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Abstract. This study investigates the shape-preserving characteristics of λ-
Schurer operators, a class of operators derived from a modified version of the

classical Schurer bases by incorporating a shape parameter λ. The primary fo-

cus is on understanding how these operators maintain the geometric features of
the functions they approximate, which is crucial in fields like computer graph-

ics and geometric modelling. By examining the fundamental properties and
the divided differences associated with λ-Schurer bases, we derive vital results

that confirm the operators’ capability to preserve essential shape attributes

under various conditions. The findings have significant implications for the
application of these operators in computational analysis and other related ar-

eas, providing a solid foundation for future research.

1. Introduction

In recent years, the study of shape-preserving approximation methods has gained
significant attention due to their critical role in applications such as computer
graphics, CAD modelling, and numerical analysis. Shape-preserving operators en-
sure that the essential geometric features of functions, such as monotonicity and
convexity, are maintained during approximation [1]. Bézier bases have become par-
ticularly popular among these methods due to their ability to offer smooth and
continuous approximations with limited control points [6, 11].
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In 2010, Ye et al. [12] established a new class of bases, so-called Bézier bases,
based on shape parameters λ chosen from the interval [−1, 1]. Bézier bases are fun-
damental in approximation methods that aim to preserve shapes, playing a crucial
role in computer graphics and geometric modelling. The recent works related to
some shape parameters including λ are given as: In their exploration of the modified
λ -Bernstein-polynomial, Ayman-Mursaleen et al. [7] thoroughly analyzed its ap-
proximation properties, providing valuable insights into its behavior and potential
applications. Su et al. [21] conducted a rigorous analysis of the shape-preserving
properties of λ -Bernstein operators, demonstrating their ability to maintain cru-
cial geometric characteristics such as monotonicity and convexity during the ap-
proximation process. Ansari et al. [2] delved into the approximation properties
of bivariate Bernstein-Kantorovich operators, extending their application by in-
corporating a summability method and establishing connections with related GBS
operators. Kajla et al. [14] introduced the innovative Bézier-Baskakov-Beta type
operators, a novel class designed to enhance shape-preserving approximation and
offer improved flexibility in controlling the geometric features of the approximated
function. Rao et al. [18] investigated the approximation capabilities of modified
Baskakov-Durrmeyer operators, focusing on the influence of a shape parameter α
on their ability to represent complex functions while preserving their fundamental
geometric properties accurately. Özger et al. [17] examined the convergence be-
haviour of generalized blending-type Bernstein-Kantorovich operators, establishing
the rate of weighted statistical convergence and providing a deeper understanding
of their approximation characteristics.

Bézier bases provide a mathematical framework that ensures smoothness and
continuity, making them ideal for accurately approximating complex shapes like
fonts, logos, and CAD models. Bézier bases allow for precise control over curve
shapes with a limited number of control points, giving designers and engineers the
flexibility to fine-tune approximations while maintaining the integrity of the original
shape. This ability to preserve essential features during the approximation process
highlights the importance of Bézier bases in achieving visually and geometrically
accurate representations. Due to all these facts these bases have become prevalent
among researchers, and there have been many variations of Bézier bases inaugurated
to the literature (see [4, 8, 13]).

Schurer [19] introduced a remarkable variation of the classical Bernstein opera-
tors by incorporating a nonnegative parameter ϑ, which is both linear and positive.
Most recently, Özger [16] constructed a modified version of these bases, namely
λ−Schurer bases, as follows: For shape parameter λ ∈ [−1, 1] and integer ϑ ≥ 0,
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the λ−Schurer bases are

ŝr,0 (λ; τ) = sr,0 (τ)−
λ

r + ϑ+ 1
sr+1,1 (τ) ,

ŝr,p (λ; τ) = sr,p (τ) + λ

{
r + ϑ− 2p+ 1

(r + ϑ)
2 − 1

sr+1,p (τ)

−r + ϑ− 2p− 1

(r + ϑ)
2 − 1

sr+1,p+1 (τ)

}
, p = 1, 2, . . . , r + ϑ− 1,

ŝr,r+ϑ (λ; τ) = sr,r+ϑ (τ)−
λ

r + ϑ+ 1
sr+1,r+ϑ (τ) ,

(1)
where sr,p (τ) are the fundamental Schurer bases of degree r + ϑ defined as

sr,p (τ) =
(
r+ϑ
p

)
τp (1− τ)

r+ϑ−p
, p = 0, 1, . . . , r + ϑ. (2)

Then using the λ−Schurer bases given in (1), Özger established the λ−Schurer
operators Sλ

r,ϑ (g; τ) : C [0, 1 + ϑ] → C [0, 1]

Sλ
r,ϑ (g; τ) =

r+ϑ∑
p=0

ŝr,p (λ; τ) g
(p
r

)
, τ ∈ [0, 1] , r ∈ N, (3)

for any g in C [0, 1 + ϑ] . In [16], the statistical convergence properties of operators in
(3) is examined, and an estimation for the rate of weighted A-statistical convergence
is provided. Furthermore, two Voronovskaja-type theorems are established, one of
which employs weighted A-statistical convergence.

Building on the foundational work of Ye et al. [12] on Bézier bases, this paper

explores the λ−Schurer operators in (3), a variation introduced by Özger given
in (3), which extends the classical Schurer operators by incorporating a shape pa-
rameter λ. These operators are designed to provide more flexibility in controlling
the shape of the approximated function, making them a powerful tool for shape-
preserving approximation. The primary objective of this study is to analyze the
shape-preserving properties of these operators and to establish their effectiveness
through rigorous mathematical proofs and computational analysis. The manuscript
is organized as follows: Section 2 covers the fundamental concepts of fundamental
Schurer bases, divided differences, as well as the notions of 0−convex, 1−convex,
and 2−convex functions, including the relevant relationships and results. Section
3 presents the primary theoretical, computational, and numerical results and dis-
cussions regarding the shape-preserving properties of λ−Schurer operators. In the
last section, we provide an elaborate conclusion.

2. Auxiliary Results

In this section, we give the fundamental properties of the λ−Schurer bases and
some essentials on the divided differences. We commence our work by providing
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the binomial coefficient formula as(
r

p

)
=

{ r!
p!(r−p)! , 0 ≤ p ≤ r,

0, otherwise.

In the next lemma, we give some basic properties of sr,p (τ), such as, recursive
relation, degree raising, derivative formula and endpoint interpolating properties.

Lemma 1. For integer ϑ ≥ 0, the fundamental Schurer bases sr,p (τ) in (2) satisfy
the following identities:

sr,p (τ) = 0 if p > r + ϑ or p < 0, (4)

sr,p (τ) = (1− τ) sr−1,p (τ) + τsr−1,p−1 (τ) , (5)

sr,p (τ) =
(
1− p

r+ϑ+1

)
sr+1,p (τ) +

(
p+1

r+ϑ+1

)
sr+1,p+1 (τ) , (6)

d

dτ
[sr,p (τ)] = (r + ϑ) [sr−1,p−1 (τ)− sr−1,p (τ)] , (7)

and

sr,p (0) =

{
0 if p ̸= 0,
1 if p = 0,

sr,p (1) =

{
0 if p ̸= r + ϑ,
1 if p = r + ϑ.

(8)

Proof. The proof of (4) and (8) are a direct consequence of definitions of the bino-
mial coefficient and sr,p (τ) in (2), so they are omitted. To prove (5), we only apply
basic algebra to the definition (2) of Schurer polynomials, which yields

(1− τ) sr−1,p (τ) + τsr−1,p−1 (τ) = (1− τ)
(
r+ϑ−1

p

)
τp (1− τ)

r+ϑ−1−p

+ τ
(
r+ϑ−1
p−1

)
τp−1 (1− τ)

(r+ϑ−1)−(p−1)

=
[(

r+ϑ−1
p

)
+
(
r+ϑ−1
p−1

)]
τp (1− τ)

r+ϑ−p
.

Since
(
r+ϑ−1

p

)
+
(
r+ϑ−1
p−1

)
=
(
r+ϑ
p

)
, we then have the desired result. Next to prove

(6), we first note that

τsr,p (τ) =
(
r+ϑ
p

)
τp+1 (1− τ)

r+ϑ−p
(9)

=

(
r+ϑ
p

)(
r+ϑ+1
p+1

)(r+ϑ+1
p+1

)
τp+1 (1− τ)

(r+ϑ+1)−(p+1)

=
(

p+1
r+ϑ+1

)
sr+1,p+1 (τ) ,

and also

(1− τ) sr,p (τ) =
(
r+ϑ
p

)
τp (1− τ)

r+ϑ+1−p
(10)

=

(
r+ϑ
p

)(
r+ϑ+1

p

)(r+ϑ+1
p

)
τp (1− τ)

(r+ϑ+1)−p

=
(
1− p

r+ϑ+1

)
sr+1,p (τ) .
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Subsequently, summation of (9) and (10) yields property (6). Lastly, by taking the
derivative of sr,p (τ) with respect to τ by means of basic algebra rules, we obtain
the property (7) as

d

dτ
[sr,p (τ)] =

(
r+ϑ
p

)
pτp−1 (1− τ)

r+ϑ−p −
(
r+ϑ
p

)
(r + ϑ− p) τp (1− τ)

r+ϑ−1−p

= (r + ϑ)
[

(r+ϑ−1)!
(p−1)!(r+ϑ−p)!τ

p−1 (1− τ)
(r+ϑ−1)−(p−1)

− (r+ϑ−1)!
p!(r+ϑ−1−p)!τ

p (1− τ)
(r+ϑ−1)−p

]
= (r + ϑ) [sr−1,p−1 (τ)− sr−1,p (τ)] .

□

The following lemma will present some auxiliary results that are essential for our
main outcomes.

Lemma 2. For λ ∈ [−1, 1] and integer ϑ ≥ 0, the λ−Schurer bases in (1) satisfy
the following properties:

ŝr,p (λ; τ) ≥ 0, (11)

r+ϑ∑
p=0

ŝr,p (λ; τ) = 1, (12)

ŝr,p (λ; τ) = s̃r,r−p (λ; 1− τ) . (13)

Proof. In order to prove property (11), we first note that sr,p (τ) ≥ 0 for all r ∈
N and τ ∈ [0, 1] where ϑ ≥ 0 is integer by definition of the binomial coefficient
formula. Next, we rewrite λ−Schurer bases given in (1) as

ŝr,p (λ; τ) =
1

r + ϑ+ 1

{(
p+ 1− λ

r + ϑ− 2p− 1

r + ϑ− 1

)
sr+1,p+1 (τ)

+

(
r + ϑ+ 1− p+ λ

r + ϑ− 2p+ 1

r + ϑ− 1

)
sr+1,p (τ)

}
,

by employing degree raising property (6). Since 1 ≤ p ≤ r + ϑ − 1, one can easily
find that 0 ≤ p−1

r+ϑ−1 ≤ 1 − 1
r+ϑ−1 ≤ 1. Then utilizing the fact −1 ≤ λ ≤ 1 yields

−1 ≤ λ
(
1− 2(p−1)

r+ϑ−1

)
≤ 1. Subsequently, we get

0 ≤ r + ϑ− p ≤ r + ϑ+ 1− p+ λ
r + ϑ− 2p+ 1

r + ϑ− 1
. (14)

Analogously, one can derive −1 ≤ λ
(
1− 2p

r+ϑ−1

)
≤ 1 which implies

0 ≤ (p+ 1)− 1 ≤ p+ 1− λ
r + ϑ− 2p− 1

r + ϑ− 1
. (15)
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Hence, we have ŝr,p (λ; τ) ≥ 0 by (14) and (15). The proof of partition of unity
property (12) is given in [16], and symmetry property is a direct consequence of
definitions (1)-(2), so they are omitted. □

The following divided differences definition and subsequent results are presented
on the grounds of the pioneering work by Asher and Greif [3].

Definition 1 ( [3]). Given points τ0, τ1, . . . , τ r with arbitrary indices 0 ≤ q < p ≤
r, the divided difference of a function g with order r is defined by

[τ0, τ1, . . . , τ r; g] =
∑
p

g (τp)
∏
q ̸=p

1

(τp − τ q)
.

The divided differences of g are linear and symmetric and satisfy the recursive
formula

[τ0; g] = g (τ0)

[τ0, . . . τ r; g] =
[τ1, . . . τ r; g]− [τ0, . . . τ r−1; g]

τ r − τ0
.

By recursive formula, for 0 ≤ q ≤ r, we have the following identities:

[τ q; g] = g (τ q) ,

[τ q, τ q+1; g] =
g (τ q+1)− g (τ q)

τ q+1 − τ q
,

[τ q, τ q+1, τ q+2; g] =
[τ q+1, τ q+2; g]− [τ q, τ q+1; g]

τ q+2 − τ q
.

Lemma 3 ( [15]). For a fixed r ∈ N, the function g is called r−convex if [τ0, τ1, . . . , τ r; g] ≥
0. In particular, if function g is

i: nonnegative, then it is 0−convex,
ii: nondecreasing, then it is 1−convex,
iii: convex in the usual sense, then it is 2−convex.

3. Primary Results on the Shape-Preserving Characteristics of
λ−Schurer Operators

This part is dedicated to the main results of the manuscript. We will present
our findings on the positivity, linearity, endpoint preservation, monotonicity and
convexity of λ−Schurer operators Sλ

r,ϑ (g; τ) . We commence our work by represent-

ing Sλ
r,ϑ (g; τ) in terms of fundamental Schurer bases sr,p (τ) in (2) and divided

differences.

Lemma 4. For any λ ∈ [−1, 1] and integer ϑ ≥ 0, the λ−Schurer operators in (3)
can be rewritten as

Sλ
r,ϑ (g; τ) = Br,ϑ (g; τ) +

λ

r

r+ϑ−1∑
p=0

(
r + ϑ− 2p− 1

(r + ϑ)
2 − 1

)
sr+1,p+1 (τ)

[
p
r ,

p+1
r ; g

]
, (16)
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where sr,p (τ) are as in (2) and

Br,ϑ (g; τ) =

r+ϑ∑
p=0

sr,p (τ)
[
p
r ; g
]
,

are the Bernstein-Schurer operators constructed in [19].

Proof. Substitution of (1) to the expression (3) of λ−Schurer operators yields

Sλ
r,ϑ (g; τ) =

[
sr,0 (τ)−

λ

r + ϑ+ 1
sr+1,1 (τ)

]
g (0)

+

r+ϑ−1∑
p=1

[
sr,p (τ) + λ

(
r + ϑ− 2p+ 1

(r + ϑ)
2 − 1

sr+1,p (τ)

−r + ϑ− 2p− 1

(r + ϑ)
2 − 1

sr+1,p+1 (τ)

)]
g
(p
r

)
+

[
sr,r+ϑ (τ)−

λ

r + ϑ+ 1
sr+1,r+ϑ (τ)

]
g

(
r + ϑ

r

)
,

which can also be written as

Sλ
r,ϑ (g; τ) =

r+ϑ∑
p=0

sr,p (τ) g
(p
r

)
− λ

r+ϑ−1∑
p=0

(
r + ϑ− 2p− 1

(r + ϑ)
2 − 1

)
sr+1,p+1 (τ) g

(p
r

)

+ λ

r+ϑ∑
p=1

(
r + ϑ− 2p+ 1

(r + ϑ)
2 − 1

)
sr+1,p (τ) g

(p
r

)
,

after simplifying similar terms. Reindexing the last summation in the above equa-
tion and then utilizing the notation of divided differences given in Definition 1, we
obtain the desired result in (16). □

Remark 1. In the special case ϑ = 0 and p → p − 1 in (16), we get equation (6)
in [21].

Now, we are ready to present our principal conclusions on the shape-preserving
properties of the λ−Schurer operators. The following theorem is on the geometric
properties of Sλ

r,ϑ (g; τ), such as nonnegativity, linearity and endpoint interpolation.

Theorem 1. Let λ ∈ [−1, 1] , r ∈ N, and ϑ ≥ 0 integer. The λ−Schurer operators
in (3) satisfy the following properties:

i: Nonnegativity: For g ∈ C [0, 1 + ϑ] , Sλ
r,ϑ (g; τ) ≥ 0 whenever g (τ) ≥ 0.

ii: Linearity: For g1, g2 ∈ C [0, 1 + ϑ] and β1, β2 ∈ R,

Sλ
r,ϑ (β1g1 + β2g2; τ) = β1S

λ
r,ϑ (g1; τ) + β2S

λ
r,ϑ (g2; τ) .

iii: Endpoint interpolation: Sλ
r,ϑ (g; 0) = [0; g] .



1160 N. TURHAN TURAN, Z. ÖDEMİŞ ÖZGER

Proof. We begin our work by writing λ−Schurer operators in (3) in terms of divided
differences as

Sλ
r,ϑ (g; τ) =

r+ϑ∑
p=0

ŝr,p (λ; τ)
[
p
r ; g
]
.

For the proof of part (i) , assume that g (τ) ≥ 0. Consequently, we have Sλ
r,ϑ (g; τ) ≥

0 by (11) and Lemma 3. Next, by the linearity of the divided differences and
summation operator, we obtain

Sλ
r,ϑ (β1g1 + β2g2; τ) =

r+ϑ∑
p=0

ŝr,p (λ; τ)
[
p
r ;β1g1 + β2g2

]
=

r+ϑ∑
p=0

ŝr,p (λ; τ)
(
β1

[
p
r ; g1

]
+ β2

[
p
r ; g2

])
= β1S

λ
r,ϑ (g1; τ) + β2S

λ
r,ϑ (g2; τ) ,

which completes the proof of part (ii). Lastly, for part (iii), substitution of (8) in
(1) yields

ŝr,p (λ; 0) =

{
0 if p ̸= 0
1 if p = 0

,

which consequently implies

Sλ
r,ϑ (g; 0) =

r+ϑ∑
p=0

ŝr,p (λ; 0)
[
p
r ; g
]
= ŝr,0 (λ; 0) [0; g] +

r+ϑ∑
p=1

ŝr,p (λ; 0)
[
p
r ; g
]
= [0; g] .

□

Prior to the presentation of our primary findings on the monotonicity preserva-
tion of λ−Schurer operators, we will present the first derivative of these operators
in the following lemma.

Lemma 5. For any λ ∈ [−1, 1] and g : [0, 1 + ϑ] → R, ϑ ≥ 0 integer, the λ−Schurer
operators in (3) satisfy the following identity

d

dτ

[
Sλ
r,ϑ (g; τ)

]
=

1

r

{
r+ϑ−1∑
p=0

[
r + ϑ− p+ λ

(
r + ϑ− 2p− 1

r + ϑ− 1

)]
sr,p (τ)

[
p
r ,

p+1
r ; g

]
+

r+ϑ−1∑
p=0

[
p+ 1− λ

(
r + ϑ− 2p− 1

r + ϑ− 1

)]
sr,p+1 (τ)

[
p
r ,

p+1
r ; g

]}
.

(17)

Proof. One can differentiate equation (16)

d

dτ

[
Sλ
r,ϑ (g; τ)

]
= (r + ϑ)

{
r+ϑ∑
p=1

sr−1,p−1 (τ)
[
p
r ; g
]
−

r+ϑ−1∑
p=0

sr−1,p (τ)
[
p
r ; g
]}



SHAPE-PRESERVATION OF λ−SCHURER OPERATORS 1161

+
λ

r

r+ϑ−1∑
p=0

(
r + ϑ− 2p− 1

r + ϑ− 1

)
[sr,p (τ)− sr,p+1 (τ)]

[
p
r ,

p+1
r ; g

]
,

by utilizing (7) and (4), respectively. Next, reindexing the summation with sr−1,p−1 (τ)
term and then applying divided differences identity of first order yield

d

dτ

[
Sλ
r,ϑ (g; τ)

]
=

(r + ϑ)

r

r+ϑ−1∑
p=0

sr−1,p (τ)
[
p
r ,

p+1
r ; g

]
+

λ

r

r+ϑ−1∑
p=0

(
r + ϑ− 2p− 1

r + ϑ− 1

)
[sr,p (τ)− sr,p+1 (τ)]

[
p
r ,

p+1
r ; g

]
.

Using property (6) implies

d

dτ

[
Sλ
r,ϑ (g; τ)

]
=

(r + ϑ)

r

r+ϑ−1∑
p=0

((
1− p

r+ϑ

)
sr,p (τ) +

(
p+1
r+ϑ

)
sr,p+1 (τ)

) [
p
r ,

p+1
r ; g

]
+

λ

r

r+ϑ−1∑
p=0

(
r + ϑ− 2p− 1

r + ϑ− 1

)
[sr,p (τ)− sr,p+1 (τ)]

[
p
r ,

p+1
r ; g

]
,

and subsequently, combining the summations with similar terms produces the first
derivative given in (17). □

Remark 2. In the special case ϑ = 0 in (17), we obtain equation (7) in [21].

Theorem 2 (Monotonicity). If g is increasing (or decreasing) on the interval
[0, 1 + ϑ] , then so are all the corresponding λ−Schurer operators for all λ ∈ [−1, 1]
and r ∈ N.

Proof. In order to prove that Sλ
r,ϑ (g; τ) is increasing whenever g is also increasing

on [0, 1 + ϑ] , it is sufficient to show that the first derivative given in Lemma 5 is
nonnegative. Firstly, for an increasing function g; i.e., 1−convex, we have[

p
r ,

p+1
r ; g

]
≥ 0 (18)

by Lemma 3. Moreover, for 0 ≤ p ≤ r+ ϑ− 1, we have −1 ≤ 1− 2p
r+ϑ−1 ≤ 1. Since

−1 ≤ λ ≤ 1, we get −1 ≤ λ
(
1− 2p

r+ϑ−1

)
≤ 1 which leads to

0 ≤ r+ϑ−p−1 ≤ r+ϑ−p+λ

(
1− 2p

r + ϑ− 1

)
= r+ϑ−p+λ

(
r + ϑ− 2p− 1

r + ϑ− 1

)
,

(19)
and

0 ≤ (p+ 1)− 1 ≤ p+ 1− λ

(
1− 2p

r + ϑ− 1

)
= p+ 1− λ

(
r + ϑ− 2p− 1

r + ϑ− 1

)
. (20)
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Subsequently, we obtain d
dτ

[
Sλ
r,ϑ (g; τ)

]
≥ 0 due to inequalities (18)-(20). Analo-

gously, for a decreasing function g on [0, 1 + ϑ] , we have[
p
r ,

p+1
r ; g

]
≤ 0. (21)

Then by (19)-(21), we have d
dτ

[
Sλ
r,ϑ (g; τ)

]
≤ 0 which implies Sλ

r,ϑ (g; τ) is also

decreasing on [0, 1 + ϑ] . Hence the proof is complete. □

Remark 3. The ϑ = 0 case is presented as Theorem 3.1 in [21].

Lemma 6. For any λ ∈ [−1, 1] and g : [0, 1 + ϑ] → R, ϑ ≥ 0 integer, the λ−Schurer
operators in (3) satisfy the following identity

d2

dτ2
[
Sλ
r,ϑ (g; τ)

]
= λ

(r + ϑ) (r + ϑ+ 1)

r (r + ϑ− 1)

{
sr−1,0 (τ)

(
−
[
0, 1

r ; g
])

+sr−1,r+ϑ−1 (τ)
[
r+ϑ−1

r , r+ϑ
r ; g

]}
+

2 (r + ϑ)

r2

r+ϑ−2∑
p=0

[
r + ϑ− p− 1 + λ

(
r + ϑ− 2p− 3

r + ϑ− 1

)]
(22)

× sr−1,p (τ)
[
p
r ,

p+1
r , p+2

r ; g
]

+
2 (r + ϑ)

r2

r+ϑ−2∑
p=0

[
p+ 1− λ

(
r + ϑ− 2p− 1

r + ϑ− 1

)]
× sr−1,p+1 (τ)

[
p
r ,

p+1
r , p+2

r ; g
]
.

Proof. Differentiation of the first derivative in (17) by using property (7) results in

d2

dτ2
[
Sλ
r,ϑ (g; τ)

]
=

1

r

{
r+ϑ−1∑
p=0

[
r + ϑ− p+ λ

(
r + ϑ− 2p− 1

r + ϑ− 1

)]
× (r + ϑ) [sr−1,p−1 (τ)− sr−1,p (τ)]

[
p
r ,

p+1
r ; g

]
+

r+ϑ−1∑
p=0

[
p+ 1− λ

(
r + ϑ− 2p− 1

r + ϑ− 1

)]
× (r + ϑ) [sr−1,p (τ)− sr−1,p+1 (τ)]

[
p
r ,

p+1
r ; g

]}
,

which can also be rewritten as

d2

dτ2
[
Sλ
r,ϑ (g; τ)

]
=

(r + ϑ)

r

{
r+ϑ−2∑
p=0

[
r + ϑ− p− 1 + λ

(
r + ϑ− 2p− 3

r + ϑ− 1

)]
sr−1,p (τ)

[
p+1
r , p+2

r ; g
]

−
r+ϑ−1∑
p=0

[
r + ϑ− p− 1 + λ

(
r + ϑ− 2p− 3

r + ϑ− 1

)]
sr−1,p (τ)

[
p
r ,

p+1
r ; g

]
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+

r+ϑ−2∑
p=−1

[
p+ 1− λ

(
r + ϑ− 2p− 1

r + ϑ− 1

)]
sr−1,p+1 (τ)

[
p+1
r , p+2

r ; g
]

−
r+ϑ−2∑
p=0

[
p+ 1− λ

(
r + ϑ− 2p− 1

r + ϑ− 1

)]
sr−1,p+1 (τ)

[
p
r ,

p+1
r ; g

]}
,

after use of property (4) and reindexing of summations. Finally, employing the fact
that [

p+1
r , p+2

r ; g
]
−
[
p
r ,

p+1
r ; g

]
=

2

r

[
p
r ,

p+1
r , p+2

r ; g
]
,

by Definition 1 yields the desired second derivative given in (22). □

Remark 4. In the special case ϑ = 0 in (22), we obtain the second derivative
presented in Lemma 3.3 in [21].

Remark 5. To demonstrate the convexity preservation property of λ−Schurer op-
erators Sλ

r,ϑ (g; τ), it must be shown that the second derivative, as presented in
Lemma 6, is nonnegative whenever the associated function g is convex. Firstly, in
view of Lemma 3, we have [

p
r ,

p+1
r , p+2

r ; g
]
≥ 0, (23)

for any convex function g. Secondly, for 0 ≤ p ≤ r+ ϑ− 2, we have 0 ≤ 2(p+1)
r+ϑ−1 ≤ 2

which implies −1 ≤ 1 − 2(p+1)
r+ϑ−1 ≤ 1 Since −1 ≤ λ ≤ 1, it is clear to see that

−1 ≤ λ
(
1− 2(p+1)

r+ϑ−1

)
≤ 1 which leads to

0 ≤ r+ϑ−p−2 ≤ r+ϑ−p−1+λ

(
1− 2 (p+ 1)

r + ϑ− 1

)
= r+ϑ−p−1+λ

(
r + ϑ− 2p− 3

r + ϑ− 1

)
.

(24)
In a similar fashion, for 0 ≤ p ≤ r + ϑ − 2 ≤ r + ϑ − 1 and −1 ≤ λ ≤ 1, one can

write −1 ≤ −λ
(
1− 2p

r+ϑ−1

)
≤ 1 which implies

0 ≤ (p+ 1)− 1 ≤ p+ 1− λ

(
1− 2p

r + ϑ− 1

)
= p+ 1− λ

(
r + ϑ− 2p− 1

r + ϑ− 1

)
. (25)

Consequently, we affirm that

2 (r + ϑ)

r2

r+ϑ−2∑
p=0

[
r + ϑ− p− 1 + λ

(
r + ϑ− 2p− 3

r + ϑ− 1

)]
× sr−1,p (τ)

[
p
r ,

p+1
r , p+2

r ; g
]

+
2 (r + ϑ)

r2

r+ϑ−2∑
p=0

[
p+ 1− λ

(
r + ϑ− 2p− 1

r + ϑ− 1

)]
× sr−1,p+1 (τ)

[
p
r ,

p+1
r , p+2

r ; g
]
≥ 0,
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due to (23)-(25). In opposition, the term

λ
(r + ϑ) (r + ϑ+ 1)

r (r + ϑ− 1)

{
sr−1,0 (τ)

(
−
[
0, 1

r ; g
])

+ sr−1,r+ϑ−1 (τ)
[
r+ϑ−1

r , r+ϑ
r ; g

]}
may produce negative or positive values depending on the choice of shape parameter
λ ∈ [−1, 1] . Furthermore, the monotonic behavior of function g will also have an
effect on the determination of the sign of second derivative given in (22) since

−
[
0, 1

r ; g
]
≤ 0 and

[
r+ϑ−1

r , r+ϑ
r ; g

]
≥ 0, (26)

for monotone increasing g and

−
[
0, 1

r ; g
]
≥ 0 and

[
r+ϑ−1

r , r+ϑ
r ; g

]
≤ 0, (27)

for monotone decreasing g by Lemma 3. On the grounds of this discussion, one can
expect that Sλ

r,ϑ (g; τ) is not necessarily convex for all λ ∈ [−1, 1] and g on [0, 1] .
We verify this line of reasoning by demonstrating the following numerical examples.

Example 1. In this first example, we consider the monotone increasing and convex
function g (τ) = eτ−log10[(τ+1)2] on [0, 1], and form Table 1 in which the intervals

are given where d2

dτ2

[
Sλ
r,ϑ (g; τ)

]
≥ 0 for different values of λ, r, and ϑ.

To begin with, we have inequalities in (26) hold true since g is monotone increas-
ing on [0, 1] . By inspecting the intervals from Table 1, one can say that λ−Schurer
operators successfully preserve the convexity of the associated g function for λ > − 1

2
for all ϑ ≥ 0 without loss of generality. Contrarily, it requires to utilize larger r
values to maintain the convexity for −1 ≤ λ < − 1

2 . For instance, S−1
r,1 (g; τ) and

S
−7/8
r,1 (g; τ) are convex on [0, 1] for r ≥ 14 and r ≥ 9, respectively, when ϑ = 1.

Moreover, performing calculations by taking bigger ϑ values definitely improves the

results. For example, S−1
r,3 (g; τ) and S

−7/8
r,3 (g; τ) are convex on [0, 1] for r ≥ 6 and

r ≥ 2, respectively, when ϑ = 3, and S−1
r,4 (g; τ) is convex on [0, 1] for r ≥ 2 when

ϑ = 4.

Example 2. In this scheme, we consider g (τ) = e−τ , which is monotone decreas-
ing and convex on [0, 1] . Similar to Example 1, we calculate the intervals when
d2

dτ2

[
Sλ
r,ϑ (g; τ)

]
≥ 0 as listed in Table 2.

Since g is monotone decreasing, the inequalities in (27) are satisfied. Without
loss of generality, one can conclude that Sλ

r,ϑ (g; τ) preserve the convexity of this

particular function g for |λ| < 1
2 . On the other hand, the efficiency of convexity

preservation decreases for −1 ≤ λ < − 1
2 and 1

2 < λ ≤ 1. For example, S
−7/8
r,1 (g; τ),

S
−11/20
r,1 (g; τ) and S

13/14
r,1 (g; τ) are convex on [0, 1] , for r ≥ 25, r ≥ 5 and r ≥ 9,

respectively. Furthermore, S−1
r,1 (g; τ) and S−1

r,1 (g; τ) do not preserve the convexity

on [0, 1] for r ≤ 260. The results are improved if we consider bigger ϑ values. For
example, Sλ

r,3 (g; τ) is convex on [0, 1] , when r ≥ 2, for all λ ≥ − 7
8 as listed in

Table 2, even though, we observe that S−1
r,1 (g; τ) still do not preserve the convexity
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8
0
9
6
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

1
0

[0
.0
3
0
2
5
9
4
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

2
4

[0
.0
0
1
9
5
3
6
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

2
5

[0
.0
0
1
8
2
0
9
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

3
0

[0
.0
0
1
3
2
3
2
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

5
0

[0
.0
0
0
5
2
2
0
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

1
0
0

[0
.0
0
0
1
3
9
9
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

2
0
0

[0
.0
0
0
0
3
6
2
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

2
6
0

[0
.0
0
0
0
2
1
6
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

ϑ
=

5

2
[0
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

3
[0
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

4
[0
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

5
[0
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]

[0
,
1
]
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on [0, 1] for r ≤ 260. Lastly, Sλ
r,5 (g; τ) is convex on [0, 1] , when r ≥ 2, for all λ

values listed in Table 2.

From the analysis presented in Remark 5 and the numerical demonstrations in
Examples 1 and 2, it follows that the λ−Schurer operators may fail to maintain
the convexity of associated functions with a monotonic nature for certain values
of λ ∈ [−1, 1]. To address this issue, we propose a revised result for the convexity
preservation of Sλ

r,ϑ (g; τ) by introducing additional conditions on the function g

within the interval [0, 1 + ϑ] .

Theorem 3 (Convexity). Let g be a function that is nonincreasing on (0, τ0)
and nondecreasing (τ0, 1 + ϑ) for any point τ0 ∈ (0, 1 + ϑ) for ϑ ≥ 0 integer. If
g is convex on [0, 1], then so are all the corresponding λ−Schurer operators for all
λ ∈ [0, 1] and r > r0 (τ0) .

Proof. Due to Remark 5, it is sufficient to establish that

λ
(r + ϑ) (r + ϑ+ 1)

r (r + ϑ− 1)

{
sr−1,0 (τ)

(
−
[
0, 1

r ; g
])

+ sr−1,r+ϑ−1 (τ)
[
r+ϑ−1

r , r+ϑ
r ; g

]}
≥ 0,

(28)
holds. To begin with, let λ ∈ [0, 1] and ϑ ≥ 0 be integer. Now, depending on the
choice of point τ0 ∈ (0, 1 + ϑ) , we will encounter the following cases :

Case 1: When τ0 < 1
2 , one can choose r suitably so that 1

r < τ0 < 1
2 . Therefore,

g is nonincreasing on
(
0, 1

r

)
and nondecreasing on

(
r−1
r , 1 + ϑ

)
, which implies

−
[
0, 1

r ; g
]
= g (0)− g

(
1
r

)
≥ 0 and

[
r+ϑ−1

r , r+ϑ
r ; g

]
= g

(
r+ϑ
r

)
− g

(
r+ϑ−1

r

)
≥ 0,

So inequality (28) is accurate.
Case 2: Next, we consider 1

2 < τ0 and accordingly choose r such that 1
2 < τ0 <

r−1
r . Hence, g is nonincreasing on

(
0, 1

r

)
and nondecreasing on

(
r−1
r , 1 + ϑ

)
, which

implies

−
[
0, 1

r ; g
]
≥ 0 and

[
r+ϑ−1

r , r+ϑ
r ; g

]
≥ 0.

The inequality (28) remains valid.
Case 3: In this last scheme, we pick τ0 = 1

2 . Subsequently, it is straightforward

to see that 1
r < 1

2 = τ0 < r−1
r which insinuates inequality (28) is true for all r ≥ 2.

□

Remark 6. The ϑ = 0 case is presented as Theorem 3.2 in [21].

We establish the following numerical example as an implementation of the The-
orem 3.

Example 3. For this scheme, we consider the convex function g (τ) =
(
τ − 1

3

)4
,

which is nonincreasing on
(
0, 1

3

)
and nondecreasing

(
1
3 , 1 + ϑ

)
for nonnegative in-

teger ϑ. Hence, we have

−
[
0, 1

r ; g
]
≥ 0 and

[
r+ϑ−1

r , r+ϑ
r ; g

]
≥ 0.
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Next, we obtain Table 3 in which the intervals are given where d2

dτ2

[
Sλ
r,ϑ (g; τ)

]
≥ 0.

Table 3. List of intervals where Sλ
r,ϑ

((
τ − 1

3

)4
; τ
)
is convex for

the associated values of λ, ϑ and r.

r λ = 2/15 λ = 3/10 λ = 4/7 λ = 11/16 λ = 17/20 λ = 1

ϑ = 1

2 [0, 1] [0, 1] [0, 1] [0, 1] [0, 1] [0, 1]
3 [0, 1] [0, 1] [0, 1] [0, 1] [0, 1] [0, 1]
4 [0, 1] [0, 1] [0, 1] [0, 1] [0, 1] [0, 1]
5 [0, 1] [0, 1] [0, 1] [0, 1] [0, 1] [0, 1]
6 [0, 1] [0, 1] [0, 1] [0, 1] [0, 1] [0, 1]

ϑ = 3

2 [0, 1] [0, 1] [0, 1] [0, 1] [0, 1] [0, 1]
3 [0, 1] [0, 1] [0, 1] [0, 1] [0, 1] [0, 1]
4 [0, 1] [0, 1] [0, 1] [0, 1] [0, 1] [0, 1]
5 [0, 1] [0, 1] [0, 1] [0, 1] [0, 1] [0, 1]
6 [0, 1] [0, 1] [0, 1] [0, 1] [0, 1] [0, 1]

The numeric values from Table 3 confirm that Sλ
r,ϑ (g; τ) preserves the convexity

of the affiliated function g (τ) on [0, 1] for all λ ∈ [0, 1] and integer ϑ ≥ 0 when
r ≥ 2. Thus, we can conclude that if the function g (τ) is selected according to
the conditions outlined in Theorem 3, we achieve enhanced results regarding the
preservation of convexity for the corresponding λ−Schurer operators.

4. Conclusions and Future Work

This paper has provided a comprehensive analysis of the shape-preserving char-
acteristics of λ-Schurer operators, highlighting their potential as a robust tool in
approximation theory. The results demonstrate that these operators not only pre-
serve the essential geometric features of the approximated functions but also offer
enhanced control through the adjustable shape parameter λ. The theoretical in-
sights and auxiliary results presented in this study contribute to a deeper under-
standing of shape-preserving approximation techniques and pave the way for further
research into their applications in diverse fields, such as computer-aided geomet-
ric design and numerical analysis. Future studies could explore the extension of
these operators to higher dimensions and their integration into practical computa-
tional tools. Moreover, we intend to further our research on the shape-preserving
characteristics of the operators constructed in [5, 9, 10,20,22], respectively.
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