (𝑘1

2 + 𝑘2
2))  𝑐2 = (1 + 𝑒0𝑎

2(𝑘1
2 + 𝑘2

2)) 
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