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Abstract − This study investigates a discontinuous Sturm-Liouville boundary value problem
(BVP) on two intervals with functionals and transmission conditions in the direct sum of
Sobolev spaces. Moreover, it presents the differential operator generated by the problem under
investigation. The definition space of this operator is the direct sum of Sobolev spaces, and
the value space of the operator is the space obtained by adding the complex spaces where the
boundary conditions are evaluated about the direct sum of Sobolev spaces. This paper establishes
the solvability of the problem and some important spectral properties of the operator, such as
isomorphism, Fredholmness, and coerciveness concerning spectral parameters. In addition, the
conclusion section discusses how different original problems can be produced.

Subject Classification (2020): 34A36, 34B08

1. Introduction

The discontinuous differential operator problems have recently drawn the attention of theoretical
researchers due to their potential applications in physics. For example, discontinuous problems and
additional transmission conditions are commonly seen in various disciplines, including solid mechanics,
magnetostatics, and electrostatics [1–3]. Many researchers have investigated the solvability and certain
spectral properties of nonlocal Sturm-Liouville problems [4–7]. In recent years, there has been a surge
in interest in generalizing classical boundary value problems for ordinary linear differential equations
because of its potential applications in physical sciences and applied mathematics.

The so-called functional boundary value problem is a significant specific case of the generalized
boundary value problems. Numerous authors have addressed these issues [3, 5,8, 9]. Some boundary-
value transmission problems that arise while analyzing nonclassical problems cannot be resolved
using typical methods for solving classical boundary-value problems. Boundary-value problems for
ordinary differential equations are often studied in classical theory for equations with continuous
coefficients and boundary conditions containing only the endpoints of the interval under consideration.
This study, however, discusses one nonclassical boundary-value problem for a second-order ordinary
differential equation with discontinuous coefficients and boundary conditions containing not only
endpoints of the considered interval but also a point of discontinuity and linear functionals.
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Namely, we consider a Sturm-Liouville diffraction defined on [−1, 0) ∪ (0, 1] given by

L(λ)u := τ(x)u′′(x) + (σ(x) − λ2)u(x) = f(x) (1.1)

with functional boundary-transmission conditions given by

Lku := αku(mk)(−1) + βku(mk)(−0) + ηku(mk)(+0) + δku(mk)(1) + Fk = fk (1.2)

for k ∈ {1, 2, 3, 4}. Here, τ(x) is piecewise constant function such that for x ∈ [−1, 0), τ(x) = τ1

where τ1 ̸= 0 and for x ∈ (0, 1], τ(x) = τ2 where τ2 ̸= 0, λ complex parameter, for i ∈ {1, 2} and
k ∈ {1, 2, 3, 4}, τi, αk, βk, ηk, δk, and fk are complex numbers, f(x) is complex-valued function, for
k ∈ {1, 2, 3, 4}, mk are nonnegative integers, and σ(x) is integrable function on [−1, 0) ∪ (0, 1]. We
assume that |αk| + |βk| + |ηk| + |δk| ̸= 0, and Fk is a linear functional in the space Lq(−1, 1). After
applying the method of separation of variables to a variety of physical problems, such as heat and
mass transfer problems [1, 3, 6, 10], diffraction problems [11], vibrating string problems (when the
string loaded additional with point masses) [8, 12], and some special cases of the considered boundary
value problem (1.1)-(1.2) arise. Yakubov [3] and Mukhtarov [6] investigated discontinuity problems
with transmission conditions in mechanics. Triebel [13], Yakubov and Yakubov [14], Imanbaev and
Sadybekov [15], Shakhmurov [16], Aliyev [17], and Rasulov [18] studied the various spectral properties
of some nonlocal boundary-value problems for differential-operator equations. It should be noted
that [4, 19–23] explored some novel problems with boundary values with nonlocal boundary conditions.

2. Preliminaries

This section presents some properties that are needed in the following sections.

Theorem 2.1. [24] Let T ∈ (X, Y ) be semi-Fredholm. If A is a T -compact operator from X to Y ,
then S = T + A ∈ (X, Y ) is also semi-Fredholm with indS = indT .

Note 2.2. [14] Consider an ordinary differential equation with constant coefficients and with weight 1
on the whole axis

L0(λ)u := λmu(x) + λm−1u
′(x) + · · · + amu(m)(x) = f(x) (2.1)

where ak are complex numbers. Enumerate the roots of the equation

amωm + am−1ωm−1 + · · · + 1 = 0 (2.2)

by ωj , j ∈ {1, 2, 3, ..., m}. Let numbers ωj be p−separated. Denote

ω := min {arg ω1, ..., arg ωp, arg ωp+1 + π, ..., arg ωm + π}

ω := max {arg ω1, ..., arg ωp, arg ωp+1 + π, ..., arg ωm + π}

and the value arg ωj is chosen up to a multiple of 2π, so that ω − ω < π.

Theorem 2.3. [14] Let m ≥ 1, am ̸= 0 and the roots of (2.2) be p-separated. Then, for any ε > 0 and
for all complex numbers λ satisfying π

2 −ω+ε < arg λ < 3π
2 − ϖ − ε, the operator L0(λ) : u → L0(λ)u

from W l
q,γ(R) onto W l−m

q,γ (R),where an integer l ≥ m, q ∈ (1, ∞), −1
q < γ < 1

q , is an isomorphism, and
for these λ, the following estimates hold for a solution of (2.1):

l∑
k=0

|λ|l−k ∥u∥W k
q,γ(R) ≤ C(ε)

(
∥f∥W l−m

q,γ (R) + |λ|l−m ∥f∥Lq,γ(R)

)
, υ = 1, 2

l∑
k=0

|λ|m−k
∥∥∥u(k+p)

∥∥∥
Lq,γ(R)

≤ C(ε)
∥∥∥f (p)

∥∥∥
Lq,γ(R)

, 0 ≤ p ≤ l − m
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Theorem 2.4. [14] Let the following conditions be satisfied:

i. {E0, E1} is an interpolation couple

ii. γ0, γ1 are real numbers, l ∈ {1, 2, 3, ...} and 1 ≤ p0, p1 ≤ ∞

iii. s is integer number 0 ≤ s ≤ l − 1, γ0 + s + 1
p0

> 0, and γ1 + s + 1
p1

< l

iv. θ =
γ0+s+ 1

p0
l+γ0−γ1+ 1

p0
− 1

p1
and 1

p = 1−θ
p0

+ θ
p1

Then, for u ∈ W l(p0, γ0, E0; p1, γ1, E1), the following inequality holds:∥∥∥u(s)(0)
∥∥∥

(E0,E1)θ,p

≤ C
(
∥u∥Lp0,γ0 ((0,1);E0) + ∥u∥(l)

Lp1,γ1((0,1);E1)

)
Theorem 2.5. [14] Under the conditions of Theorem 2.4, for u ∈ W l(p0, γ0, E0; p1, γ1, E1), C, and
|λ| → ∞, the following inequalities hold:

i. |λ|l−s
∥∥∥u(s)(0)

∥∥∥
(E0,E1)θ,p

≤ C

(
|λ|l+γ0+ 1

p0 ∥u∥Lp0,γ0
((0, 1), E0) + |λ|γ1+ 1

p1 ∥u∥Lp1,γ1 ((0, 1), E1)
)

ii. |λ|l−s+γ+ 1
p

∥∥u(s)
∥∥

Lp,γ ((0,1);(E0,E1)θ,p) ≤ C
(

|λ|l+γ0+ 1
p0 ∥u∥Lp0,γ0

((0, 1), E0) + |λ|γ1+ 1
p1
∥∥ul
∥∥

Lp1,γ1 ((0, 1), E1)
)

where γ > −1
p .

3. Solvability and Coerciveness of Problems for Homogeneous Equation with
Nonhomogeneous Boundary Transmission Conditions

This section first considers the following boundary value problem for the homogeneous differential
equation

L0(λ)u := τ(x)u′′(x) − λ2u(x) = 0 (3.1)

together with the nonlocal and nonhomogeneous boundary conditions, for k ∈ {1, 2, 3, 4},

Lk0u := αku(mk)(−1) + βku(mk)(−0) + ηku(mk)(+0) + δku(mk)(1) = fk (3.2)

For convenience, we use the following notations:

ω1 := −τ
− 1

2
1 , ω2 := τ

− 1
2

1 , ω3 := −τ
− 1

2
2 , ω4 = τ

− 1
2

2

ω := min {arg τ1, arg τ2} , ω̄ := max {arg τ1, arg τ2}

θ :=

∣∣∣∣∣∣∣∣∣∣
α1ωm1

1 β1ωm1
2 η1ωm1

3 δ1ωm1
4

α2ωm2
1 β2ωm2

2 η2ωm2
3 δ2ωm2

4
α3ωm3

1 β3ωm3
2 η3ωm3

3 δ3ωm3
4

α4ωm4
1 β4ωm4

2 η4ωm4
3 δ4ωm4

4

∣∣∣∣∣∣∣∣∣∣
and

Bε(ω, ω̄) := {λ ∈ C : π + ω̄ + ε < arg λ < 3π + ω − ε}

for real ε > 0 small enough.

For an integer k ≥ 0 and real q > 1, the direct sum of Sobolev spaces W k
q (−1, 0)+̇W k

q (0, 1) is defined
as Banach space of complex-valued functions u = u(x) defined on [−1, 0) ∪ (0, 1] which belong to
W k

q (−1, 0) and W k
q (0, 1) on intervals (−1, 0) and (0, 1), respectively, with the norm

∥u∥W k
q (−1,0)∪(0,1) = ∥u∥

W k
q (−1,0)

+ ∥u∥
W k

q (0,1)

Here, W k
q (a, b) is a Sobolev space, i.e., the Banach space consisting of all the measurable functions u(x)
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that have generalized derivatives up to k-th order inclusive on the interval (a, b) with the finite norm

∥u∥W k
q (a,b) =

k∑
i=0

(∫ b

a

∣∣∣u(i)(x)
∣∣∣q dx

) 1
q

It can be observed that W 0
q (a, b) = Lq(a, b).

Theorem 3.1. If θ ̸= 0, then for all ε > 0, there exists an Rε > 0 such that for all λ ∈ Bε(ω, ω̄),
for which |λ| > Rε, (3.1)-(3.2) has a unique solution u(x, λ) that belongs to W n

q (−1, 0)+̇W n
q (0, 1), for

arbitrary n ≥ max{2, max {m1, m2, m3, m4} + 1}, and for these λ’s, the coercive estimate
n∑

k=0
|λ|n−k ∥u∥W k

q (−1,0)∪(0,1) ≤ C(ε)
4∑

j=1
|λ|n−mj− 1

q |fj | (3.3)

is valid.

Proof. For i ∈ {1, 2, 3, 4}, define four basic solutions ui = ui(x, λ) of (3.1), given by

ui(x, λ) =
{

eωiλ(x−ξi), x ∈ Ii

0, x /∈ Ii

where ξ1 = −1, ξ2 = ξ3 = 0, ξ4 = 1, I1 = I2 = [−1, 0), and I3 = I4 = (0, 1]. It can be observed that the
general solution of (3.1) can be written in the form

u(x, λ) =
4∑

k=1
ckuk(x, λ) (3.4)

Substituting (3.4) into (3.2) yields a system of linear homogeneous equations concerning the variables
C1, C2, C3, and C4, given by

fk = C1(ω1λ)mk(αk + βkeω1λ) + C2(ω2λ)mk(αke−ω2λ + βk) + C3(ω3λ)mk(ηk + δkeω3λ)

+C4(ω4λ)mk(ηke−ω4λ + δk)
(3.5)

such that k ∈ {1, 2, 3, 4}. Since λ ∈ Bε(ω, ω), it follows that
π + ε

2 < arg(ωiλ) <
3π − ε

2 , i ∈ {1, 3}

and
−π − ε

2 < arg(ωiλ) <
π − ε

2 , i ∈ {2, 4}

Consequently, for these λ’s and for an arbitrary ε > 0 small enough,

(−1)k+1Re(ωkλ) ≤ − |λ| |ωk| sin ε

2 , k ∈ {1, 2, 3, 4}

Hence, the determinant of (3.5) has the form

∆(λ) = λ

4∑
i=1

mi


∣∣∣∣∣∣∣∣∣∣
α1ωm1

1 β1ωm1
2 η1ωm1

3 δ1ωm1
4

α2ωm2
1 β2ωm2

2 η2ωm2
3 δ2ωm2

4
α3ωm3

1 β3ωm3
2 η3ωm3

3 δ3ωm3
4

α4ωm4
1 β4ωm4

2 η4ωm4
3 δ4ωm4

4

∣∣∣∣∣∣∣∣∣∣
+ e

λ
4∑

i=1
(−1)i+1ωi

∣∣∣∣∣∣∣∣∣∣
β1ωm1

1 α1ωm1
2 δ1ωm1

3 η1ωm1
4

β2ωm2
1 α2ωm2

2 δ2ωm2
3 η2ωm2

4
β3ωm3

1 α3ωm3
2 δ3ωm3

3 η3ωm3
4

β4ωm4
1 α4ωm4

2 δ4ωm4
3 η4ωm4

4

∣∣∣∣∣∣∣∣∣∣


= λm (θ + r(λ))

where m =
4∑

i=1
mi. It can be observed that r(λ) → 0 if λ ∈ Bε(ω, ω̄) and |λ| → ∞. Since θ ̸= 0, there

exists an ιε > 0 such that for all complex numbers λ satisfying λ ∈ Bε(ω, ω̄) and |λ| > ιε, we have



Kandemir and Küçük / JNRS / 13(3) (2024) 175-185 179

∆(λ) ̸= 0. Therefore, for these λ’s, (3.5) has a unique solution

Ci(λ) = 1
∆(λ)

4∑
k=1

∆ik(λ)fk, i ∈ {1, 2, 3, 4}

where ∆ik(λ) denotes the algebraic complement of (i, k)-th element of the determinant ∆(λ). The
determinant has the representation

∆ik(λ) = (θik + rik(λ)) λ

∑
j ̸=k

(m−mj)

where θik are complex numbers and rik → 0 as |λ| → ∞ in the angle Bε(ω, ω). Then,

Ci(λ) =
4∑

k=1
λ−mk

θik + rik(λ)
θ + r(λ) fk, i ∈ {1, 2, 3, 4}

Thus, the solution of (3.1)-(3.2) has the form

u(x, λ) =
4∑

i=1

4∑
k=1

λ−mk
θik + rik(λ)

θ + r(λ) fkui(x, λ)

From this, it follows that for each integer n ≥ 0∥∥∥u(n)
∥∥∥

Lq(−1,1)
≤ C

4∑
k=1

(
|λ|(n−mk) |fk|

4∑
i=1

∥ui(., λ)∥Lq(Ii)

)
(3.6)

Further, by (3.4),

∥u1(x, λ)∥q
Lq(−1,0) =

0∫
−1

eqRe(ω1λ)(x+1)dx

≤
0∫

−1
e−q|λ||ω1| sin(ε/2)(x+1)dx

= (−q |λ| |ω1| sin (ε/2))−1
(
e−q|λ||ω1| sin(ε/2) − 1

)
≤ C(ε) |λ|−1

as |λ| → ∞ in the angle λ ∈ Bε(ω, ω̄). In a similar way,

∥ui(x, λ)∥Lq(Ii) ≤ C(ε) |λ|−1 , i ∈ {2, 3, 4}

as |λ| → ∞ in the angle λ ∈ Bε(ω, ω̄). Substituting these inequalities in (3.6) yields∥∥∥u(n)
∥∥∥

Lq(−1,1)
≤ C(ε)

4∑
k=1

|λ|(n−mk−1/q) |fk|

which, in turn, provides us the needed estimation (3.3).

4. Fredholmness of the Problem with General Functional-Transmission Con-
ditions

This section investigates the property of the differential operator of the problem, a Fredholm operator.
Let E and F be Banach spaces and F ∗ be the adjoint of F . The linear operator T : E → F is called a
Fredholm operator if the following conditions are satisfied:

i. The range R(T ) = {Tu : u ∈ D(T )} is closed in F .

ii. ker T = {u ∈ D(T ) : Tu = 0} and coker T = {u∗ ∈ F ∗ : u∗(Tu) = 0, for all thinspace u ∈ D(T )}
are finite dimensional subspaces in E and F ∗, respectively.



Kandemir and Küçük / JNRS / 13(3) (2024) 175-185 180

iii. dim ker T = dim coker T

Suppose that n ≥ max {2, max {m1, m2, m3, m4} + 1} and define a linear operator L from W n
q (−1, 0)+̇

W n
q (0, 1) into W n−2

q (−1, 0)+̇W n−2
q (0, 1) + C4 by action low

L : u −→ Lu := (L(λ)u, L1u, L2u, L3u, L4u)

Theorem 4.1. Assume that the following conditions are satisfied:

i. τ(x) = τ1 at x ∈ [−1, 0), τ(x) = τ2 at x ∈ (0, 1], τ1 ̸= 0, τ2 ̸= 0, mk ≥ 0, and θ ̸= 0.

ii. σ(x) is measurable function on [−1, 0) ∪ (0, 1].

iii. For k ∈ {1, 2, 3, 4}, the functionals Fk, in W n
q (−1, 0)+̇W n

q (0, 1) are continuous.

Then, the linear operator

L : u −→ Lu :=
(
τ(x)u′′(x) + σ(x)u, L1u, L2u, L3u, L4u

)
from W n

q (−1, 0)+̇W n
q (0, 1) onto W n−2

q (−1, d1)+̇W n−2
q (0, 1)+̇C4 is bounded and Fredholm.

Proof. The operator L can be rewritten in the form L = L1 + L2, where

L1u = (τ(x)u′′(x), u(−1), u′(−1), u(−0) − u(+0), u′(−0) − u′(+0))

and

L2u =
(
σ(x), L1u − u(−1), L2u − u′(−1), L3u − u(−0) + u(+0), L4u − u′(−0) + u′(+0)

)
Let f ∈ Lq(−1, 1). Then, from the condition i and 1

p + 1
q = 1, it follows that τ−1(x)f(x) ∈ L1(−1, 1) ∩

Lq(−1, 1). By Schwartz inequality,

1∫
0

∣∣τ−1(x)f(x)
∣∣ dx ≤

(
1∫
0

x−p(x)dx

) 1
p
(

1∫
0

xq(x) |f(x)|q dx

) 1
q

≤ C x
1
p

−1
∣∣∣1
0

(
1∫
0

xq(x) |f(x)|q dx

) 1
q

≤ C ∥f∥Lq(0,1)

(4.1)

Consequently, a solution of the problem

τ(x)u′′(x) = f(x), x ∈ (−1, 0) ∪ (0, 1), u(−1) = h1

u′(−1) = h2, u(−0) − u(+0) = h3, u′(−0) − u′(+0) = h4

has the form

u(x) =


x∫

−1
(x − y)τ−1(y)f(y)dy + n1 + n2x, x ∈ (−1, 0)

x∫
0

(x − y)τ−1(y)f(y)dy + n3 + n4x, x ∈ (0, 1)

Accordingly, we obtain the solution to the problem as follows:

u(x) =



x∫
−1

(x − y)τ−1(y)f(y)dy + h1 + (x + 1)h2, x ∈ (−1, 0)

0∫
−1

(x − y)τ−1(y)f(y)dy +
(

0∫
−1

(x − y)τ−1(y)f(y)dy + h2 − h4

)
x

x ∈ (0, 1)

+
x∫
0

(x − y)τ−1(y)f(y)dy + h1 + h2 − h3,

(4.2)
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If f ∈ W n−2
q (−1, 0)+̇W n−2

q (0, 1), then (4.2) implies u′′(x) = τ−1(x)f(x) and u(t+2)(x) = τ−1(x)f (t)(x)
such that t ∈ {0, 1, 2, ..., n − 2}.

Thus, from the condition i, (4.1), and Theorem 3.1, we obtain that the operator L1 from W n
q (−1, 0)+̇

W n
q (0, 1) onto W n−2

q (−1, 0)+̇W n−2
q (0, 1)+̇C4 is isomorphism. Further, it can be observed that the

linear operator L2 acts compactly from W n
q (−1, 0)+̇W n

q (0, 1) onto W n−2
q (−1, 0)+̇W n−2

q (0, 1)+̇C4.
Consequently, we can apply Theorem 2.1 to the operator L = L1 + L2, from which it follows that the
operator L is Fredholm. Besides, it is obvious that the operator L is bounded.

5. Isomorphism and Coerciveness of the Principal Part of the Main Problem

Consider (1.1)-(1.2) without functionals, namely, the following problem

L0(λ)u := τ(x)u′′(x) − λ2u(x) = f(x) (5.1)

Lk0u := αku(mk)(−1) + βku(mk)(−0) + ηku(mk)(+0) + δku(mk)(1) = fk, k ∈ {1, 2, 3, 4} (5.2)

The operator corresponding to this problem is

L̃0u = (L0(λ)u, L10u, L20u, L30u, L40u)

Theorem 5.1. Let θ ̸= 0 and n ≥ max {2, max {m1, m2, m3, m4} + 1}. Then, for all ε > 0, there
exists an ιε > 0 such that for all complex numbers λ satisfying π

2 + ω
2 + ε < arg λ < π

2 + ω
2 − ε, |λ| > ιε,

the operator L̃0(λ) from W n
q (−1, 0)+̇W n

q (0, 1) onto W n−2
q (−1, 0)+̇W n−2

q (0, 1)+̇C4 is an isomorphism,
and the following coercive estimate holds for the solution of (3.1)-(3.2)

n∑
k=0

|λ|n−k ∥u∥W k
q

≤ C(ε)

∥f∥W n−2
q

+ |λ|n−2 ∥f∥Lq
+

4∑
j=1

|λ|n−mj− 1
q |fj |

 (5.3)

Proof. It is obvious that the linear operator L̃0(λ) is continuous from W n
q (−1, 0)+̇W n

q (0, 1) into
W n−2

q (−1, 0)+̇W n−2
q (0, 1)+̇C4.

Let (f(x), f1, f2, f3, f4) ∈ W n−2
q (−1, 0)+̇W n−2

q (0, 1)+̇C4 be an element. We seek the solution u(x, λ)
of (5.1)-(5.2) in the form of the sum u(x, λ) = u1(x, λ) + u2(x, λ) as follows. We denote the restriction
of f(x) on the interval Ij by fj(x) such that j ∈ {1, 2} where I1 = (−1, 0) and I2 = (0, 1). Let
f̃j ∈ W n−2

q (R) be an extension of fj ∈ W n−2
q (Ij) such that the extension operator Sjfj := f̃j from

W n−2
q (Iυ) into W n−2

q (R) is bounded for j ∈ {1, 2} where R = (−∞, ∞). First, consider the equations

τj(x)ũ′′(x) − λ2ũ(x) = f̃j(x), x ∈ R

for j ∈ {1, 2}. By Theorem 2.3, we have that this equation has a unique solution ũ1υ = ũ1υ(., λ) ∈ W n
q (R)

and for u1j(x, λ), the restriction of ũ1j(x, λ) on the interval Ij , the estimate
n∑

k=0
|λ|n−k ∥u1j∥W k

q (Ij) ≤ C(ε)
(
∥f∥W n−2

q (Ij) + |λ|n−2 ∥f∥Lq(Ij)

)
, j ∈ {1, 2} (5.4)

is valid for all complex numbers λ satisfying λ ∈ Bε(ω, ω̄). Consequently, u1(x, λ) ∈ W n
q (−1, 0)+̇

W n
q (0, 1) defined by

u1(x, λ) =
{

u11(x, λ), x ∈ (−1, 0)
u12(x, λ), x ∈ (0, 1)

which satisfies (5.1). By using this solution, we construct the following boundary-value problem

τ(x)u′′(x) − λ2u(x) = 0, x ∈ (−1, 0) ∪ (0, 1)
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Lk0u = fk − Lk0u1(., λ), k ∈ {1, 2, 3, 4}

By Theorem 3.1, for all λ ∈ Bε(ω, ω̄), sufficiently large in modulus, this problem has a unique solution
u2 = u2(x, λ) that belongs to W n

q (−1, 0)+̇W n
q (0, 1) and for these λ’s the estimate

n∑
k=0

|λ|n−k ∥u2∥W k
q

≤ C(ε)
4∑

j=1
|λ|n−mj− 1

q (|Lj0u1| + |fj |) (5.5)

is hold. By Theorem 3.1 and considering Theorem 2.5, we have the following estimates, for all
λ ∈ Bε(ω, ω̄) and n ≥ max {2, max {m1, m2, m3, m4} + 1}:

|λ|n−mj− 1
q |Lj0u1| ≤ C |λ|n−mj− 1

q
2∑

j=1
∥u1j∥Cmj (Ij)

≤ C

(
2∑

j=1
|λ|n ∥u1j∥Lq(Ij) + ∥u1j∥W n

q (Ij)

)

≤ C(ε)
(
∥f∥W n−2

q
+ |λ|n−2 ∥f∥Lq

)
(5.6)

Thus, from (5.5) and (5.6),
n∑

k=0
|λ|n−2 ∥u2∥W k

q
≤ C(ε)

∥f∥W n−2
q

+ |λ|n−2 ∥f∥Lq +
4∑

j=1
|λ|l−mj− 1

q |fj |

 (5.7)

Moreover, the function u(x, λ) defined as u(x, λ) = u1(x, λ) + u2(x, λ) is the solution of (5.1)-(5.2).
Taking into account (5.4) and (5.7), for this solution, the needed estimation (5.3) is valid. Further,
from (5.3), it follows the uniqueness of the solution. Besides, by Theorem 4.1, the operator L̃0 is
Fredholm operator from W n

q (−1, 0)+̇W n
q (0, 1) into W n−2

q (−1, 0)+̇W n−2
q (0, 1)+̇C4. Isomorphism of this

operator follows from the fact that it is a Fredholm and a one-to-one operator.

6. Solvability and Coerciveness of the Main Problem

This section researches the main problem (1.1)-(1.2).

Theorem 6.1. Let θ ̸= 0, n ≥ max{2, max{m1, m2, m3, m4}+1}, and the functionals Fυ in W
mj
q (−1, 0)

+̇W
mj
q (0, 1) be continuous. Then, for all ε > 0, there exists an ιε > 0 such that for all complex numbers

λ satisfying π
2 + ω

2 + ε < arg λ < π
2 + ω

2 − ε, |λ| > ιε, the operator

L̃(λ)u := (L(λ)u, L1u, L2u, L3u, L4u)

is an isomorphism from W n
q (−1, 0)+̇W n

q (0, 1) onto W n−2
q (−1, 0)+̇W n−2

q (0, 1)+̇C4, and for these λ’s,
the following coercive estimate holds for the solution of (1.1)-(1.2)

n∑
k=0

|λ|n−k ∥u∥W k
q

≤ C(ε)

∥f∥W n−2
q

+ |λ|n−2 ∥f∥Lq +
4∑

j=1
|λ|l−mj− 1

q |fj |

 (6.1)

where C(ε) is a constant which depends only on ε.

Proof. Let (f(x), f1, f2, f3, f4) be an element of W n−2
q (−1, 0)+̇W n−2

q (0, 1)+̇C4. Assume that there
exists a solution u = u(x, λ) of (1.1)-(1.2) corresponding to this element. Then, this solution satisfies
the equalities

L0(λ)u = L(λ)u − σ(x)u (6.2)

and
Lk0u = Lku − Fku, k ∈ {1, 2, 3, 4} (6.3)
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By applying Theorem 5.1 to (6.2)-(6.3), we have that for this solution the following a priory estimate
is hold

n∑
k=0

|λ|n−k ∥u∥W k
q

≤ C(ε)

(
∥L(λ)u − σ(x)u∥W k

q
+ |λ|n−2 ∥L(λ)u − σ(x)u∥Lq +

4∑
j=1

|λ|n−mj− 1
q |Lju − Fju|

)

≤ C(ε)
(

∥f∥W n−2
q

+ |λ|n−2 ∥f∥Lq + ∥σ(x)u∥W n−2
q

+ |λ|n−2 ∥σ(x)u∥Lq +
4∑

υ=1
|λ|n−mj− 1

q |fj |

+
4∑

j=1
|λ|n−mj− 1

q (|Fju|)

) (6.4)

In view of [14], for all ζ > 0,
∥u∥W k

q
≤ ζ ∥u∥W k+1

q
+ C(ζ) ∥u∥Lq (6.5)

By [25], for u ∈ W n
q (−1, 0) ∔ W n

q (0, 1), the following estimate holds

|λ|n−mj− 1
q ∥u∥(mj)

C[−1,1] ≤ C
(
∥u∥W k

q
+ |λ|n ∥u∥Lq

)
(6.6)

From the conditions of Theorem 5.1, (6.5)-(6.6), and [14], it follows that

∥σ(x)u∥W n−2
q

+ |λ|n−2 ∥σ(x)u∥Lq +
4∑

j=1
|λ|n−mj− 1

q (|Fυu|)

≤ C(ε)
(
∥f∥W n−2

q
+ |λ|n−2 ∥f∥Lq

)
+ ζ

(
∥u∥W n

q
+ |λ|n−2 ∥u∥Lq

)
+

4∑
j=1

|λ|n−mj− 1
q ∥u∥W k

q

≤ C(ε)
(
∥f∥W n−2

q
+ |λ|n−2 ∥f∥q,0

)
+ |λ|−

1
q

4∑
k=0

|λ|n−k ∥u∥W k
q

Here, we use the following inequality:

|λ|n−2 ∥u∥Lq ≤ C |λ|−1 |λ|n−1 ∥u∥W k
q

Substituting (6.6) into (6.4),
n∑

k=0
|λ|n−2 ∥u∥q,k ≤ C(ε)

∥f∥∥u∥
W n−2

q

+ |λ|n−2 ∥f∥Lq +
4∑

j=1
|λ|n−mj− 1

q |fj |

+|λ|−
1
q

4∑
k=0

|λ|n−k ∥u∥∥u∥
W k

q

Thus, for λ ∈ Bε(ω, ω̄) sufficiently large in modulus, we obtain a priori estimate (6.1). From this
estimate, it follows the uniqueness property of the solution of (1.1)-(1.2), i.e., the operator L̃(λ) is a
one-to-one operator. Moreover, by Theorem 4.1, the operator L̃(λ) from W n

q (−1, 0)+̇W n
q (0, 1) into

W n−2
q (−1, 0)+̇W n−2

q (0, 1)+̇C4 is Fredholm. Consequently, the existence of a solution results in its
uniqueness.

7. Conclusion

In this paper, the Sturm-Liouville boundary value problem with discontinuous coefficient differential
equations and the transition conditions of the discontinuity point in the boundary conditions and the
functional are considered. The solvability of this problem and the spectral properties of the differential
operator belonging to the problem, such as coerciveness, isomorphism, and being a Fredholm operator,
are investigated. Then, theorems related to the spectral properties of this problem are proved. The
problem in this study can be constructed in different ways, such as adding a linear operator or an
elliptic operator to the differential equation, putting interior points in the boundary conditions, taking
the differential equation to a higher order, taking more than one discontinuity point. Moreover, for each
of the mentioned problems, the subject of finding the asymptotic distributions of the eigenvalues of the
problem can be studied. Since each of the aforesaid problems will be original problems, completely
new theses, and new articles can be derived from each.
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