

Journal of Applied Biological Sciences 9 (2): 68-76, 2015 ISSN: 1307-1130, E-ISSN: 2146-0108, www.nobel.gen.tr

Determining of Some Cell Wall Compenents on Alfalfa's Cultivars in Central Anatolian Conditions

Nurdan SAHIN DEMIRBAG¹* Uğur OZKAN¹ Hayrettin EKIZ¹ ¹University of Ankara, Faculty of Agriculture, Department of Field Crops, Dıskapı, Ankara, Turkey

*Corresponding author:	Received: July 05, 2015
E-mail: nsahin@agri.ankara.edu.tr	Accepted: August 17, 2015

Abstract

Alfalfa (*Medicago sativa* L.) maturity at the time of harvest greatly influences forage quality. The main objective of this research was investigation on effects of phenological stages (five diffrent stage times) on values of forage quality indices of Alfalfa. Bilensoy, Kayseri, Gozlu and Plato cultivars (dormant), Elçi, Mırna, MA-414 and Posovina (non-dormant) cultivars of Alfalfa were used as materials. Samples were collected from Reseach Field of Ankara University in Ankara. They were dried, grained and analyzed in Laboratory. The results showed that forage quality indices values including forage acid detergent fiber (ADF), neutral detergent fiber (NDF) and total digestible nutrients (TDN), dry matter intake (DMI), digestible dry matter (DDM) and relative feed value (RFV) were significantly differed culture variety and five different stage times P<0.01). For all culture variety DMI, DDM, TDN decreased and ADF, NDF, increased with plant growth development. Considering forage quality indices values among tree culture variety, Bilensoy had highest forage quality. Among life forms, forbs, higher forage quality obtained from forbs. In terms of growth stage, vegetative growth stage had better forage quality.

Keywords: Forage quality, growth stage, crude protein, acid detergent fiber, dry matter digestibility.

INTRODUCTION

Alfalfa, the queen of forages, is the main legume used for livestock feed in Turkey. Alfalfa is one of the most commonly used legumes for both hay and pasture in Turkey because of its high yield, high nutritional quality, ability to fix nitrogen, and vigorous fall regrowth [1].

Forage quality, and therefore ruminal degradability, is influenced by several factors, with the most important stage of maturity of forage, forage species, environmental effects (location in combination with temperatures and precipitation), agronomic management, site of growth, and processing such as treatment and preservation [2, 3, 4]. Alfalfa maturity plays a large role in the quality of harvested forage. The inverse relationship of advancing alfalfa maturity and declining forage quality is well established [5, 6, 7].

Fall Dormancy (FD) of the variety is an important predictor of quality. More dormant varieties were almost always higher in quality. Cutting frequency (CF), phenological stages of alfalfa is a critical factor influencing both productivity and persistence [8], but there is a lack of knowledge of how alfalfa cultivars with contrasting fall dormancy (FD) respond to CF. FD is defined as the reduction in shoot growth in the autumn due to decreasing temperatures and day length [9] and it is a useful trait that defines alfalfa adaptation to different regions. Dormant cultivars have reduced shoot elongation and decumbent shoot orientation in autumn and are very winter hardy [10]. Non-dormant cultivars have extensive shoot elongation with a vertical orientation in autumn and generally poor winter survival. Non-dormant cultivars are desirable because of higher shoot growth rates and faster maturity after cutting when compared to dormant cultivars [11, 12]. Therefore non-dormant cultivars could result in higher forage yield, and historically there has been interest in using less fall-dormant cultivars in regions with mild winters [13]. These FD-related differences in shoot growth rate and maturity might influence how alfalfa cultivars with contrasting FD respond to CF. Understanding the FD \times CF interaction is very important to refine management and cutting schedule of cultivars differing in FD.

This research was undertaken to; the change of the forage quality in different phenological stages alfalfa cultivars which have different levels of dormancy is handled.

MATERIAL AND METHODS

The Research was carried out at University of Ankara, Faculty of Agriculture, experimental field of the Department of Field Crops that has altitude 860 m and lies between 39° 57' north latitude and the 32 ° 52' east Longitude.

In the research, which is carried out in the field of investigation of field crops, in Ankara University Faculty of Agriculture, eight cultivars of alfalfa are used. These cultivars are divided in two and they are dormant and nondormant cultivars. Dormant cultivars are; Bilensoy, Kayseri, Gözlü and Plato cultivars. Non-dormant cultivars are; Elçi, Mırna, Ma-414 and Posovina cultivars. Dormant cultivars are suitable for winter, while non-dormant cultivars are suitable for summer. These cultivars were named by numbers between 1 to 8 in all figures and tables. They were determined as 1: Bilensoy, 2: Gözlü, 3: Kayseri, 4: Plato, 5: Elçi, 6: Ma-414, 7: Mırna, 8: Posovina.

The average temperature during experimental season was 13.3 °C. The long year's average of mean yearly temperature was 12 °C. According to rainfall distribution of long years, 2007 has been dry and 2008 has been very dry as well. The soil of research area has clay and loamy structure. According to the analysis, the sample of soil had high-alkali and mid-calcareous structure. It was rich in potassium (192 kg da-1), total salt content in soil is 61%, poor in nitrogen (0.145%) and phosphorus (5.52 kg da-1) and insufficient in organic matter (1.05%) [14]. Meteorological values of the experimental area are presented in Table 1, 2 and 3.

The material used in the research was planted as 3 repetition in testing pattern of Coincidence Parcel in 10 March 2005. Parcel area is 5 m x 3.5 m = 17.5 m2. In each parcel 5 lines were placed in the manner that there is 70 cm in spaces. Seeds were planted by hand in the manner that 3 kg Alfalfa seeds were in one – tenth of a hectare. It is presented in table 4, phenological stages and cutting dates are indicated.

In these periods, grass samples representing 500 gr were taken from each sort and dried under 70 C for 24 hours until it reaches its constant weight. Dried samples were ground in 3 mm sieve and prepared to make their fiber analysis.

ADF, NDF

In this study, filter bag method was used in determining the cell wall components of coarse fodder, such as NDF and ADF. In the NDF analysis of coarse fodder used as research material, coarse fodder samples were weighed between 0.5-0.8 g, put into tare taken filter bags and the mouth of the bags were closed by pressing the heater. The bags on a plastic holder were placed in Ankom Fiber tank, 2 lt NDF solution (NDF solution includes: Ankom Neutral Detergent Dry powder – Ankom FND20C, Triethylene Glycol) and Alfa Amilaz were added into the tank and boiled at 100 °C for 75 min. After boiling, the solution in the tank was discharged, the filter washed in hot pure water 2 or 3 times were taken plastic holder and washed in acetone for 3-5 min to remove the oil in coarse fodder. After washing process in acetone was repeated 2-3 times, the bags were dried first in ambient temperature for about 1 hour, then at 105 °C for a night. Then the bags were weighed and %NDF components of the coarse fodder was calculated.

In the ADF analysis of coarse fodder according to the filter bag, like in NDF analysis, the bags weighed and placed on plastic holder have been placed in the tank. 2 It ADF solution (ADF solution includes: Ankom Acid Detergent Dry powder "CTAB" - Ankom FAD20C, 1N H2SO4) have been added into the tank and boiled at 100 °C for 60 min. After boiling process, the bags have been washed in the same way, weighed after dried, and %ADF components of the coarse fodder has been calculated.

TDN, DMI, DDM and RFV

The values are an indication of hay yield, total digestible nutrients (TDN), dry matter intake (DMI), digestible dry matter (DDM) and relative feed value (RFV), and were obtained following formulas by estimation method [15];

TDN = (-1.291 x ADF) + 101.35

DMI = 120% NDF % dry matter basis

DDM = 88.9-(0.779 x ADF % dry matter basis)

RFV = DDM% x DMI% x 0.775

Samples were analyzed for contents of ADF and NDF [16, 17]. The RFV is calculated based on the two laboratory determined parameters, NDF and ADF levels in a forage.

 Table 1. Precipitation and Temperature for 1975-2008

	Jan.	Feb.	Mar.	Apr.	May.	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec
Precipitation mm	41.8	36.9	38.7	49.0	51.2	35.4	14.5	10.9	18.5	30.2	33.9	46.9
Temperature °C	0.3	1.8	6.1	11.3	16.1	20.2	23.5	23.3	18.7	13.1	7.1	2.7

Reference: General Directorate of State Meteorology Affairs, Monthly Climatologic Observation Scale (Anonymous 2009b

Table 2. Precipitation, mm (2007-2008)

	Jan.	Feb.	Mar.	Apr.	May.	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec
2007	39.0	16.4	37.5	23.8	17.9	31.7	3.9	9.8	0.0	19.7	66.7	44.4
2008	20.1	6.5	54.9	32.7	45.4	10.3	0.0	0.7	61.6	18.6	43.6	28.8
Reference: C	Reference: General Directorate of State Meteorology Affairs, Monthly Climatologic Observation Scale (Anonymous 2009b											

Table 3. Temperature, °C (2007-2008)

	Jan.	Feb.	Mar.	Apr.	May.	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec
2007	1.2	2.5	7.3	9.6	21.0	23.1	27.3	26.7	21.2	14.4	6.8	2.0
2008	-3.9	0.2	10.3	14.0	16.0	22.3	25.2	27.2	20.1	13.3	8.7	2.1

Reference: General Directorate of State Meteorology Affairs, Monthly Climatologic Observation Scale (Anonymous 2009b).

Table 4. Phenological Stages of Alfalfa (<i>Medicago sativa</i>) (2007-2008)

1 rd Year	2 rd Year	Phenological Stages			
April 14, 2007	April 18, 2008	Vegetative, young growth			
April 30, 2007	April 25, 2008	young growth; formation of flower Pre-buds			
May 09, 2007	May 02, 2008	end of flower budding up to beginning of blooming			
May 11, 2007	May 14, 2008	beginning of blooming (1/10 Bloom)			
June 13, 2007	June 13, 2008	beginning of blooming up to full blooming			

The NDF has been used as an indicator of forage intake because it takes into account all fiber components (lignin, cellulose and hemicellulose), the ADF has been used as an indicator of digestibility since it includes cellulose and lignin. Thus together, ADF and NDF take into account the most important traits of a forage, intake potential and digestibility, and are used to calculate RFV.

In experiment, there are 2 levels for year and 5 level for stage times. Properties obtained by the study were considered with analysis of variance in factorial order (SPSS.20) and Duncan's or LSD test was used to determine difference among the means of the different groups at P<0.05 and 0.01 levels of significance.

RESULT AND DISCUSSION

Acid Detergent Fiber (ADF)

In table 5, the inclination which is observed in ADF rate has occurred in a similar way with the NDF rate. In both experiment years, while Bilensoy cultivar has the minimum ADF rate with 25.385% and 25.778% in the first

stage, an increase of ADF rates in all alfalfa cultivars is observed as the plant grows up. The maximum ADF rates have been reached in Plato cultivar with 35.297% in the fifth stage in 2008.

ADF and NDF responded similarly to CP, but in the opposite direction, with values increasing with increased FD score. Late stage time were dramatically higher in ADF than early or medium stage time. Non dormant varieties always had higher fiber concentration than the more dormant varieties (FD 3-4-5). Similar to the results for protein, Fall Dormancy of the variety had a greater effect in the early and mid-stage times compared with the late times [18].

The ADF concentration refers to the cell wall portions of the forage. These portions consist of cellulose and lignin. The ADF values are important because they describe the ability of an animal to digest the forage. As the ADF increases, the digestibility of the forage usually decreases [19]. The least digestible plant components, including cellulose and lignin. ADF values are inversely related to digestibility, so forages with low ADF concentrations are.

Years	Cultivars	1 rd stage	2 rd stage	3 rd stage	4 rd stage	5 rd stage
	1.Bilensoy	25.385±0.25 Cd _a	25.955±0.16 Cd _b	27.875±0.07 Cc _a	29.618±0.18 Eb _a	32.875±0.30 Ca _b
2007	2. Gözlü	25.875±0.17 BCd _a	26.450±0.18 Cd _b	28.288±0.23 Cc _a	31.012±0.18 Bba	33.412±0.23 BCa _a
(D)	3. Kayseri	26.175±0.21 Bd _a	26.425±0.14 Cd _b	28.350±0.32 Cc _a	30.070±0.21 DEb _b	33.138±0.13 BCa _b
	4. Plato	27.295±0.20 Ae _b	28.455±0.18 Ad _a	30.358±0.29 Ac _a	32.045±0.30 Ab _a	34.895±0.29 Aa _a
	5.Elçi	25.657±0.08 BCd _a	26.150±0.13 Cd _b	28.038±0.16 Cc _a	30.588±0.07 BCDb _a	32.925±0.13 Ca _b
2007	6. MA 414	26.025±0.20 BCe _b	27.185±0.18 Bd _a	29.087±0.29 Bc _a	30.775±0.30 BCb _a	33.625±0.30 Ba _a
(ND)	7. Mırna	26.295±0.21 Bd _a	26.545±0.14 Cd _a	28.470±0.32 BCc _a	30.190±0.21 CDEb _a	33.258±0.13 BCa _a
	8.Posovina	27.015±0.20 Ae _b	28.175±0.18 Ad _a	30.078±0.29 Ac _a	31.765±0.30 Ab _a	34.615±0.30 Aa _a
	1.Bilensoy	25.778±0.14 Ee _a	26.727±0.14 Cd _a	28.00±0.12 Dc _a	30.185±0.18 CDb _a	33.588±0.41 Ca _a
2008	2. Gözlü	26.458±0.13 BCDe _a	$27.652{\pm}0.17~Bd_a$	28.475±0.19 CDc _a	30.487±0.27 BCb _a	33.975±0.27 BCa _a
(D)	3. Kayseri	26.380±0.19 CDEe _a	27.600±0.13 Bd _a	28.625±0.20 BCDc _a	30.913±0.21 Bb _a	34.313±0.18 Ba _a
	4. Plato	28.335±0.21 Ad _a	28.585±0.14 Ad _a	30.510±0.32 Ac _a	32.230±0.21 Ab _a	35.297±0.13 Aa _a
	5.Elçi	26.028±0.12 DEe _a	27.318±0.18 BCd _a	28.050±0.05 Dca	29.738±0.25 Db _b	33.803±0.33 BCa _a
2008	6. MA 414	27.065±0.21 Bd _a	27.315±0.13 BCd _a	29.240±0.32 Bc _a	30.960±0.21 Bb _a	34.028±0.13 BCa _a
(ND)	7. Mırna	26.885±0.21 BCd _a	27.135±0.14 BCd _a	29.060±0.32 BCc _a	30.780±0.21 BCb _a	33.847±0.13 BCa _a
	8.Posovina	26.930±0.20 Ae _b	28.014±0.18 Ada	29.642±0.29 Ac _a	30.820±0.30 Ab _a	33.212±0.30 Aa _a

Table 5. Multiple comparisons results related to subgroups of years x stage time x cultivars in terms of ADF value.

Capital letters were used in comparing cultivars in subgroups of year x stage time. (P<0.05) D: Dormant cultivars Small letters were used in comparing stage time in subgroups of year x cultivars. (P<0.05 ND: Non-dormant cultivars Subscripts were used in comparing years in subgroups of cultivars x stage time. (P<0.05)

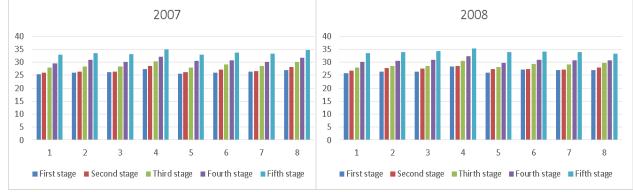


Figure 1. ADF's range of alfalfa cultivars and five different phenological stages in 2007-2008

Neutral Detergent Fiber (NDF)

In table 6, it is observed that the ternary interaction of year x stage time x cultivars is important statistically. It is determined that, there is a positive correlation between alfalfa maturement and NDF increase in both experiment years. In 2007 and 2008 experiment years, Plato cultivar has reached the top rate with 46.388% and 45.985% in the fifth stage. On the other hand, the minimal NDF rate has been measured in Posovina cultivar with 35.523% in the first stage in 2007.

Neutral detergent fiber values are important in ration formulation because they reflect the amount of forage that the animal can consume. As the NDF percentages increase, the dry matter intake will generally decrease. In general, low NDF values are desired because NDF increases as forages mature [19].

The timing of spring forage harvest is critical for obtaining optimal quality for animal production. For forage that serves as the primary fibre source in the diet, NDF is the principal forage quality variable of concern [20]. Some predictive equations can be used to estimate the forage quality of lucerne, assisting the producers in decision making at harvest time. An increased amount of NDF, ADF and ADL within the observed stages is in accordance with Coblentz et al. [21] and Elizalde et al. [22], Rinne et al. [23] observed an increasing content of NDF with increasing maturity of forage.

Dry Matter Intake (DMI)

As it is seen in the table 7, the binary interaction of year x stage time is remarkable in the level 5% statistically. Even if cultivar diversity has not been considered important, in 2007, the first year of investigation, Posovina cultivar had the maximum DMI rate, which is 3.378, has been obtained in the first stage. Plato cultivar had the minimum DMI rate, which is 2.587, has been measured during the fifth stage in 2008.

Table 6. Multiple c	omparisons resul	lts related to subgroup	os of years x sta	ge time x cultivars in	terms of NDF value

Years	Cultivars	1 rd stage	2 rd stage	3 rd stage	4 rd stage	5 rd stage
	1.Bilensoy	35.633±0.17Deb	$36.447 \pm 0.10 \text{ Dd}_{b}$	38.815±0.10 Fc _b	42.325±0.14 BCb _b	44.625±0.31 Da _b
2007 (D)	2. Gözlü	37.767±0.08 Be _a	38.395±0.13 Bdb	40.207±0.23 Вс _b	42.780±0.10 ABb _a	45.113±0.07 BCa _b
	3. Kayseri	36.473±0.17 Ceb	37.287±0.10 Cd _b	39.655±0.10 CDc _b	43.165±0.14 Ab _b	45.465±0.31 Ba _b
	4. Plato	38.385±0.20 Ae _b	39.545±0.10 Ad _a	41.447±0.29 Ac _a	43.135±0.30 Ab _a	45.985±0.30 Aa _a
	5.Elçi	$37.638{\pm}0.08~{\rm Be}_a$	38.130±0.13 Bdb	40.017±0.16 BCc _a	42.567±0.07 BCb _a	44.905±0.13 CDa _b
2007	6. MA 414	36.698±0.08 Ce _a	37.325±0.13 Cd _b	39.137±0.23 EFcb	41.710±0.10 Db _a	$44.043 \pm 0.07 Ea_b$
(ND)	7. Mırna	36.362±0.17 Ce _b	37.178±0.10 Cd _b	39.545±0.10 DEc _b	43.055±0.14 Ab _b	45.355±0.30 BCa _b
	8.Posovina	35.523±0.17 Deb	36.337±0.18 Ddb	38.705±0.10 Fc _b	42.215±0.14 Cb _b	44.51±0.31Da _b
	1.Bilensoy	36.483±0.17 De _a	37.297±0.10 Dd _a	39.665±0.10 DEc _a	43.175±0.14 Bb _a	45.475±0.31 DEa _a
2008	2. Gözlü	38.138±0.12 Be _a	39.718±0.18 Ad _a	41.190±0.17 Ac _a	41.847±0.25 Cb _b	45.912±0.33 BCDa _a
(D)	3. Kayseri	37.322±0.17Ce _a	38.137±0.15 Cd _a	40.505±0.10 Bc _a	44.015±0.14 Ab _a	46.315±0.31 ABa _a
	4. Plato	39.425±0.21 Ad _a	39.675±0.10 Ad _a	41.600±0.32 Ac _a	43.320±0.21Bba	46.388±0.13 Aa _a
	5.Elçi	38.008±0.12 Be _a	39.297±0.10 Ada	40.030±0.05 CDc _a	41.717±0.25 Cb _b	45.782±0.33 CDEa _a
2008	6. MA 414	37.067±0.12 Ce _a	$38.648{\pm}0.10~Bd_a$	40.120±0.17 BCDc _a	40.777±0.25 Db _b	44.842±0.33 Fa _a
(ND)	7. Mırna	37.212±0.17 Ce _a	38.027±0.15 Cd _a	40.395±0.10 BCc _a	43.905±0.14 Ab _a	46.205±0.31 ABCa _a
	8.Posovina	36.373±0.17 De _a	37.188±0.14 Dd _a	39.555±0.10 Ec _a	43.065±0.14Bb _a	45.365±0.31 Ea _a

Capital letters were used in comparing cultivars in subgroups of year x stage time. (P<0.05) D: Dormant cultivars Small letters were used in comparing stage time in subgroups of year x cultivars. (P<0.05) ND: Non-dormant cultivars Subscripts were used in comparing years in subgroups of cultivars x stage time. (P<0.05)

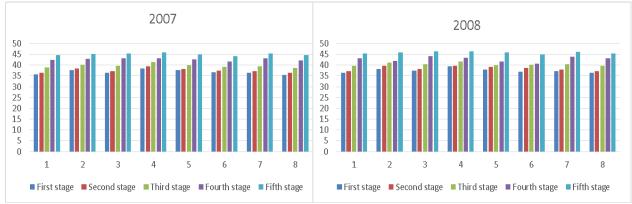


Figure 2. NDF's range of alfalfa cultivars and five different phenological stages in 2007-2008.

Years	Cultivars	1 rd stage	2 rd stage	3 rd stage	4 rd stage	5 rd stage
	1.Bilensoy	3.367±0.016 Aa _a	3.293±0.009 Aba	3.092±0.008 Bc _a	2.835±0.009 ABda	2.689±0.018 ABCe _a
2007 (D)	2. Gözlü	3.177±0.007 Ca _a	3.126±0.011 Cb _a	2.985±0.017 Ac _a	2.805±0.007 BCd _b	2.660±0.004BCDe _a
	3. Kayseri	3.290±0.015 Ba _a	3.218±0.009 Bba	3.026±0.007 CDc _a	2.780±0.009 Cd _a	2.640±0.017 DEe _a
	4. Plato	3.127±0.016 Da _a	3.035±0.014 Dba	2.896±0.020 Ec _a	2.782±0.019 Cd _a	2.609±0.017 Ee _a
	5.Elçi	3.188±0.007 Ca _a	3.147±0.011 Ca _a	2.999±0.012 Db _a	2.819±0.005BCc _b	2.672±0.008 BCDd _a
2007	6. MA 414	3.270±0.007 Ba _a	3.215±0.011 Bb _a	3.066±0.018 BCc _a	2.877±0.007 Ad _b	2.724±0.004 Ae _a
(ND)	7. Mırna	3.30±0.015Ba _a	3.228±0.009 Bb _a	3.035±0.008 CDc _a	2.787±0.009 Cd _a	2.646±0.018 CDEe _a
	8.Posovina	3.378±0.016 Aa _a	3.302±0.009 Ab _a	3.100±0.008 Bc _a	2.842±0.009 ABda	2.696±0.019 ABe _a
	1.Bilensoy	3.290±0.015 Aa _b	3.217±0.009 Ab _b	3.025±0.007 Ac _b	2.780±0.009 Cd _b	2.639±0.018 ABCeb
2008	2. Gözlü	3.147±0.010 Ca _a	3.022±0.011 Db _b	2.914±0.012 Cc _b	2.867±0.017 Bc _a	2.614±0.019 BCDd _b
(D)	3. Kayseri	3.215±0.014 Ba _b	3.147±0.008 BCbb	2.963±0.007 Bc _b	2.726±0.008 Dd _b	2.591±0.017 De _b
	4. Plato	3.044±0.016 Da _b	3.025±0.011Da _a	2.885±0.023 Cb _a	2.770±0.014 CDc _a	2.587±0.007 Dd _a
	5.Elçi	3.157±0.010 Ca _a	3.054±0.014 Db _b	2.998±0.003 ABc _a	2.877±0.017 Bd _a	2.622±0.019 BCDe _b
2008	6. MA 414	3.237±0.011 Ba _a	3.105±0.012 Cb _b	2.991±0.013 ABcb	2.943±0.018Ad _a	2.677±0.020 Ae _a
(ND)	7. Mırna	3.225±0.014 Ba _b	3.156±0.008 Bbb	2.971±0.007 Bc _b	2.733±0.008 Dd _b	2.598±0.017CDe _b
	8.Posovina	3.299±0.015 Aa _b	3.228±0.009 Ab _b	3.034±0.008 Ac _b	2.786±0.009 Cd _b	2.645±0.018 ABe _a

Table 7. Multiple comparisons results related to subgroups of years x stage time in terms of DMI value

Capital letters were used in comparing cultivars in subgroups of year x stage time. (P<0.05) Small letters were used in comparing stage time in subgroups of year x cultivars. (P<0.05) Subscripts were used in comparing years in subgroups of cultivars x stage time. (P<0.05)

D: Dormant cultivars ND: Non-dormant cultivars

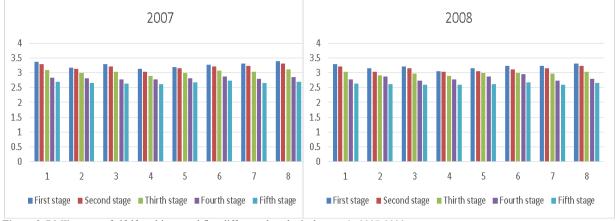


Figure 3. DMI's range of alfalfa cultivars and five different phenological stages in 2007-2008.

Digestible Dry Matter (DDM)

As is seen in the table 8, the binary interaction of year x stage time and DDM can be considered as remarkable statistically in the level of 5%. Whereas the maximum DDM rate, which is 69.125%, has been obtained in Bilensoy cultivar in the first stage of 2007, the minimum DDM rate, which is 61.403% has been obtained in Plato cultivar in the fifth stage of 2008.

Total Digestible Nutrients (TDN)

In table 9, the ternary interaction of year x cultivars x stage time on TDN value, which is 5% has been found remarkable, as it is seen on DDM value statistically. While the maximum Maximum TDN rate, which is 68,578%, has been obtained in Bilensoy cultivar in the first stage of 2007, the minimum TDN rate, which is 55.781% has been obtained in Plato cultivar in the fifth stage.

Years	Cultivars	1 rd stage	2 rd stage	3 rd stage	4 rd stage	5 rd stage
	1.Bilensoy	69.125±0.192 Aa _a	68.681±0.127 Aa _a	67.185±0.052 Ab _a	65.828±0.136 Ac _a	63.290±0.231 Ad _a
2007 (D)	2. Gözlü	68.743±0.130 ABa _a	68.295±0.143 Aa _a	66.864±0.180 Ab _a	64.741±0.143 Dc _a	62.872±0.179ABd _a
	3. Kayseri	68.510±0.163 Ba _a	68.315±0.108 Aa _a	66.815±0.249 Ab _a	65.475±0.166 ABc _a	63.086±0.100 ABd _a
	4. Plato	67.637±0.153 Ca _a	66.734±0.143 Cb _a	65.252±0.224 Cc _a	63.937±0.232 Ed _a	61.717±0.232 Ce _a
	5.Elçi	68.913±0.063 ABa _a	68.529±0.103 Aa _a	67.059±0.123 Ab _a	65.072±0.533 BCDc _b	63.251±0.099 Ad _a
2007	6. MA 414	68.627±0.153 ABa _a	67.723±0.143 Bb _a	66.241±0.224 Bc _a	64.926±0.232 CDd _a	62.706±0.232Be _a
(ND)	7. Mırna	68.416±0.163 Ba _a	68.221±0.108 Aa _a	66.722±0.249 Ab _a	65.382±0.166 ABCc _a	62.992±0.100 ABd _a
	8.Posovin a	67.855±0.153 Ca _a	66.952±0.143Cb _a	65.470±0.224 Cc _a	64.155±0.232 Ed _a	61.935±0.232 Ce _a
	1.Bilensoy	68.819±0.113Aa _a	68.079±0.106 Ab _b	67.088±0.100 Ac _a	65.386±0.141 ABd _a	62.735±0.316 Ae _b
2008	2. Gözlü	68.290±0.101 ABa _a	67.359±0.128 Bb _b	66.718±0.150 ABc _a	65.150±0.214 BCd _a	62.433±0.211 ABe _a
(D)	3. Kayseri	68.350±0.149 ABa _a	67.400±0.104 Bbb	66.601±0.155 ABCc _a	64.819±0.160 Cd _b	62.171±0.143 Beb
	4. Plato	66.827±0.163 Ca _b	66.632±0.108 Ca _a	65.133±0.249 Db _a	63.793±0.166 Dc _a	61.403±0.100 Cd _a
	5.Elçi	68.625±0.100 Aa _a	67.620±0.139 ABbb	67.049±0.036 A _a	65.734±0.196 A _a	62.568±0.258 AB _b
2008	6. MA 414	67.816±0.163 Bab _b	67.622±0.108 ABa _a	66.122±0.249 Cb _a	64.782±0.166 Cc _a	62.393±0.100 ABd _a
(ND)	7. Mırna	67.957±0.163 ABa _a	67.762±0.108 ABa _a	66.262±0.249 BCb _a	64.922±0.166 BCc _a	62.533±0.100 ABd _a
	8.Posovin a	67.045±0.163 Ca _b	66.850±0.108 Ca _a	65.351±0.249 Db _a	64.011±0.166 Dc _a	61.621±0.100 Cd _a

Table 8. Multiple comparisons results related to subgroups of years x cultivars x stage time in terms of DDM

Capital letters were used in comparing cultivars in subgroups of year x stage time. (P<0.05) Small letters were used in comparing stage time in subgroups of year x cultivars. (P<0.05) Subscripts were used in comparing years in subgroups of cultivars x stage time. (P<0.05)

D: Dormant cultivars ND: Non-dormant cultivars

ND: Non-dormant cultivars

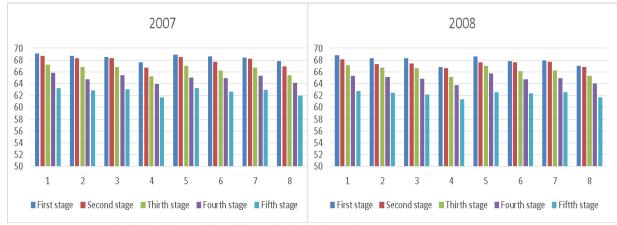


Figure 4. DDM's range of alfalfa cultivars and five different phenological stages in 2007-2008.

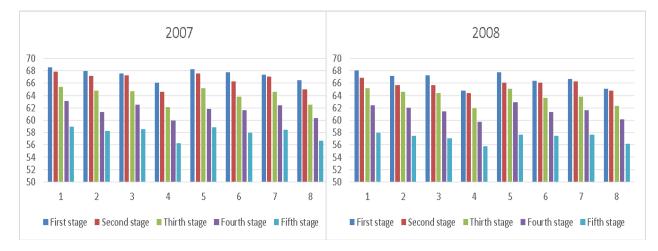
The TDN refers to the nutrients that are available for livestock. This variable is related to the ADF concentration of the forage. As ADF increases, TDN declines. As a result, animals are unable to utilize the nutrients that are present in the forage [15]. In the present study, pure alfalfa (56.64%) and binary mixtures of alfalfa + grasses had the highest TDN values (53.53 to 54.28%) whereas pure grasses had the lowest values (44.28 to 46.30%) (Average of two years) (Tab. 4).

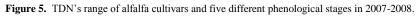
Relative Feed Value (RFV)

The RFV is an index that is used to predict the intake and energy value of forages. This index is derived from the DDM and dry matter intake DMI. Forages with an RFV value over 151, between 150-125, 124-103, 102-87, 86-75, and less than 75 are categorized as prime, premium good, fair, poor and rejected, respectively [24].

In table 10, the ternary interaction of year x cultivars x stage time on RFV value can be considered important in the level of 5%, as it is on both DDM and TDN value. While the maximum RFV value, which is 180.47%, has been obtained in Bilensoy cultivar in the first stage, the minimum RFV value, which is 123.14% has been obtained in Plato cultivar in the fifth stage of 2008.

The relative is not a direct measure of the nutritional content of forage, but it is important for estimating the value of forage [25].

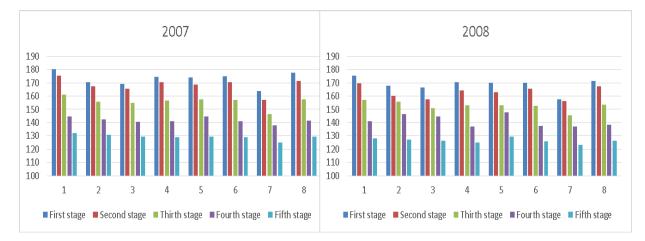

Years	Cultivars	1 rd stage	2 rd stage	3 rd stage	4 rd stage	5 rd stage
	1.Bilensoy	68.578±0.139 Aa _a	67.842±0.210 Aa _a	65.363±0.086 Ab _a	63.114±0.226 Ac _a	58.908±0.382 Ad _a
2007 (D)	2. Gözlü	67.945±0.215 ABa _a	67.203±0.237 Aa _a	64.831±0.299 Ab _a	61.313±0.238 Dc _a	58.214±0.296 ABd _a
	3. Kayseri	67.558±0.269 Ba _a	67.235±0.180 Aa _a	64.750±0.412 Ab _a	62.530±0.274 ABc _a	58.569±0.165 ABd _a
	4. Plato	66.112±0.253 Ca _a	64.615±0.238 Cb _a	62.158±0.371 Cc _a	59.980±0.384 Ed _a	56.301±0.384 Ce _a
	5.Elçi	68.226±0.105 ABa _a	67.590±0.171 Aa _a	65.154±0.203 Ab _a	61.862±0.088 BCDcb	58.844±0.164 Ad _a
2007	6. MA 414	67.752±0.253 ABa _a	66.254±0.238 Bb _a	63.798±0.371Bc _a	61.619±0.384 CDd _a	57.940±0.384 Be _a
(ND)	7. Mırna	67.403±0.269 Ba _a	67.080±0.180 Aa _a	64.595±0.412 Ab _a	62.375±0.274 ABCc _a	58.415±0.165 ABd _a
	8.Posovina	66.474±0.253 Ca _a	64.976±0.238 Cb _a	62.520±0.371 Cc _a	60.341±0.384 Ed _a	56.662±0.384 Ce _a
	1.Bilensoy	68.071±0.186 Aa _a	66.845±0.175 Ab _b	65.202±0.151 Ac _a	62.381±0.233 ABd _a	57.989±0.523 Ae _b
2008	2. Gözlü	67.193±0.167 BCDa _a	65.651±0.213 Bb _b	64.589±0.249 ABc _a	61.991±0.354 BCd _a	57.488±0.350 ABe _a
(D)	3. Kayseri	67.293±0.247 ABCa _a	65.718±0.173 Bb _b	64.395±0.256 ABCc _a	61.442±0.265 Cd _b	57.053±0.238 Be _b
	4. Plato	64.770±0.269 Ea _b	64.447±0.180 Ca _a	61.962±0.412 Db _a	59.741±0.274 Dc _a	55.781±0.165 Cd _a
	5.Elçi	67.748±0.160ABa _a	66.083±0.230 ABbb	65.137±0.060 Ac _a	62.959±0.324 Ad _a	57.711±0.428 ABeb
2008	6. MA 414	66.409±0.269 Da _b	66.086±0.180 ABa _a	63.601±0.412 Cb _a	61.381±0.274 Cc _a	57.420±0.165 ABd _a
(ND)	7. Mırna	66.641±0.269 Da _a	66.319±0.180 ABa _a	63.834±0.412 BCb _a	61.613±0.274 BCc _a	57.653±0.165 ABdb
	8.Posovina	65.131±0.269 Ea _b	64.808±0.180 Ca _a	62.323±0.412 Db _a	60.103±0.274 Dc _a	56.142±0.165 Cd _a

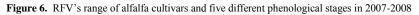

Table 9. Multiple comparisons results of years x cultivars x stage time subgroups in regard to TDN value.

Capital letters were used in comparing cultivars in subgroups of year x stage time. (P<0.05) Small letters were used in comparing stage time in subgroups of year x cultivars. (P<0.05) Subscripts were used in comparing years in subgroups of cultivars x stage time. (P<0.05)

D: Dormant cultivars

ND: Non-dormant cultivars




		75

Years	Cultivars	1 rd stage	2 rd stage	3 rd stage	4 rd stage	5 rd stage
2007 (D)	1.Bilensoy	180.47 Aa _a	175.30 Ab _a	161.02 Ac _a	144.69 Ad _a	131.96 ABe _a
	2. Gözlü	169.32 Da _a	165.47 Db _a	154.72 Cc _a	140.78 Bd _b	129.65 BCe _a
	3. Kayseri	174.74 Ca _a	170.43 Bb _a	156.74 BCc _a	141.11 Bd _a	129.10 Ce _a
	4. Plato	163.93 Ea _a	156.99 Eb _a	146.48 Dc _a	137.91 Cd _a	124.87 De _a
2007 (ND)	5.Elçi	170.33 Da _a	167.19 CDb _a	155.89 BCc _a	142.21 Bd _b	131.03 ABCe _a
	6. MA 414	173.96 Ca _a	168.79 BCb _a	157.47 Bc _a	144.80 Ad _b	132.44 Ae _a
	7. Mırna	175.03 Ca _a	170.70 Bb _a	156.96 BCc _a	141.27 Bd _a	129.22 Ce _a
	8.Posovina	177.71 Ba _a	171.40 Bb _a	157.36 Bc _a	141.38 Bd _a	129.45 BCe _a
2008 (D)	1.Bilensoy	175.49 Aa _b	169.80 Ab _b	157.34 Ac _b	140.88 Cd _b	128.36 ABeb
	2. Gözlü	166.57 Da _b	157.77 EFb _b	150.68 Dc _b	144.85 Bd _a	126.53 BCe _b
	3. Kayseri	170.37 BCa _b	164.40 CDb _b	152.96 CDc _b	137.00 Dd _b	124.89 CDe _b
	4. Plato	157.70 Ea _b	156.24 Fa _a	145.68 Eb _a	137.00 Dc _a	123.14 Dd _a
2008 (ND)	5.Elçi	167.97 CDa _a	160.08 Eb _b	155.81 ABc _a	146.60 ABd _a	127.16 ABCe _b
	6. MA 414	170.19 BCa _b	162.77 Db _b	153.32 BCDc _b	147.81 Ad _a	129.46 Ae _b
	7. Mırna	169.88 BCa _b	165.76 BCb _b	152.60 CDc _b	137.56 Dd _b	125.92 BCe _b
	8.Posovina	171.48 Ba _b	167.23 Bb _b	153.70 BCc _b	138.27 Dd _b	126.38 BCe _b

Table 10. Multiple comparisons results of years x cultivars x stage time subgroups in regard to RFV value.

Capital letters were used in comparing cultivars in subgroups of year x stage time. (P<0.05) D: Dormant cultivars Small letters were used in comparing stage time in subgroups of year x cultivars. (P<0.05) ND: Non-dormant cultivars Subscripts were used in comparing years in subgroups of cultivars x stage time. (P<0.05)

CONCLUSIONS

Phenological stages had a more powerful effect on both yield and quality than did variety. Choice of higher quality (low FD) varieties reduced but did not overcome the negative effect of late stage time on quality.

Cutting at the pre-bud and bud stage produces a higher quality forage than at later stages, but repeatedly cutting at early stages reduces root reserves which results in poor stands and lower yields. Cutting when regrowth at the crown appears and at one-tenth bloom maximizes forage yield, quality and benefits stand longevity. The last cutting of the year may determine how well the alfalfa performs the next year. The last cutting before fall dormancy should allow four to five weeks of growth so that root reserves are replenished.

Forage quality and stand persistence are affected by the stage times which is chosen. Cutting for high quality will reduce total season yield, so one must ensure that the high quality will produce a return to offset the yield loss. Early season growth may not flower normally and quality will decline if it doesn't. Therefore, using a forage quality stick (available from some state forage associations and some alfalfa seed marketing companies), or measuring forage height and plant stage (as described later) is crucial in determining when to do the first stage time in order to harvest alfalfa of the desired quality. The stage to cut alfalfa for optimum forage quality for dairy cattle ranges from the vegetative to early bud stage on first cutting and is generally at bud stage on later cutting. Later stages may be harvested for animal's nutritional requirements.

REFERENCES

[1] Acikgoz, E. 2001. Yem Bitkileri. Uludag Universitesi Guclendirme Vakfi Yayin No: 182. Vipas AS Yayin No: 58. 584pp. (Tr).

[2] Pozdišek, J. and Vaculova, K. 2008. Study of wheat (Triticum aestivum L.) quality for feeding ruminants using in vitro and in vivo methods. Czech Journal of Animal Science, 53, 253–264. ISSN 1212- 1819.

[3] Tyrolová, Y., Výborná, A. 2008. Effect of the stage of maturity on the leaf percentage of lucerne and the effect of additives on silage characteristic. Czech Journal of Animal Science, 53, 330–335.

[4] Jančik, F., Koukolova, V., Kubelkova, P. and Čermak, B. 2009. Effects of grass species on ruminal degradability of silages and prediction of dry matter effective degradability. Czech Journal of Animal Science. 54: 315–323.

[5] Hintz, R.W., Albrecht, K.A. 1991. Prediction of alfalfa chemical composition from maturity and plant morphology. Crop Science, 31, 1561–1565.

[6] Sanderson, M.A.1992. Predictors of alfalfa forage quality: Validation with field data. Crop Sci. 32:245–250.

[7] Sulc, R.M., Albrecht, K.A., Cherney, J.H., Hall, M.H., and Mueller, S.C., Orloff, S.B. 1997. Field testing of rapid method for estimating alfalfa quality. Agronomy Journal, 89, 952–957.

[8] Keoghan, J.M. 1967. Effects of Cutting Frequency and Height on Top growth of Pure Lucerne Stands. A. H. & A. W. Reed, Wellington, NZ, pp. 117–133.

[9] Teuber, L.R., Taggard, K.L., Gibss, L.K., Mccaslin, M.H., Peterson, M.A., Barnes, D.K. 1998. Fall dormancy.

In: Fox, C., Berberet, R., Gray, F., Grau, C., Jessen, D., Peterson, M. (Eds.), Standar Test to Characterize Alfalfa Cultivars 3rd ed. North American Alfalfa Improvement Conference. Agronomic Test, p. A-1.

[10] Sprague, M.A., Fuelleman, R.F. 1941. Measurements of recovery after cutting and fall dormancy of varieties and strains of alfalfa, Medicago sativa. Agron. J. 33, 437–447.

[11] Buller, R.E., Pitner, J.B., Rarnirez, M. 1955. Behaviour of alfalfa varieties in the valley of Mexico. Agron. J. 47, 510–512.

[12] Leach, G.J. 1969. Shoot numbers, shoot size, and yield of regrowth in three Lucerne cultivars. Aust. J. Agric. Res. 20, 425–434.

[13] Marquez-Ortiz, J.J., Lamb, J.F.S., Johnson, L.D., Barnes, D.K and Stucker, R.E. 1969. Heritability Of Crown Traits in Alfalfa, Crop Sci., 39, 39-43, 1999.

[14] Demirbag, N.S., Ekiz, H., Ozkan, U. 2014. Effects of Different Harvest Time of Crested Wheatgrass Which is in Artificial Range Mixture on Forage Yield and Hay Quality under Central Anatolia Conditions. Journal of Applied Biological Sciences 8 (1): 14-21, 2014 ISSN: 1307-1130, E-ISSN: 2146-0108.

[15] Aydın, N., Mut, Z., Mut, H., Ayan, I. 2010. Effect of autumn and spring sowing dates on hay yield and quality of oat (Avena sativa L.) genotypes. Journal of Animal and Veterinary Advances 9(10):1539-1545.

[16] Caballero, R., Goicoechea, E.L., Hernaiz, P.J. 1995. Forage yields and quality of common vetch and oat sown at varying seeding ratios and seeding rates of common vetch, Field Crop. Res. 41, 135–140.

[17] Assefa, G., Ledin, I. 2001. Effect of variety, soil type and fertilizer on the establishment, growth, forage yield, quality and voluntary intake by cattle of oats and vetches cultivated in sole crops and mixtures, Anim. Feed Sci. Tech. 92, 95–111

[18] Putnam, H. D., Orloff, S.B., Teuber, L. R. 2005. Strategies for Balancing Quality and Yield in Alfalfa Using Cutting Schedules and Varieties.

[19] Joachim, H and Jung, G. 1997. Analysis of forage fiber and cell walls in ruminant nutrition. Journal of Nutrition, 127:810-813.

[20] Parsons, D., Cherney, J.H., Gauch, H.G. 2006b. Alfalfa fiber estimation in mixed stands and its relationship to plant morphology. Crop Science, 46, 2446–2452.

[21] Coblentz, W.K., Fritz, J.O., Fick, W.H., Cochran, R.C., Shirley, J.E. 1998. In situ dry matter, nitrogen, and fiber degradation of alfalfa, red clover, and eastern gamagrass at four maturities. Journal of Dairy Science, 81, 150–161.6 s.

[22] Elizalde, J.C., Merchen, N.R., Faulkner, D.B. 1999. In situ dry matter and crude protein degradation of fresh forages during the spring growth. Journal of Dairy Science, 82, 1978–1990.

[23] Rinne, M., Huhtanen, P., Jaakkola, S. 2002. Digestive processes of dairy cows fed silages harvested at four stages of grass maturity. Journal of Animal Science, 80, 1986–1998.

[24] Uzun, F. 2010. Changes in hay yield and quality of bulbous barley at different phenological stages. Turk J Agric For 34: 1-9.

[25] Van Soest, P. J. 1982. Nutritional Ecology of the Ruminant. Cornell University Press, Ithaca, New York, 137 p.