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ABSTRACT 
Classification of plant diseases is crucial for overall food security and 

agricultural economies in the world. However, classification has long 

been challenging primarily due to the various diseases it encompasses and 

the different environmental factors influencing them. One of the main 

challenges in developing an accurate classification model is obtaining 

high-quality, multiclass datasets. At the same time, deep learning methods 

like CNN may be considered state-of-the-art in detecting complex image 

patterns in various applications for correct diagnoses. Still, they involve 

poor parameter optimizations and overfitting and have very high resource 

requirements. This paper introduces a combined model of classifying 

plant diseases in an imaging approach, which incorporates the Efficient 

Neural Network (ENN) with a Squeeze and Excitation Network (SEN). 

The architecture follows high-density feature extraction by the networks, 

late fusion of features, and using a cross-channel attention mechanism to 

boost feature representation. This work uses transfer learning to design 

the hyperparameter optimization scheme and early stopping scheme to 

avoid overfitting. We tested our model on the Plant Village Dataset and 

the Leaf Rose Disease Dataset with an accuracy of 96.40% for the Plant 

Village Dataset and 97.15% accuracy on the Leaf Rose Disease Dataset. 

Our model achieved higher accuracy than the traditional DNNs VGG16, 

Inception V3, and RESNET-50 by approximately 21.04%, 9.40%, and 

4.33% on the Plant Village Dataset. It improved the classification 

accuracy compared to VGG16, Inception V3, and RESNET-50 by 

15.80%, 11.20%, and 6.02% on the Rose leaf disease dataset, 

respectively. Moreover, it has the lowest times as well as space 

complexity: 45 minutes and 150 MB, which are less than VGG16 (50 

minutes, 180 MB), Inception Net (55 minutes, 170 MB), and RESNET-

50 (75 minutes, 190 MB). The global results show that our approach is 

superior, demonstrating enhanced performance and efficiency, which 

makes it well-suited for real-time applications.  

 

Keywords: Leaf classification, Convolutional neural network, Efficient Neural Network, Squeeze and Excitation Network, Classification accuracy  

 

 

1. Introduction 
 

Plant diseases threaten global food security and sustainable agriculture, reducing crop yield, quality, and economic viability 

(Strange et al. 2005). Rapid and accurate diagnosis of these diseases is essential for effective prevention and management 

strategies. Traditional diagnostic methods rely on expert analysis, which can be time-consuming, subjective, and prone to human 

error (Bock et al. 2020). Deep learning methods integrated with AI have emerged as a powerful solution for automating plant 

disease classification, enhancing efficiency and Accuracy (Li et al. 2021). Distinguishing objects in images based solely on visual 

traits is complex, and traditional machine-learning approaches focused on feature extraction often struggle with Accuracy (Zhao 

et al. 2019). The advent of deep learning has transformed this landscape, as these methods excel at recognizing intricate data 

patterns and can effectively handle large datasets. They offer scalability, flexibility, and end-to-end learning capabilities 

(Kamilaris & Prenafeta-Boldú 2018). Deep learning has become crucial in agriculture, addressing challenges in crop monitoring, 

predictive modeling, harvesting, and disease detection. 

 

Previous work has proposed several plant leaf detection frameworks based on shape, texture, and vein characteristics 

(Agarwal et al. 2006), along with various classification models for identifying healthy and diseased plants (Liu et al. 2016; 

Yanikoglu et al. 2014). Chai et al. (2010) studied four diseases of tomato leaf, including early blight and late blight leaf mildew 

and leaf spot, extracted 18 characteristic parameters like color and texture, and shape information on the tomato leaf spot images, 

using stepwise discriminant and Bayesian discriminant principal component analysis PCA, respectively. The characteristic 

parameters and discriminant models of methods principal component analysis and fisher discriminant were used. The precisions 

of the two methods were 94.71% and 98.32%, respectively. Guan et al. (2010) extracted 63 parameters, including morphology, 

color and texture features of spots, and diseases of the rice leaf, classified and recognized with step-based discriminant analysis 
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and Bayesian discriminant method, three rice diseases (blast, stripe blight, and bacterial leaf blight) into the highest recognition 

accuracy of 97.2%. Mohanty et al. (2016) trained a deep-learning model to recognize 14 crop species and 26 crop diseases. The 

trained model reached an accuracy of 99.35% on the test set. Ma et al. (2018) used a deep CNN to conduct symptom-wise 

recognition of four cucumber diseases, including downy mildew, anthracnose, powdery mildew, and target leaf spots. The 

recognition accuracy reached 93.4%. Kawasaki et al. (2015) proposed a CNN-based system for detecting cucumber leaf disease, 

achieving an accuracy of 94.9%. Ahmad et al. (2020) employed four pretraining convolution neural networks, VGG19, VGG16, 

ResNet, and Inception V3, and the models were trained by fine-tuning parameters. The experimental results demonstrated that 

the Inception V3 performed the best on the two datasets (the laboratory dataset and the field dataset). The average performance 

is superior to 10% to 15% on the laboratory dataset compared with the field dataset. Bi et al. (2022) demonstrated that the 

accuracy rates of recognition for two apple leaf spot and rust models obtained by agriculture experts are 77.65%, 75.59%, and 

73.50% with ResNet152, Inception V3, and MobileNet, respectively. 

 

DL approaches have outperformed classical classification accuracy for several leaf-based plant disease datasets (Reyes et al. 

2015; Mehdipour-Ghazi et al. 2017). Sun et al. (2017) proposed an advanced leaf classification model using RESNET-50 

architecture, which enabled the residual connection and was validated on the BJFU100 dataset. This model mitigated information 

loss and enhanced feature density by ensuring proper gradient flow. However, this approach was still limited by computational 

and memory complexities constraints. Ferentinos (2018) designed a transfer learning-based CNN model that classified 87,484 

plant leave images from 58 classes with an accuracy of 99.53%. Tiwari et al. (2021) reported a mean validation accuracy of 

99.58% and a mean test accuracy of 99.199% through five-fold cross-validation after training a Dense Convolutional Neural 

Network (DCNN) on a diverged dataset of plant leaves from 26 countries. Sai Reddy and Neeraja (2022) designed a binary 

classifier for distinguishing between healthy and diseased leaves that achieved 96% to 99% accuracy on the New Plant Diseases 

(Augmented) and Rice Leaf datasets. Most recently, Ashwinkumar et al. (2022) designed an automated model based on an 

optimal MobileNet-based convolutional neural network that can optimize hyperparameters via the Emperor Penguin Optimizer 

(EPO) and relies on an Extreme Learning Machine (ELM) classifier for final classification. 

 

The baseline models proposed various novel DL architectures and realized high classification accuracies in leaf-based plant 

classification tasks. However, these approaches still have problems, such as dependency on many hyperparameters, 

computationally expensive, poor convergence rate, and limited accuracy. In this research, we proposed a novel hybrid 

classification learning model by integrating two lightweight but highly accurate DL architectures, Efficient Neural Network 

(ENN) with a Squeeze and Excitation Network (SEN), to resolve the mentioned challenges. Efficient Neural Network (ENN) is 

a popular and efficient CNN architecture that has gained equal or even better performance than other traditional CNN models 

on various computer vision tasks (Koonce, 2021). In addition, ENN showed exceptional skill levels on image classification tasks 

using fewer parameters and resources than alternative architectures. Therefore, they are beneficial when it comes to being 

deployed in resource-restricted situations, including mobile devices or so-called edge devices. Similarly, Squeeze and Excitation 

Network (SEN) architectures also come from the family of light architectures that integrate effectively with other architectures 

and are thus compatible with several CNN models and gain top performance across many computer vision tasks (Hu et al. 2018). 

In addition, these models can design adaptive recalibrating feature maps when merged with other architectures and improve 

feature representation. 

 

Further, we employed transfer learning (Weiss et al. 2016) to speed up the training procedure by adopting pre-trained weights 

and other related hyperparameters. The proposed methodology emphasizes a process of feature extraction from the ENN and 

SEN models, followed by a combination of self-attention blocks (Zhao et al. 2020) and a late feature fusion technique (Akilan 

et al. 2017) to merge them efficiently. The performance of the proposed methodology was cross-validated using a five-fold cross-

validation technique (Wong et al. 2017) on two publicly available (1) Plant Village (Hughes et al. 2015) and (2) Rose Leaf 

Disease (Sazzad et al. 2022) Datasets. Finally, the testing results are compared with five traditional CNNs, i.e., Inception V3, 

RESNET-50, and VGG16 (Theckedath et al. 2020), Conventional Inception-Visual Geometry Group Network (Pal & Kumar 

2023), EffecientNetV2 (Devi et al. 2023) in terms of various performance measures and recapitulated the global findings. Our 

contribution can be summarised as follows:    

 

1. Design a novel lightweight hybrid CNN architecture that integrates the ENN and SEN frameworks for multiclass plant-leaf 

classification while enhancing performance through self-attention blocks and a late fusion technique. 

2. Performance evaluation was conducted using a five-fold cross-validation technique on two publicly available (1) Plant 

Village and (2) Rose Leaf Disease Datasets. 

3. We compared our results with five state-of-the-art methods: (1) Inception V3, (2) RESNET-50, (3) VGG16, (4) Conventional 

Inception-Visual Geometry Group Network, and (5) EfficientNetV2 models, evaluating them based on classification 

accuracy, precision, recall, F-score, ROC, and both time and space complexity. 

 

The structure of the rest of the paper is as follows: Section 2 includes dataset details and fundamentals of the employed DL 

models. In Section 3, the proposed methodology is explained. The experimental results and discussion are covered in Section 4. 

Finally, the conclusions and the future scope of this work are presented in Section 5. 
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2. Material and DL Fundamentals 
 

2.1. Dataset description 

 

Our study used two popular and open sources: (1) PlantVillage and (2) Rose Leaf Disease datasets for training, validation, and 

testing of the proposed leaf classification framework. The details of both datasets are given below: 

 

(1) PlantVillage Dataset 

 

The PlantVillage database is one of the most extensive and publicly available standard datasets for plant disease classification, 

which is often used to compare the results obtained by various methods (Hughes et al. 2015). This dataset contains 54,306 plant 

leaves with 12 normal and 26 disease categories that can be applied to 14 different types of plants, such as tomatoes, potatoes, 

apples, and Grapes. The sample collection of Plantvillage varies according to angle, light, size, noise, and so on, which is why it 

is among the perfect plant disease recognition databases. The samples from the Plantvillage dataset are shown in Figure 1.  

  

 
 

Figure 1- Visualization of leaf samples with respective classes of the PlantVillage dataset 

 

(2) Rose Leaf Disease Dataset 

 

The rose-leaf disease dataset is another popular and openly accessible dataset for the rose-leaf classification (Sazzad et al. 2022). 

It consists of 14,910 samples of rose leaves across three classes—Healthy Leaf Rose, Rose Rust, and Rose Sawfly/Rose Slug. 

The samples from the Rose Leaf dataset are shown in Figure 2.  

 

 
 

Figure 2- Visualization of leaf samples with respective classes of the Rose leaf dataset 

 

2.2. Deep learning paradigms and baseline architecture  

 

In recent years, artificial intelligence based on deep learning has dramatically improved the most challenging tasks in computer 

vision, such as classification, object detection, segmentation, and generation. Deep learning models depend on artificial neural 

networks, which are composed of multiple layers; because of this, these models can learn complex hierarchical features 

independently from raw image data. Convolutional neural networks have gained widely held appeal concerning image 

classification; these models often outperform human performance. Due to their structure, convolutional layers may filter local 

patches of the input image. Thus, spatial information is not lost from these neural networks, and CNNs can capture small-scale 
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events and progressively learn more complex features produced by deeper networks. Recent advanced techniques such as 

attention mechanisms, transfer learning, generative modeling, and supervised learning have significantly improved the 

performance of existing CNN architectures. In our work, we employed the improvement strategies of self-attention mechanisms 

(Zhao et al. 2020) and transfer learning (Ghazi et al. 2017). Our proposed approach outperforms five baseline CNN architectures 

presented by Theckedath et al. (2020): (1) VGG-Net, (2) Inception-Net, (3) RES-Net, (4) Conventional Inception-Visual 

Geometry Group Network, and (5) EfficientNetV2. We describe these strategies further in the subsequent sections. 

 

2.2.1. Self-Attention in convolution neural network  

 

Self-attention in CNN is a mechanism that enables neural networks to detect relationships between pixels in an image. It 

calculates the weighted sum of each element in the sequence, with the weights changing dynamically according to how similar 

each element is to the others. This mechanism implies a multi-step operation including Query (Q), Key (K), and value (V) metrics 

to evaluate linearly transformed feature maps of input images using Eq. 1.  

 

 Q=X𝑊𝑄,                                           

K=X𝑊𝐾,                                                                                                                                                                                        (1)                                                                                         

𝑉=𝑋𝑊𝑉 
 

Where;  𝑊𝑄, 𝑊𝐾, and 𝑊𝑉 are learnable weight matrices. Further, attention scores (A) are computed by considering the dot 

product between the Query (Q) and Key matrices (K) using Eq. 2.  

 

𝐴=softmax( 
𝑄∗𝐾𝑇

√𝑑
2  )                                                                                                                                                                          (2) 

 

Where; 𝑑 is the dimensionality of the Key vectors. Next, Softmax normalization performs the necessary weight scaling, 

allowing the network to highlight contextual pixels using Eq. 3. 

 

 A= softmax (A)                                                                                                                                                                              (3) 

 

The normalized attention ratings are utilized to generate a weighted sum of the Value matrix: 𝑌=𝐴𝑉 represents the attended 

feature map. The extracted feature map is finally used in the next step.  

 

2.2.2. Transfer learning  

 

Transfer learning in computer vision refers to applying the experience learned by previously trained models to new vision 

challenges in which data is incorrectly labeled. The pre-trained models offer capabilities that are very handy for different tasks 

trained on massive datasets, such as ImageNet. The learned weights of the pre-trained model can be deployed as features or fine-

tuned on the new dataset using intermediate layers. This way, the computational resources and time taken for training are 

minimized. At the same time, good performance is also realized with small or similar datasets. Let 𝑋 be the input dataset with 𝑁 

samples, and 𝑊 be the pre-trained model's weights: 

 

The pre-trained model works as a feature extractor, and the output of one of its intermediate layers is designated as 𝐹𝑃𝑟𝑒(𝑋,
𝑊𝑃𝑟𝑒). Further, the loss function 𝐿 computes the discrepancy between the model's predictions and the ground truth labels (Y) 

using Eq. 4. 

 

L=f(𝐹𝑃𝑟𝑒(𝑋, 𝑊𝑃𝑟𝑒), Y)                                                                                                                                                                  (4) 

 

Finally, Gradient descent or its derivatives are used to optimize the model parameters (pre-trained or fine-tuned weights) to 

minimize the loss function. The optimization phase updates the model parameters to fit the new dataset better, leveraging the 

pre-trained model's knowledge.  

 

2.2.3. Baseline CNN architectures 

 

(1) VGG19-Net 

 

The Visual Geometry Group at the University of Oxford proposed the VGG-Net convolutional neural network architecture. 

Karen Simonyan and Andrew Zisserman introduced it in their paper "Very Deep Convolutional Networks for Large-Scale Image 

Recognition" in 2014 (Simonyan & Zisserman, 2014). The input of the VGG neural Network is a 224x224-pixel RGB image. It 

gives uniform sample sizes for the ImageNet competition, and the authors subtracted 224 x 224 from the middle of every picture. 

Convolutional Layers use the 3×3 receptive field to scan the entire image and generate spatial patterns. The second step is the 

linear transformation of the output, which happens before it is ReLU-activated. The generalized VGG structure is shown in 

Figure 3. 
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Figure 3- The generalized architecture of VGG-Net (Simonyan and Zisserman, 2014) 

 

(2) Inception-Net  

 

Inception-Net, also known as Google-Net, is an advanced CNN architecture that tries to overcome some of the weaknesses of 

VGG-Net, including overfitting and high computational cost due to its large number of hyperparameters (Szegedy et al. 2016). 

The convolutional network consists of 27 convolutional layers that, for instance, use a mix of kernel operations, including 1×1, 

3×3, and 5×5 kernels, with the results being fed forward into the subsequent stage as feature vectors. In addition, maximum 

pooling is performed and concatenated before being passed on to the next inception module. These inception modules are stacked 

linearly to remove unnecessary and redundant image patterns for the reduction in dimension. It has 22 layers deep when not 

counting pooling layers and uses global average pooling right after the final inception module. Figure 4 presents Inception-Net's 

architecture. 

 

 
 

Figure 4- Inception-Net Architecture proposed in the original article (Szegedy et al. 2016) 

 

 

(3) RESNET-50 Architecture 

  

RESNET-50 is a deep neural network with 50 convolution layers within 16 blocks (He et al. 2016). It introduced skip 

connection to improve against the vanishing gradient problem, thus facilitating the possibility of training large deep networks. 

The RESNET-50 network appears as a simple bottleneck design with 1x1, 3x3, and 1x1 convolutions, which reduces the 

complexity of computation while preserving high representational power; instead of using fully connected layers followed by 

the SoftMax classifier and ReLU activation functions, it uses global average pooling (Figure 5). 
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Figure 5- Original RESNET Architecture (He et al. 2016)    

                           

3. Proposed Methodology  
 

The proposed hybrid classification framework comprises four main phases: (1) the preprocessing stage, (2) feature extraction, 

(3) late feature fusion, and (4) model validation, as depicted in Figure 6. In the preprocessing phase, annotations would be made 

to recognize the region of interest in plant images. Deep features shall be extracted from RoI using two lightweight architectures, 

CNNs, (1) ENN (version 1) and SEN. A self-attentive mechanism is applied on both feature sets to capture dependencies among 

different sub-regions in the image. These optimized features are merged using a late feature fusion technique. Finally, two dense 

layers are followed by a SoftMax layer, which classifies the leaves based on their imaging patterns. Five-fold cross-validation is 

implemented to measure the framework's performance, and the results are recorded further for analysis. The workings of each 

phase are discussed in detail in the subsequent subsections. 

 

 
 

Figure 6- The proposed Leaf classification network 

 

3.1. Data preprocessing 

 

For the first approach, we employed the standard architecture of U-Net developed for image segmentation (Ronneberger et 

al. 2015) (Figure 7). Further, we fixed a suitable patch size and applied the customized BM3D filtering technique to reduce 

the noise level in the input leaf images (Chen et al. 2010). The method entails partitioning the input image into overlapping 

small blocks and continuing to scan for similar blocks within a localized neighborhood. Metrics of Euclidean distance or 

structural similarity index estimate the disparity of the block. In our work, we set the patch size at 224 x 224 and utilized the 

Gradient-Based Structural Similarity (Chen et al. 2006) Index (G-SSIM) to compute the block similarities. The G-SSIM 
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formula is found by calculating the similarity between the gradient distributions of the two image blocks. The mathematical 

definition of G-SSIM is given in Eq. 5. 

 

G-SSIM (x,y) = 
2∗𝜇𝑥∗𝜇𝑦+ 𝐶1

𝜇𝑥
2+ 𝜇𝑦

2+𝐶1
∗  

2∗𝜎𝑥𝑦+ 𝐶2

𝜎𝑥
2+ 𝜎𝑦

2+𝐶2
                                                                                                                                (5) 

 

Where: 

 

 𝜇𝑥 and 𝜇𝑦 are the means of the gradient distributions of image blocks 𝑥 and 𝑦 respectively. 

 𝜎𝑥 and 𝜎𝑦 are the standard deviations of the gradient distributions of image blocks 𝑥 and 𝑦, respectively. 

 𝜎𝑥𝑦 is the covariance of the gradient distributions of image blocks 𝑥 and 𝑦, respectively, 

 𝐶1 and 𝐶2 are small constants added to avoid instability when the denominator is near zero. 

 

The mean, variance, and covariance can be computed with the derivatives of the image blocks. After the process of gradient 

distribution, they are calculated using the formula for similarity measurement using gradients. The subsequent blocks are grouped 

to generate a clean waveform for the noisy signals and suppress noise. In the BM3D collaborative filtering technique, similar 

blocks are jointly processed, which increases denoising performance. The pseudocode of the customized BM3D algorithm is 

given in Algorithm 1.  

 

 
 

Figure 7- Samples of original (A) and segmented leaves (B) using U-NET 

 
Algorithm 1: Pseudocode for image denoising using the customized BM3D algorithm 

1. Parameter declaration  

    - PATCH_SIZE = (224, 224), C1 = 0.01, C2 = 0.03, THRESHOLD = 0.8 

2. Define Functions: 

    - Noise_reduction(input_image): 

        - Apply BM3D filter to input_image. 

        - Return the denoised image. 

    - Divide_into_blocks(input_image): 

        - Divide the input image into blocks of size PATCH_SIZE. 

        - Return the blocks. 

    - Calculate_similarity_index(block1, block2): 

        - Calculate the Gradient-based Structural Similarity Index (G-SSIM) between block1 and block2. 

        - Return the similarity index. 

    - collaborative_filtering(block1, block2): 

        - Implement BM3D Collaborative Filtering between block1 and block2. 

        - Return the denoised block. 

3. Main Function: 

    - main(): 

        - Read the input image. 

        - Perform noise reduction using the noise_reduction function. 

        - Divide the denoised image into blocks using the divide_into_blocks function. 

        - For each block in the blocks: 

            - Create an empty list of similar_blocks. 

            - For each other_block in the blocks: 

                - If other_block is not equal to block: 

                    - Calculate the similarity index between block and other_block using calculate_similarity_index. 

                    - If the similarity index is greater than THRESHOLD: 

                        - Append other_block to similar_blocks. 

            - For each similar_block in similar_blocks: 

                - Perform collaborative filtering between block and similar_block using the collaborative_filtering    

                  function. 

(A): Original    

Samples 

(B): Segmented    

Samples 
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3.2. Hybrid feature generation  

 

Feature hybridization is one of the most important parts of machine learning in which one looks to combine existing features or 

create new ones to enhance model performance. This process helps identify complex, non-linear relationships between input 

features and the target variable for better predictive accuracy. We have developed two lightweight yet efficient deep neural 

network architectures: The Efficient Neural Network (ENN) and the Squeeze and Excitation Network (SEN). These architectures 

correctly identify complex leaf patterns and reduce the risk of overfitting when used in applications with large feature spaces, 

such as the Plant Village dataset with 38 classes. Detailed descriptions for both architectures are provided in the following 

subsections. 

 

3.2.1. EfficientNet (B0) architecture 

 

EfficientNet is a state-of-the-art convolutional neural network that attempts to balance the parameters of accuracy and 

computational cost using compound scaling, which adjusts all dimensions-depth, width, and resolution-simultaneously (Tan et 

al. (2019). To achieve that, this balancing act with a compound coefficient resulted in great performance at low computational 

costs. The depth and complex features captured by stacked convolutional blocks include the Efficient Neural Network Version 

1, which is slightly larger and better for the optimal floating-point operation per second. B0 has been chosen for its reduced 

computational cost and faster processing, giving it an edge in making it suitable for real-time applications. The core component 

of it is the use of squeeze and excitation optimization within the MBConv layer. MBConv is roughly analogous to the inverted 

residual blocks in MobileNet v2, allowing skip connections between convolutional blocks' input and output. It begins with a 1x1 

convolution to double the number of feature maps, then depthwise and pointwise convolutions to reduce the channel numbers to 

3x3. Such skip connections connect the thinner layers, and thicker layers are stacked between skips. Its architecture is shown in 

Figure 8.  

 

 
 

Figure 8- The concise representation of the EfficientNet-B0 model 

 

3.2.2. Squeeze and excitation network 

 

The SE networks introduce a novel architectural component enhancing the representative capacity of convolutional neural 

networks by adaptively recalibrating channel-wise feature responses (Hu et al. 2018). The SE block works under two steps: 

squeeze and excitation. In the squeeze step, global average pooling is applied to the feature maps; this condenses spatial 

information into channel descriptors, capturing the global context of feature activation. Then is the excitation step, where the 

squeezed outputs are passed through a fully connected layer to create channel-wise scaling factors like those of the sigmoid 

activation function. These scaling factors are then used to modulate the original feature maps, thus amplifying the informative 

features and suppressing the less relevant ones. This has enabled better learning of complex patterns by improving feature 

discrimination and achieved performance benefits in a large class of tasks, such as image classification, object detection, and 

semantic segmentation. It has been demonstrated that SE networks indeed enhance the accuracy of the model while at the same 

time retaining computational efficiency, making them a breakthrough improvement over deep learning methodologies. The 

architecture of the SE block is shown in Figure 9.  
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Figure 9- A Squeeze-and-Excitation block (A) and SE-Inception module (B). Both images are directly taken from the original 

research paper published in 2018 (Hu et al. 2018) 

 

3.2.3. Feature hybridization  

 

Feature hybridization forms the central module in our classification framework, utilizing two newly developed deep, dense 

modules: Hybrid Block 1 and Hybrid Block 2, as depicted in Figures 10 (A) and 10 (B). These modules amalgamate differently 

selected modules from both the Squeeze-and-Excitation architecture and EfficientNetB0 architecture to grasp the spatial locality 

of both diseased and healthy patterns of the leaves. This hybrid block 1 takes an input 3D tensor: 224 × 224 × 3, which interprets 

as an RGB image. The working of this module is initiated by using a 2D convolution layer with the kernel size 112 × 112 and 

64 output channels. Then, normalization and ReLU of the non-linearity activation function apply. The spatial attention 

mechanism recalibrates the feature maps as added above. It gives a combined output of size 1064 ×1024×64 resulting from the 

Squeeze Block and the Weighted Bottleneck (WB) Conv1 block, elaborated as a parallel path of many convolution layers and 

concatenation. 

 

Output from the Excitation Block is tensor size 1024 × 1024 × 64, which is processed through a 3 × 3 convolutional filter 

by batch normalization and followed by a non-linear activation function. It adds zeros to one side and one corner for spatial 

dimensions, followed by a GAP layer that reduces spatial dimensions but pools features across depth. After a BN step, a 

Depthwise Conv2D layer further operates on feature maps. This Depthwise Conv2D output is added to the input feature maps 

of size 112 × 112 × 64 and fed into another Depthwise Conv2D operation. In Hybrid Block 2, two input tensors are employed. 

The first is an RGB image of 224 × 224 × 3. The second is a size 112 × 112 × 64 feature map from the previous processing 

stage. 

 

The main path takes an input of 224 × 224 × 3 and processes it with a 2D convolution with a 112 × 112 kernel and 64 

output channels. The weighted bottleneck WB conv blocks are then utilized after batch normalization, and a ReLU activation 

function is used for dimensionality reduction. Finally, 56 × 56 × 128 is used, and the output from these WB blocks goes 

through a convolution operation of size 3 × 3. Outputs of the primary and auxiliary paths are concatenated along the channel 

dimension. The resulting tensor is passed through a 3 × 3 convolutional layer with a Filter Block. Another mechanism is 

applied, such as an attention mechanism for feature recalibration. Downsampling is done with a pooling convolution layer so 

that the output comes out to be a tensor of 56 × 56 × 128. GAP operation reduces the spatial dimensions while keeping the 

channel dimensions, followed by a batch normalization layer on GAP output. This output from the above norm-0 tensor is 

then merged with the 64 x 112 x 112 channel input tensor through concatenation along the channel dimension. The merged 

tensor is then forwarded to subsequent layers or blocks in the neural network's architecture.  

 

(A) 

(B) 
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Figure 10- The architecture of hybrid blocks 1 (A) and 2 (B). Here, BN indicates "Batch Normalization," and GAP refers to 

"Global Average Pooling." 

 

3.3. Ladder-shaped CNN classification network 

 

Our proposed multiclass classification architecture is a ladder-shaped CNN architecture with an alternating sequence of 14 

modules with Hybrid Block 1 and Hybrid Block 2, as shown in Figure 11. As mentioned, these blocks comprise convolutional 

layers, batch normalization, activation functions, squeeze-and-excitation blocks, downsampling, and concatenations. The initial 

layers process the input, a set of leaf images, in parallel to be fed through the 14-module sequence: hybrid Block 1 and 2 alternates 

to allow multi-scale feature extraction and hierarchical representation within this architecture. The architecture alternates 

between consecutive Hybrid Block 2 modules with Hybrid Block 1 in between and repeats this pattern throughout all 14 modules. 

It improves multi-scale feature extraction and hierarchical learning, enhancing overall architecture's abilities. It follows the final 

module by passing information to a SoftMax layer that returns a probability distribution for multiclass classification. Hybrid 

blocks based on attention mechanisms, residual connections, and multi-scale processing enable critical feature usage in 

improving the classification of leaves as diseased or healthy. Algorithm 2 describes the pseudocode of the proposed classification 

algorithm. 

 

(A). Hybrid Block 1 

(B). Hybrid Block 2 
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Figure 11- Proposed Classification Framework Consisting of Hybrid Blocks 1 and 2.  

 
Algorithm 2: Pseudocode of proposed leaf classification approach 

#Input: Set of leaf images Output:  

#Output: Type of leaf 

Comment 1:  # Load and preprocess the leaf images 

1. leaf_images = load_images(image_paths); leaf_images = preprocess_images(leaf_images) 

Comment 2: # Initialize the CNN model 

2. model = initialize_cnn_model() 

Comment 3: # Pass the input images through the initial layers/blocks 

3. conv_1 = conv2d(leaf_images, kernel_size=3, filters=64, padding='same', activation='relu') 

4. bn_1 = batch_normalization(conv_1) 

5. max_pool_1 = max_pooling2d(bn_1, pool_size=2, strides=2) 

6. initial_features = max_pool_1 

Comment 4: # Define the sequence of hybrid block modules 

7. for module_idx in range(14): 

8.       if module_idx % 3 == 0: 

Comment 5: :# Two consecutive Hybrid Block 2 modules 

9. features = hybrid_block_2(features); features = hybrid_block_1(features) 

 Comment 6:  # Followed by a Hybrid Block 1 module 

10. features = hybrid_block_1(features) 

               else: 

 Comment 6: # Single Hybrid Block 2 module 

11. features = hybrid_block_2(features) 

  Comment 7: # Followed by a Hybrid Block 1 module 

12. features = hybrid_block_1(features) 

  Comment 8: # Pass the final features through the SoftMax layer 

13. flatten = flatten_layer(features) 

14. dense = fully_connected_layer(flatten, MB=128, activation='relu') 

15. dropout = dropout_layer(dense, rate=0.5) 

16. logits = fully_connected_layer(dropout, MB=2, activation='softmax') 

Comment 9:  # Compute the predictions (Diseased or Healthy) 

17. predictions = argmax(logits, axis=-1) 

18. return predictions 

Comment 10:  # Define the Hybrid Block 1 function 

Function 1: def hybrid_block_1(input_tensor): 

19. conv_1 = conv2d(input_tensor, kernel_size=3, filters=64, padding='same', activation='relu') 

20. bn_1 = batch_normalization(conv_1); act_1 = activation_layer(bn_1, activation='relu') 

21. depth_conv_1 = depthwise_conv2d(act_1, kernel_size=3, depth_multiplier=1, padding='same', activation='relu') 

22. squeeze_1 = squeeze_block(depth_conv_1); excite_1 = excitation_block(squeeze_1) 

23. filter_1 = conv2d(excite_1, kernel_size=3, filters=64, padding='same') 

24. bn_2 = batch_normalization(filter_1); act_2 = activation_layer(bn_2, activation='relu') 

25. output_tensor = act_2 

26. return output_tensor 

Comment 11: # Define the Hybrid Block 2 function 

Function 2: def hybrid_block_2(input_tensor): 

27. conv_1 = conv2d(input_tensor, kernel_size=3, filters=128, padding='same', activation='relu') 

28. bn_1 = batch_normalization(conv_1); act_1 = activation_layer(bn_1, activation='relu') 

29. depth_conv_1 = depthwise_conv2d(act_1, kernel_size=3, depth_multiplier=1, padding='same', activation='relu') 

30. squeeze_1 = squeeze_block(depth_conv_1) 

31. filter_1 = conv2d(squeeze_1, kernel_size=3, filters=64, padding='same') 

32. excite_1 = excitation_block(filter_1); downsample_1 = max_pooling2d(excite_1, pool_size=2, strides=2) 

33. gap_1 = global_average_pooling2d(downsample_1); bn_2 = batch_normalization(gap_1) 

34. concat_1 = concatenate(bn_2, input_tensor, axis=-1) 

35. output_tensor = concat_1 

36. return output_tensor 
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4. Experimental Setup and Results  
 

This section presents the experimental analysis and demonstrates the effectiveness of the proposed solution. All experiments, 

including feature extraction, were conducted using Python on a PC with Windows 10, Intel i5-3.6 GHz CPU, and 8 GB of RAM. 

We evaluated the performance of our algorithm against state-of-the-art methods based on five criteria: (1) Average Classification 

Accuracy (ACA), (2) Precision, (3) Recall, (4) F-score, and (5) Time/Space complexity. ACA reflects the model's ability to 

classify various leaf types across multiple classes correctly. Precision measures the reliability of the model's positive predictions, 

defined as the ratio of True Positives (TP) to total positive predictions. It can be calculated using Equation 6.  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                                                                                                                      (6) 

 

True Positive (TP) and False Positive (FP) refer to how many cases the model correctly classifies as positive and the number 

of occurrences the model misclassifies as positive when they are negative.  

 

Recall or sensitivity is an evaluation metric that depicts the system's ability to classify positive instances correctly. It refers 

to the ratio of the correct positive predictions made by the model to the total number of positive cases in the dataset. 

Mathematically, recall is calculated as:  

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                                                                                                            (7) 

 

F-score or F1 score is the harmonic mean of precision and recall. It is one of the most efficient and widely used evaluation 

metrics among other evaluation metrics. These measures of precision and recall balance each other out in some cases. The F-

measure is applied significantly when the number of positive examples far outweighs the number of negative examples in the 

dataset. Mathematically, the F-score is calculated as:  

 

𝐹 =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                                                                                                                                                      (8)  

 

In machine learning, time complexity refers to how much a model scales with computational resources in performing tasks 

such as prediction or other operations. Generally, this is assessed regarding the computational cost incurred during training and 

the predictive cost incurred while inferring. Our work utilized a five-fold cross-validation methodology that split the respective 

datasets into training, validation, and testing sets for evaluation. The model was trained on the training set and fine-tuned using 

hyperparameters on the validation set. The trained model was tested against those performances for proper classification accuracy 

and other measures. The performance results on both datasets are summarized in the following subsections.  

 

4.1. Hyperparameter Tuning Using Bayesian Optimization 

 

Bayesian optimization is used to tune the hyper-parameters of the proposed deep learning model (Victoria et al. 2021). A 

Gaussian process was used as the surrogate model to estimate the performance of different hyperparameter configurations. In 

the Expected Improvement (EI) acquisition function, exploration and exploitation of new and known promising regions are 

balanced. The primary objective was to achieve maximum accuracy, and other performance metrics such as validation loss, 

precision, recall, and F1-score were also monitored during training. This ensured that the model performed well in accuracy and 

showed robustness and generalization when used with other performance indicators. The list of optimal hyperparameters is given 

in Table 1.  

 
Table 1- Detail of hyperparameter search space and their optimal values during training 

 

 

 

 

 

 

 

 

 

4.2. Experiment 1: Results on plant village dataset 

 

The performance of the proposed model is validated on the Plant Village Dataset using a five-fold cross-validation technique.    

The multiclass classification results, demonstrating the model's effectiveness across various plant disease categories, are 

presented in Table 2. The classification results on the Plant Village dataset point out excellent performance in most categories, 

which can then be generalized into three accuracy levels: above 99%, between 90% and 99%, and below 90%. Classes with 

accuracy Above 99% classify high performance by almost perfect differentiation. For instance, Cherry (Powdery Mildew) and 

Hyperparameter Search Space Optimal Value 

Learning rate (𝛼) 0.0001 – 0.01 0.001 

Batch Size 16 – 128 64 

Dropout Rate 0.1 – 0.5 0.3 

Number of Layers 2 – 10 6 

Number of Neurons 64 – 512 256 

Weight Decay 0.00001 – 0.001 0.0001 



Alramli & Tekerek - Journal of Agricultural Sciences (Tarim Bilimleri Dergisi), 2025, 31(2): 392-412 

404 

 

Cherry (healthy) attain 100% precision, recall, and an F-score value of 1.00. Grape (Leaf Blight) and Peach (healthy) were no 

exceptions in accomplishing the 100% accuracy line that guarantees no false negatives or false positives would be counted. The 

Orange class reached an Accuracy of 99.16% with a precision of 1.00, recall of 0.99, and F-score of 0.99; more evidence that 

the model indeed makes good predictions regarding this disease.  

 

Classes with accuracy Between 90% and 99% dominate the results. Here, the model performs very well for the entire range 

of plant conditions. Apple (healthy) had an accuracy of 98.24%, with 0.98 precision, 0.99 recall, and an F-score of 0.99. This 

means that the model classifies healthy apples as being robust. Corn Common Rust achieved 96.54% accuracy at precisions and 

recalls of 0.98 and 0.97, respectively. The F-score for the model is 0.97, meaning it is very reliable for this condition. Grape, 

Black Rot results came back with 93.18% accuracy, 0.92 precision, 0.97 recall, and 0.95 F-score, showing somewhat lower 

performance but still quite good. The accuracies are not as high as those of the top-performing classes. Classes with accuracy 

below 90% represent a small portion of the dataset where the model faces challenges. For instance, Apple (Black Rot) showed 

an accuracy of 90.00%, with 0.92 precision, 0.90 recall, and a 0.91 F-score, indicating that while the model performs respectably, 

overlapping features with other classes might lead to slight misclassifications. Similarly, Tomato (healthy) had an accuracy of 

88.42%, with 0.75 precision, 1.00 recall, and a 0.98 F-score, suggesting that the model struggles slightly with precision but 

compensates with strong recall. These lower accuracy classes point to areas where additional tuning or training data might be 

needed to improve model performance. 

 
Table 2- Different performance measures for the PlantVillage dataset 

 
Class Precision Recall F-Score Support Accuracy 

Apple___Apple_scab 0.97 0.92 0.95 126 96.20 

Apple___Black_rot 0.92 0.90 0.91 108 97.40 

Apple___Cedar_apple_rust 0.98 0.95 0.96 55 97.23 

Apple___healthy 0.98 0.99 0.99 392 98.24 

Blueberry___healthy 0.98 0.98 0.98 300 98.02 

Cherry_(including_sour)___Powdery_mildew 1.00 1.00 1.00 100 100 

Cherry_(including_sour)___healthy 0.99 1.00 0.99 264 99.66 

Corn_(maize)___Cercospora_leaf_spot Gray_leaf_spot 0.80 0.84 0.82 184 84.34 

Corn_(maize)__Common_rust 0.98 0.97 0.97 292 96.54 

Corn_(maize)___Northern_Leaf_Blight 0.93 0.96 0.95 318 93.41 

Corn_(maize)___healthy 0.98 0.99 0.98 341 97.66 

Grape___Black_rot 0.92 0.97 0.95 234 93.18 

Grape___Esca_(Black_Measles) 0.98 1.00 0.99 138 98.44 

Grape___Leaf_blight_(Isariopsis_Leaf_Spot) 1.00 1.00 1.00 215 100 

Grape___healthy 0.99 1.00 0.99 85 99.16 

Orange___Haunglongbing_(Citrus_greening) 1.00 0.99 0.99 1102 99.16 

Peach___Bacterial_spot 0.90 1.00 0.95 462 92.14 

Peach___healthy 1.00 1.00 1.00 72, 100 

Pepper,_bell___Bacterial_spot 0.99 1.00 0.99 147 99.14 

Pepper,_bell___healthy 0.95 0.95 0.95 388, 98.23 

Potato___Early_blight 0.94 0.98 0.96 200 95.54 

Potato___Late_blight 0.94 0.98 0.96 207 93.14 

Potato___healthy 0.98 1.00 0.99 192 96.66 

Raspberry___healthy 0.97 0.99 0.98 78 93.34 

Soybean___healthy 1.00 1.00 1.00 508 100 

Squash___Powdery_mildew 0.99 0.99 0.99 330 98.74 

Strawberry___Leaf_scorch 0.90 0.99 0.95 110 92.14 

Strawberry___healthy 0.96 0.94 0.95 234 89.13 

Tomato___Bacterial_spot 0.97 0.96 0.92 425 91.33 

Tomato___Early_blight 0.90 0.94 0.95 98 95.33 

Tomato___Late_blight 0.95 0.96 0.97 192 90.47 

Tomato___Leaf_Mold 0.97 0.98 0.97 154 91.66 

Tomato___Septoria_leaf_spot 0.97 0.98 0.93 190 92.34 

Tomato___Spider_mites Two-spotted_spider_mite 0.94 0.93 0.98 318 98.21 

Tomato___Target_Spot 0.99 0.97 0.94 869 93.54 

Tomato___Tomato_Yellow_Leaf_Curl_Virus 0.94 0.93 0.99 854 91.12 

Tomato___Tomato_mosaic_virus 0.99 0.99 0.86 373 91.24 

Tomato___healthy 0.75 1.00 0.98 93 88.42 

 

The accuracy vs. epochs graph shown in Figure 12 represents the performance of the proposed approach during training and 

validation in 35 epochs, showing critical behaviors in the model's learning process. In the early epochs, both training and 

validation accuracies sharply rise, which is expected since, at that point, the model is just starting its training and sensing patterns 

from the data. Rapid increases in training accuracy suggest that a model fits quite rapidly with the training data. Validation 

accuracy also learns much faster than the training set, suggesting generalization to unseen data by the model. After epoch 5, the 
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validation accuracy starts to drop steeply while the training accuracy continues to climb increasingly smoothly. That is a sign of 

overfitting, where the model begins to memorize specific patterns unique to the training data, reducing its ability to generalize 

to new data. The validation accuracy does see this drop, but the oscillations indicate instability in the model's generalization 

capability at this stage. As the training progresses, both curves stabilize, especially after epoch 15. The training accuracy tracks 

into a plateau around a high value, suggesting that the model had nearly maximized its performance on the training set. Validated 

accuracy stabilizes, too, but suffers more variability from the training curve of the model, indicating that although the model's 

generalization ability is enhanced, it remains sensitive to the fluctuations within the validation data set. It seems more of a 

converging model but sometimes overfits or displays extreme sensitivity precisely to specific validation samples on later epochs. 

 

 
Figure 12- The Accuracy vs Epoch curve for training and testing of the proposed approach 

 

The training and validation loss for 35 epochs are shown in Figure 13. The primary movement in the early epochs in the 

training data is the drastic drop in the training and validation loss curves, showing that the model learned well and substantially 

reduced its errors. While the training loss decreases as the training progresses, it indicates better generalization by the model on 

the training data. Instead, the validation loss often fluctuates and displays instability in generalization. It peaks at a significant 

validation loss around epoch 10, indicating overfitting. That means the training set error is correctly lowered at this epoch but 

fails to generalize when attracted to the unseen validation data. Later, after epoch 15, the training loss drops to almost zero, 

marking an indicator of convergence towards the model's training data. The validation loss also keeps reducing in value 

gradually, though with occasional small spikes. These spikes, particularly around epochs 20 and 25, suggest that even though 

the model performs well, it is still sensitive to specific validation batches. 

 

 
Figure 13- The Loss vs Epoch curve for training and testing of the proposed approach 

 

The Receiver Operating Characteristics (ROC) curve for the proposed classification is shown in Figure 14. Each line in the 

plot is the ROC curve for a given class and is plotted against the false positive rate versus the true positive rate for a range of 

classification thresholds. The curves indicate how well the classifier can distinguish between classes. In this curve, almost all 

individual class curves reach the top-left corner nearly perfectly, except for fewer than five classes, while most classes have 

AUC values close to 1.00. There are three classes with AUC values below 1.00: Class 37, with an AUC of 0.98, and Class 36 

and Class 35, each with an AUC of 0.99. All of them give perfect classification performance; however, their AUC values indicate 

some degradation in distinguishing a positive instance from a negative one compared to other classes that scored ideally and had 

an AUC of 1.00. In other words, the model has a perfect discrimination ability for those classes.  
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Figure 14- ROC curve for Multiclass Leaf Classification Model 

 

4.3. Experiment 2: Results on rose leaf disease dataset 

 

Similar to the PlantVillage dataset, the Rose leaf disease dataset is also a multiclass dataset having three classes: (1) 

Healthy_Leaf_Rose, (2) Rose_Rust, and (3) Rose_swafly_Rose_slug. The classification results for all three classes are shown 

in Table 3. For Healthy_Leaf_Rose, the model has a value of 0.99 precision, which means 99% of all the predicted instances for 

this class are correct. However, the recall of this class is a little low, with just 5% being missed. As a result, the class F1-score is 

0.97, balancing strength in precision and slightly lower recall from showing a very high classification accuracy for this class. 

For Healthy_Leaf_Rose, 995 samples in the dataset give this model an accuracy of 95.38%, high though a bit less strong than 

the performance observed for the other two classes. 

 

For Rose_Rust (Class 1), the model achieves a precision of 0.98, indicating that almost all predicted instances for this class are 

correct. The recall is also strong at 0.97, meaning that 97% of the true Rose_Rust instances are correctly identified. The F1-

score, at 0.98, indicates excellent overall performance for this class, with a strong balance between precision and recall. Out of 

991 samples in the dataset, the model achieves an accuracy of 97.47%, slightly better than Healthy_Leaf_Rose. This model 

performs very well for Rose_swafly_Rose_slug with Class 2, having recall at 0.98, or almost all true class instances are correctly 

detected. Precision is slightly lower than others at 0.94, showing more false positives for this class. F1-score is still very good at 

0.96, showing a good balance between precision and recall. For this model, with 996 samples, class-specific accuracy shows the 

maximum at 98.61%, indicating that it is a strong classifier for detecting this class. The model's average accuracy for the classes 

is 97.15%. The model's effectiveness in classifying each category is high, though its performance for all classes is excellent. 

Despite a minor reduction in precision, it is best with its highest accuracy in the case of Rose_swafly_Rose_slug (Class 2). This 

means the model is pretty good at distinguishing between classes and is only sometimes confused, primarily in the case of 

Rose_swafly_Rose_slug and other categories. 

 
 Table 3- Different performance measures for the Rose Leaf dataset 

 

 

 

 

 

 

The confusion matrix shown in Figure 15 demonstrates how the model performs on the three classes. In class 0, it classified 

947 correctly and mislabeled 48 instances as class 1, showing a moderate level of confusion between these two classes. The 

confusion was minimal since there were no misclassifications from class 0 to class 1, indicating a clear distinction between the 

two categories. For class 1, 962 cases were correctly classified, with only ten misclassifications as class 0 and nineteen 

misclassifications as class 2. It shows that although the model is excellent, there is interference between class 1 and the remaining 

Class Precision Recall F1-Score Support Accuracy 

Healthy_Leaf_Rose (0) 0.99 0.95 0.97 995 95.38% 

Rose_Rust (1) 0.98 0.97 0.98 991 97.47% 

Rose_swafly_Rose_slug (2) 0.94 0.98 0.96 996 98.61% 

Average Accuracy - - - 2982 97.15% 
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classes but with the slightest interference with class 2. The model accurately classified 976 instances and misclassified 20 of 

class 2 as class 1. For class 2, the model correctly classified 976 cases, with 20 misclassifications as class 1. However, no 

instances of class 2 were misclassified as class 0, indicating a strong ability to distinguish class 2 from class 0.  

 

 
 

Figure 15- Confusion matrix for the Rose Leaf dataset 

 

The graph shown in Figure 16 indicates the performance of the proposed model in training the Roseleaf dataset over 100 

epochs and compares it with the testing accuracy. During training, the model steadily increases in both metrics and reaches a 

plateau after about 80 epochs. The testing accuracy remains stable at about 97.15%, implying the model's generalization 

capability is high. Here, a similar trajectory was seen between the training and testing curves, with negligible divergence between 

them. This indicates that the model did not suffer from an overfitting problem as the gap between training and testing accuracy 

continued to narrow throughout the process. In terms of convergence, the model achieves smooth progression, with significant 

improvements in accuracy observed during the first 40 to 50 epochs. After reaching around 60 epochs, the learning rate appears 

to slow, stabilizing accuracy between 95% and 97%. This trend indicates diminishing returns from further training. The final test 

accuracy of 97.15% shows that the model performs exceptionally well in its classification performance, demonstrating good 

robustness and reliability on the Roseleaf dataset. The near identity of the training and testing accuracy also indicates that the 

model generalizes well to unseen data without glaring signs of overfitting, as the two accuracies converge closely towards the 

last epochs. 

 

 
Figure 16- The Accuracy vs Epoch curve for training and testing of the proposed approach 

 

Figure 17 represents the training and validation loss for a range of epochs in the training of our model. The blue curve shows 

the training loss, and the orange curve refers to the validation loss. During the early epochs in the learning process, the training 

loss and validation loss are relatively high, and the model hasn't yet entirely fitted the data well. Gradually, as the number of 

epochs increases, the training loss decreases continuously, showing the model is learning and minimizing errors in the training 

data. However, the validation loss has a higher variance. Between epochs 1 and 4, the validation loss drops steeply, indicating 

that the model first generalizes well to the unseen data. After that point, the validation loss peaks around epoch 6, rising sharply 

before dropping again. Such fluctuations demonstrate the likelihood of overfitting: the model is doing very well in training but 
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fails with the validation set. From approximately epoch ten onwards, the validation loss increases again- the increase could 

indicate divergence in training loss. It might be due to overfitting because the model performs worse on unseen data (validation 

set) but keeps improving on training data. The upward drift in both curves at epochs later than 12 indicates the requirement of 

early stopping or even some other regularization technique that would prevent overfitting to the training data.  

 

 
 

Figure 17- The Loss vs Epoch curve for training and testing of the proposed approach 

 

The ROC for the proposed multiclass classification model is shown in Figure 18. Class 0's AUC value reaches 0.999; thus, 

the classifier almost perfectly differentiates instances of this particular class from others. Class 1 stands out with an AUC of 

1.000, signifying flawless classification performance, meaning the model can perfectly distinguish Class 1 instances. Similarly, 

Class 2 has an AUC of 0.999, reflecting near-perfect classification. Also, the micro-average AUC of 0.999 aggregates 

performance across classes, which is another facet that proves the model can predict with high accuracy for many classes. The 

curves are tightly concentrated in the top-left corner, demonstrating high TPR with very low FPR, meaning the model achieves 

a strong balance between sensitivity and specificity.  

 

 
 

Figure 18- ROC curve for Multiclass Leaf Classification Model 

 

4.4. Results Comparison with State-of-the-Art Methods 

 

Its performance was compared against five baseline models: (1) the VGG16 Net, (2) Inception Net, (3) RESNET-50, (4) 

Conventional Inception-Visual Geometry Group Network (CIVGGN), and (5) EfficientNetV2. All the above networks were pre-

trained on the Imagenet data set and have widespread medical imaging and leaf disease detection applications. The comparison 

on the PlantVillage dataset focused on computational efficiency and key metrics like accuracy, precision, recall, and F1-score. 

Our suggested approach outperforms VGG16 Net (93.5%), Inception Net (94.2%), RESNET-50 (95.1%), conventional 

Inception-Visual Geometry Group Network (CIVGGN) (95.64%), and EffecientNetV2 (95.18%) with a classification accuracy 

of 96.4% (Table 4). In Figure 22, we compare the relative performance with our approach. The results show a relative 

improvement of 3.1% over VGG16 Net, 2.2% over Inception Net, 1.3% over RESNET-50, 0.8% over CIVGGN, and 1.23% 

over EfficientNetV2.  

 

Here, the VGG16 Net model demonstrates a poor performance mainly due to its extensive number of parameters, which 

process computationally very slowly and multiply memory consumption considerably. It makes it inefficient at training and 
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inference periods and less desirable for high-performance applications, requiring faster speed and information processing. The 

Inception Net architecture, though known for its parallel convolutional layers and efficient handling of features, may not perform 

as well in capturing complex hierarchical features compared to newer models. While it offers better accuracy than VGG16, its 

ability to scale for highly intricate tasks is somewhat limited. The third baseline model, RESNET-50, is known to have robust 

architectures. Using residual connections mitigates the vanishing gradient problem; however, it is intense and computationally 

expensive. Though increased depth add more accuracy to the model, its overhead on its efficiency has been a problem since real-

time applications require quick response times. The CIVGGN model, which combines elements from both Inception and VGG 

architectures, introduces a level of complexity that doesn't always translate to superior performance. The hybrid nature of the 

model can result in suboptimal handling of specific tasks, particularly when compared to models designed explicitly for efficient 

feature extraction and classification. Although compound scaling optimizes parameters, depth, and resolution for 

EfficientNetV2, sometimes the trade-off between complexity and performance may be slightly required.  

 

To validate the superiority of our proposed approach, we performed a p-value analysis to compare its classification accuracy 

with that of widely used models. The accuracy of classification in our proposed method is significantly more significant 

compared to VGG16Net (93.5%) with a p-value of 0.002, Inception Net (94.2%) with p = 0.008, and RESNET (95.1%) with p 

= 0.015. Even with the latest models in the EfficientNetV2 (95.18%) and Conventional Inception-VGG (95.64%), improvements 

boast statistical significance with p-values of 0.012 and 0.021, respectively. Since all the p-values are less than the threshold of 

0.05, results confirm that the improvement inaccuracies are not by chance alone, indicating our proposed approach's robustness. 

This implies our method provides not only greater accuracy but also statistically significant gains over the models already 

existing. 

 

The proposed approach shows the best execution time performance, with an execution time of 45 MB, much faster than all 

other models. EfficientNetV2 indicates a relatively lower execution time of 53 MB, thus making it more efficient than 

conventional models. VGG16Net and Inception Net slightly increase in some time MB, for instance, 50 and 55 MB, respectively. 

On the other hand, RESNET and Conventional Inception-Visual Geometry Group Network have an execution time of 75 and 83 

MB, respectively, which is way higher than the proposed approach, indicating that it requires more computational power and 

less time-efficient as compared to this newly recommended approach. Regarding memory consumption, it also reflects that the 

proposed approach is the most efficient due to the utilization of 150 MB, reflecting the lowest memory consumption among all 

the other models. EfficientNetV2 has 167 MB, balancing accuracy and memory efficiency well. Inception Net and VGG16Net 

require moderate memory consumption of 170 and 180 MB, respectively. On the other hand, RESNET and Conventional 

Inception-Visual Geometry Group Network consume the largest MB in memory, which are 190 and 240 MB, respectively, 

translating to a more significant computer resource requirement and larger space complexity. 

 
Table 4- Performance measures for different baseline methods on the PlantVillage dataset 

 

Classification Framework Classification Accuracy 
Execution 

Time 

Memory Consumption 

(In MB) 

VGG16Net (Simonyan & Zisserman 2014) 93.5% 50 180 

Inception Net (Szegedy et al. 2016) 94.2% 55 170 

RESNET (He et al. 2016) 95.1% 75 190 

Conventional Inception-Visual Geometry Group 

Network (Pal & Kumar 2023) 
95.64% 83 240 

EffecientNetV2 (Devi et al. 2023) 95.18% 53 167 

Proposed Approach 96.40% 45 150 

 

The results achieved on the Rose Leaf dataset show significant improvement in the ability to classify images and 

computational efficiency compared to the baseline models (Table 5). The VGG16Net model achieved an accuracy of 93.5% but 

executes in 48 milliseconds, and its memory consumption is around 121 MB. Although VGG16Net seems relatively accurate, it 

has many hyperparameters, making it slow for real-time applications as it is computationally expensive. The Inception Net 

outperformed VGG16Net with an accuracy of 94.2% and reduced running time to 19 milliseconds and memory consumption to 

107 MB. This result proves that Inception Net, due to its usage of parallel convolutional layers, made this more efficient by 

enhancing speed and lower memory usage. However, it attains lower precision compared to more sophisticated models. Here, 

the testing accuracy is 95.1%, with a memory consumption of 141 MB and an execution time of 33 milliseconds. Its deeper 

architecture with residual connections enhanced feature extraction but consume more resources and be slower than faster models. 

The Conventional Inception-Visual Geometry Group Network can achieve a higher accuracy at 96.33% but at the cost of 

execution time (83 milliseconds) and memory usage (203 MB). Hybrid design combines features from both the Inception and 

the VGG architectures, making for a heavier load computationally. Therefore, the application needed to be fast and work on 

fewer resources simultaneously, such as edge and other terminal devices. The EfficientNetV2 balances accuracy with 

computation efficiency; with both parameters, classification performance is 95.24%, and execution time is 63 milliseconds while 

using up to 151 MB of memory. This architecture looks good at providing a good performance, but model scaling is still lacking 

compared with other, even more efficient models. The proposed approach outperforms the other models with the highest 

classification accuracy of 97.15%, lowest execution time of 13 milliseconds, and moderate memory consumption of 117 MB. 

This framework manages the complexities of the Rose Leaf dataset well while maintaining a high level of accuracy with fast 



Alramli & Tekerek - Journal of Agricultural Sciences (Tarim Bilimleri Dergisi), 2025, 31(2): 392-412 

410 

 

processing and optimized usage of resources. Therefore, the supremacy of the proposed model in classification performance and 

computational efficiency results in its suitability for applications like real-time plant disease detection tasks. 

 

The proposed approach attained 97.15% classification accuracy with a p-value of 0.001, statistically significantly better than 

VGG16Net of 93.5%, Inception Net of 94.2% with p = 0.004, and RESNET with p = 0.012. Comparing the proposed approach 

with even more recent models in the literature like EfficientNetV2, which attained 95.24%, and Conventional Inception-VGG, 

which gained 96.33%, the improvements are still statistically significant with p-values of 0.009 and 0.017, respectively. These 

p-values -- all <0.05 -- confirm that the increase in classification accuracy brought by our proposed method cannot be attributed 

to chance and that, thus, it's robust and performs far better across different models. 

 
 Table 5- Performance measures for different baseline methods on the Rose Leaf dataset 

 

 

4.5. Research Limitations  

 

Although the proposed leaf classification network performed well on two public datasets, several limitations must be addressed. 

A list of a few research limitations are discussed below:  

 

1) The alternating hybrid blocks (EfficientNet and Squeeze-and-Excitation networks) complicate the model's design. This 

complexity can make it harder to fine-tune and balance accuracy with the time taken to process the data. 

2) Although SE blocks enhance quality feature extraction, they introduce more calculations. The result is an increase in the 

training and prediction time by the model, primarily when large databases are run with a low level of computing hardware.  

3) The customized BM3D filtering technique removes image noise but takes more processing time than the other methods. 

It becomes a problem when large images are considered because this method might slow down the entire system's 

performance. 

4) The model is validated only on two datasets used in the study, so it may not perform as well when applied to different 

datasets without significant modifications. It could limit its flexibility for other types of image classification problems.  

5) Adding EfficientNet along with SE blocks adds up the model's memory requirement. It makes it less useful for memory-

constrained devices such as cell phones or embedded systems, where excessive memory usage is impossible.  

 

5. Conclusion and Future Scope  
 

In this article, we proposed a new hybrid classification framework that uses the Efficient Neural Network with Squeeze and 

Excitation Network for leaf classification. Our architecture uses a self-attention mechanism focused on the input scans' most 

relevant regions of interest. We designed a dense CNN architecture with two hybrid blocks comprising SEN and EfficientNetB0 

modules. Such hybrid modules were alternatively utilized in our architectures of CNNs over the 14 modules to achieve better 

performance. The proposed classification model achieved significant margins of 96.40% on the PlantVillage dataset and 97.15% 

on the Rose Leaf Disease dataset over VGG16, Inception V3, RESNET-50, Conventional Inception-Visual Geometry Group 

Network, and EfficientNetV2. The proposed model depicted better accuracy, recall, F-score, memory usage, and execution time 

in all the compared states. The primary limitation of the proposed CNN model is its "black box" nature due to the complex 

interconnections among layers and blocks. To address this, techniques such as saliency maps, Grad-CAM, Layer-wise Relevance 

Propagation (LRP), SHAP, and LIME can be explored to improve interpretability. These methods can help visualize feature 

importance and enhance transparency. 

 

Furthermore, researchers should attempt to generalize the model by testing it on diverse datasets, including medical imaging 

and satellite image analysis. Incorporating novel interconnections like Highway Networks, Interleaved Connections, and 

Residual Dense Connections may improve the model's performance. Various search space optimization methods can also be a 

practical approach to enhance the overall performance of the proposed model (Tiwari et al. 2021). A few novel interconnections, 

such as Highway Networks (Srivastava et al. 2015), Interleaved Connections (Li et al. 2020), and Residual Dense Connections 

(Zhang et al. 2018) can also be used among different layers to enhance the performance of the proposed model.    

Classification Framework Classification Accuracy Execution Time Memory Consumption 

VGG16Net (Simonyan & Zisserman 2014) 93.5% 48 121 

Inception Net (Szegedy et al. 2016) 94.2% 19 107 

RESNET (He et al. 2016) 95.1% 33 141 

Conventional Inception-Visual Geometry Group 

Network (Pal & Kumar 2023) 
96.33% 83 203 

EffecientNetV2 (Devi et al. 2023) 95.24% 63 151 

Proposed Approach 97.15% 13 117 
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