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ABSTRACT. The main aim of this article is to propose a multidimensional quadratic-phase Fourier transform (MQFT)
that generalises the well-known and recently introduced quadratic-phase Fourier transform (as well as, of course, the
Fourier transform itself) to higher dimensions. In addition to the definition itself, some crucial properties of this new
integral transform will be deduced. These include a Riemann-Lebesgue lemma for the MQFT, a Plancherel lemma for
the MQFT and a Hausdorff-Young inequality for the MQFT. A second central objective consists of obtaining different
uncertainty principles for this MQFT. To this end, using techniques that include obtaining various auxiliary inequal-
ities, the study culminates in the deduction of LP-type Heisenberg-Pauli-Weyl uncertainty principles and LP-type
Donoho-Stark uncertainty principles for the MQFT.
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1. INTRODUCTION

The main theme of this work is the “multidimensional quadratic-phase Fourier transform”,
which is introduced here for the first time, generalising the well-known (one-dimensional)
quadratic-phase Fourier transform [2, 3]. This last quadratic-phase Fourier transform has
proved to be an integral operator with substantial virtues in the field of applications, showing
great potential in terms of the flexibility of the possibilities for choosing its five free parameters.
This can be seen in several recent publications, such as [1, 7, 11, 13, 14, 15, 16, 17, 18, 19] (among
many other papers). Now, with the current introduction of the multidimensional quadratic-
phase Fourier transform, where the roles of these parameters are now various matrices, it is
expected that this new operator will also be well received and used, especially in the field of
applications (even outside the discipline of Mathematics).

To better understand the structure of the proposed multidimensional quadratic-phase Fourier
transform, we will deduce some of its fundamental properties, exhibit some of its relationships
with other existing transforms and operators, and then derive some uncertainty principles as-
sociated with such new multidimensional quadratic-phase Fourier transform.

On this last point, it should be noted that in the scientific community in general, of all sci-
entific disciplines, the most famous notion of uncertainty principles is related to Quantum Me-
chanics and directly associated to the fact that Heisenberg concluded that “the position and the
momentum of an electron in an atom cannot be both determined explicitly, but only probabilis-
tically under a certain uncertainty”. Already in the Harmonic Analysis and Signal Processing
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community, the classic Heisenberg uncertainty principle for the Fourier transform is that the
product of the duration and bandwidth of a signal f(z) has a lower bound (which depends
on the square of the L?-norm of f). This inequality has been explored in various contexts and
for various integral transforms other than the Fourier transform, becoming commonly known
as the Heisenberg-Pauli-Weyl [9, 10, 20, 21] uncertainty principle. Another uncertainty prin-
ciple that we will consider here is called Donoho-Stark and involves different concepts and
quantities, based in particular on the so-called e-concentration and on the measures of certain
subsets.

This article is organised as follows. Section 2 is devoted to the introduction of the multidi-
mensional quadratic-phase Fourier transform and the deduction of its fundamental properties
(such as a Riemann-Lebesgue lemma, a Plancherel type theorem, an inversion formula and
a Hausdorff-Young inequality), which are also useful tools in the following sections. In sec-
tion 3, we obtain sufficient conditions to guarantee an uncertainty principle of the Heisenberg-
Pauli-Weyl type, in a framework of LP(R"™) spaces (with 1 < p < 2), for the multidimensional
quadratic-phase Fourier transform. In the last section, we will study various structural inequal-
ities related to the multidimensional quadratic-phase Fourier transform, which will culminate
in obtaining L?(R™) type Donoho-Stark uncertainty principles (in a first subsection for p = 2
and then, in a second subsection, for any integrability exponent p between 1 and 2).

2. THE MULTIDIMENSIONAL QUADRATIC-PHASE FOURIER TRANSFORM

In this section, we will introduce the multidimensional quadratic-phase Fourier transform
and deduce some of its fundamental properties.

As briefly mentioned in the previous section, our main motivation in this work has to do
with the introduction of a new integral transform that conveniently generalises several well-
known integral transforms. In this sense, our goal was to be able to generalise the Fourier
transform, the fractional Fourier transform, the linear canonical transform, the offset linear
canonical transform and the quadratic-phase Fourier transform to a multidimensional context,
and to make this generalisation as global as possible using as few restrictions as possible. These
restrictions are essentially related to the concern that the new transform continues to have good
elementary and useful properties so that it has great potential for applicability (particularly in
the fields of engineering and applied physics). So, in addition to the purely mathematical as-
pect of obtaining a new “object” that generalises various other existing mathematical concepts,
care was also taken to frame the new definition with elements that would allow us to ver-
ify the existence of interesting and crucial properties that would enhance the use of this new
mathematical tool in various contexts of applicability.

In particular, let us recall that the well-known linear canonical transform of a given function

f is defined by

1 a2t d?
) i

for b # 0, and by Vd e3eds? f(dz), if b = 0. The four real parameters a, b, ¢ and d are restricted
to ad — bc = 1 and so only three parameters are free, thus transforming the linear canonical
transform into a three-parameter integral transform. Initially, this was proposed independently
for reasons deeply associated with the canonical transforms of paraxial optics [5] and quantum
mechanics [12]. In fact, as is now well-known, the discovery and development of the theory of
linear canonical transforms in the early 1970s was motivated by independent work on two quite
different physical models: paraxial optics and nuclear physics. In the first case, the integral
kernel of the linear canonical transform was written as a descriptor of the propagation of light
in the paraxial regime by Stuart A. Collins Jr. [5] and, in the second case, the linear canonical
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transform was identified by Marcos Moshinsky and Christiane Quesne [12] as a powerful tool
while they were working on certain problems on the alpha clustering and decay of radioactive
nuclei.

In addition, there is also a very natural generalisation of the linear canonical transform it-
self, called the offset linear canonical transform (OLCT) (or “special affine Fourier transform”),
which has additional flexibility by additionally presenting a time-shifted and frequency-modu-
lated. Indeed, having in mind a set of six real parameters a, b, ¢, d, 7,1 € R, such thatad—bc = 1,
it is usual to denote A = (a,b,c,d, 7,7), and for a function f (e.g. in L?(R)), the OLCT of f is
defined by

Oaf(z) = / F(y) Kaly, ) dy,

with
1
i2m|b|

S dr2 [ a
elde ez[Qbyz—ﬁ—%y(f—w)—%x(dr—bn)—&-—fbxz}
)

KA(y7 x) =

if b # 0,and by V/de! s ="tz £ [d(5 — 7)] if b = 0 (i.e., in the case of b = 0, the OLCT is simply
a chirp multiplication operator). This generalisation has revealed a wide range of important
applications, particularly in the area of signal processing and the modelling of optical systems.
Naturally, this wide applicability is closely linked to the flexibility of the OLCT and its wide
range of generalisations of other integral transforms, such as the Fourier transform and the
fractional Fourier transform, the Fresnel transform, the shifted fractional Fourier transform
and the linear canonical transform itself.
Moreover, for parameters a, b, ¢, d, e € R (with b # 0), and the quadratic-phase function

2.1 Qape,d,e) (T,Y) = az® + bxy + cy® + dx + ey,

in [2] it was introduced the so-called quadratic-phase Fourier transform Q given by

(2.2) (Qf)(z) := \/%/Rf(y) e Qab.c.d.e) (@) dy,

where f € L'(R) or f € L*(R). Thus, we may observe thatwhena =c=d =e =0and b = £1,
Q is simply the Fourier and inverse Fourier integral transforms, respectively. Moreover, when
d = e = 0, the kernel generated by (2.1) includes the kernel of the linear canonical transform
as well as of the one of the fractional Fourier transform (up to the choice of some constant
factors that do not change the properties of corresponding integral operators). Given the above
definitions, it is also clear that the quadratic-phase Fourier transform encompasses the OLCT
as a particular case.

It is in this framework that we propose to introduce a generalisation of the quadratic-phase
Fourier transform (2.2) to the n-dimensional setting, thus performing several generations of the
aforementioned integral transforms at once. To this end, the central idea of the proposed def-
inition was to consider the most appropriate possible replacement of the real parameters that
appear in the quadratic-phase function (cf. (2.1)) of the kernel of the quadratic-phase Fourier
transform by matrices (with real entries) and to take sufficient care to ensure that these matrices
were arranged appropriately (given the non-commutativity of their multiplication) and that, as
a result, fundamental properties of this new integral operator could be demonstrated.

It is therefore in this context and expectation that we propose the following definition of the
multidimensional quadratic-phase Fourier transform.
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Definition 2.1. Let A, B, C, D and E be n x n matrices with B being symmetric and det(B) # 0.
The multidimensional quadratic-phase Fourier transform (MQFT) of f € L'(R™) is defined by

[Qu (N (x) = | fly) KFi(x,y)dy,

R
where |
IC]% (z,y) == Q(B, n)elQM—E) (=)

with Q(B,n) := (%)n/2 (det(B)'/2, Qa_py(z,y) := 2T Az + 2T By +yTCy+ 1Dz + 1 Ey, and

1 :=(1,1,...,1), and where the symbol T is denoting the transpose operator.

Remark 2.1. As previously announced this is a generalisation, for the multidimensional case, of several
other operators (or integral transforms), as it is the case of the “Quadratic-Phase Fourier Transform”
introduced in [2] (and also related with the framework of [3]).

Remark 2.2. The just introduced multidimensional quadratic-phase Fourier transform is also a gener-
alisation of several other multidimensional integral transforms. Namely:

(i) for A=C =D = E =0and B = I, we recover the multidimensional Fourier transform;

(ii) for D=FE =0,

A=C= %diag(cot(al), cot(az), ..., cot(ay))

and
B = —diag(csc(aq), csc(as), . .., csc(an)),
with o, # km, forall k € Ny and p = 1,...,n, we obtain the multidimensional fractional
Fourier transform;
(ii1) considering the multidimensional LCT (MLCT) defined in [4] and the corresponding matrix

G H
v=[7 3]
we obtain this transform, through the MQFT, considering D = E = 0 and

-1

A _JH ,

2

B—_HT

_H'G

==

with A, C being symmetric matrices. In this way, the matrix M (that characterises the MLCT),
in terms of the matrices that appear in the kernel of the MQFT, is given by
—2B~TC -B~T }

M=\p _4ap-TcT _24B-T

being this M a symplectic matrix (under the present conditions).

Moreover, note that we can rewrite the MQFT in terms of the Fourier transform F, some
variable transformations and also certain chirp functions, in the form

(23)  [Qu(f)) () = i"/2(det(B)) e AT TP [F(f(y)e' 0" Ot TEN)| (BT ),

where L An
(Ff) () = (m) [ Fwe v dy.
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In this work, we will often use the usual LP(R") norms (for p € [1,0]) and denote them by
Il e ey

Lemma 2.1 (Riemann-Lebesgue Lemma for the MQFT). Qs is a bounded linear operator from
LY(R™) into Co(R™). Namely, if f € L (R™), then Qu(f) € Co(R™) and

det(B)|'/?
90 (1)) < LG e

Proof. Using the identity (2.3), and the Riemann-Lebesgue Lemma for the Fourier transform,
we see that O/ (f) € Co(R"), provided f € L'(R™). Moreover, from the definition of Q,,, we
have

i"/?(det(B))'/? ; N
19Qar (Dl ) = sup W/ e'@u-m (@) £(y) dy‘

det(B)|/2
<Sup| et(B)] /
R

T zeRn (27‘-)”/2

| det(B)|'/?
:W\\fHLl(Rny

Q| |f(y)|dy

O

We will continue with a result that shows the invertibility of the MQFT and presents a for-
mula for its inverse.

Theorem 2.1. If f € L*(R"™) and Qp(f) € L' (R™) N Co(R™), then

(2.4) f@)= [ K5 »)[Qu(H)(y)dy

Rn
for almost every « € R", where
(2.5) K (y,x) := Q(B,n)e Q- o),

Proof. Using a substitution of variable in (2.3) allows us to rewrite the Qj; in the form
(2.6)

[QM(f)] (x) _ in/2(det(B))fl/Zei(zTAerTDx) |:]:(f(Bfly)ei((B_1y)TC'(B_1y)+TE(B_1y)))} (Cﬂ)
We shall make use of the operators 75 and M,;, given by

(78[) (z) := [(Bx)
and
(Mg f) () = g(2) f(2)
for the matrix B (and its inverse), and any function g, respectively.
So, from (2.6), we can write

27) [Qu(f)] () = [Meews F -1 Mews (f)] (2),
with
¢ :=i"?(det(B))"V/?;
wy (x) :=i(2T Az + TDx);
wo(x) :=i(zT Cx + TEJC)
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It is clear that all the operators used in the right-hand side of (2.7) are invertible in the present
framework, and therefore, from (2.7), we have

(90 (N)] (@) = [Me—wy T8 F 1 M1 ()] (2),

and so (2.4) is obtained. O
Lemma 2.2 (Plancherel type Lemma for the MQFT). If f € L?(R™), then

1
(2.8) 190 ()2 @ny = WHfHL?(Rn)-

Proof. Using (2.3) and having in mind the Plancherel theorem for the Fourier transform, we
have

11 (F)llz2en) = ||i"/2(det(B)) /26" A+ TD) [F( () el Cvt TED)] (BT

L2(Rn)
1

=| det(B)‘1/2| det(B)|*1/2 ORE I £l 22 ®m)

1
:W\\fHL?(Rn)-

O

Remark 2.3. It is clear from the identity (2.8) that, although the MQFT defined here is not uni-
tary (in L?(R")), a small modification of the definition, taking into account a different constant,
can compensate for the constant now obtained in the identity (2.8), transforming it into the
constant one. From this perspective, it is easy to redefine the MQFT (using a different constant)
to make it a unitary operator.

We recall that for 1 < p < 2, we have
LP(R™) € LY(R™) 4 L2(R™) = {f1 + f2 : f1 € L*(R"™), fo € L*(R™)}.

Thus, a possible way to interpret the definition of Qs in LP(R™), for 1 < p < 2, is to consider
f € LP(R™) such that f = f; + fo, with f; € L'(R"), fo € L*(R"), and then read off the MQFT
of fin the form Qu/(f) = O (f1) + Qnr(f2)-

For the reader’s benefit, let us now briefly recall the statement of Riesz-Thorin Interpolation
Theorem that we will use in the next proof.

Theorem 2.2 (Riesz-Thorin Interpolation Theorem; cf., e.g., [8]). Let (X, p) and (Y, v) be measure
spaces and 1 < pg,p1,q0,q1 < oo (and the measure v on 'Y is also required to be semifinite when

go = q1 = 00).
IfT : (LPo (X, p) + LP (X, p)) = (L2 (Y,v) + L9 (Y,v)) is a linear operator such that
1T fllzao vy < Mol fllzeo(x.ys  1T9llLar vy < MallgllLen (x.)
forall f € LP(X,p)and g € LP (X, p), and we consider the interpolated exponents
1 1-6 0 1 1-0 0
R — + —, R + —
Do Po b1 4o d0 T
for some 0 € [0,1], then T : LP? (X, ) — L9 (Y, v) is bounded and

1Tl oo vy < Mg~ M7 gll Leo (x

forall f € LP?(X, p).
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Theorem 2.3 (Hausdorff-Young Inequality for Q). Let 1 < p < 2 and take p' as the conjugate
exponent of p (meaning that p' > 2 and & + - =1). If f € LP(R™) then Qu(f) € LP (R™) and

|det(B)] /712
HQM(f)HLp’(R") < WHfHLP(Rn)-

Proof. We recall that from Lemma 2.2 we already know that for p = 2 it holds

1
(29) 1@n (N2 ey = WWHL?(RH)’ feL*R"),
and from Lemma 2.1, for p = 1, we have
det(B)|'/?
@.10) I lzmany < o Iy, f € LR,

Thus, using the Riesz-Thorin Interpolation Theorem, we obtain that Q;(f) : LP(R™) — LP "(R™)
is a bounded operator for p € [1, 2] (with p’ being the conjugate exponent of p). In addition, the
interpolation exponent # must satisfy

0, 1-0_1
1 2 p
Thus, 6 = % — 1 and so, again from (2.9) and (2.10), it follows
| det(B)|‘9/2

1Qar (Nl o gy < I flleemny, f € LP(R™).

(27r)n/2

3. HEISENBERG-PAULI-WEYL UNCERTAINTY PRINCIPLE

In this section, we present a LP-type Heisenberg-Pauli-Weyl uncertainty principle associated
with the MQFT.

Theorem 3.4. If1 <p <2, f € L3R"), yf € LP(R"), xQn(f) € LP(R"), then

| det(B) Y217 n| |l 2@
Omaz(B) 2 ’

where 0paq(B) is the maximum singular value of the matrix B. Moreover, the equality holds if and
only if p = 2, Mpax(BBT) = Mpin(BBT) (where \(BBT) represents an eigenvalue of the matrix
BBT) and f(y)e'®" Cv+TEY) js g Gaussian function.

Proof. From (2.3), we know that
[Qur()](x) = "/2(des(B))/ 2! A T0) [F(f(y)e @ CvrTE0) | (BTa).

(3.11) Iy f e @n) 1z Qe ()|l Lo ey >

. T -
Moreover, ||y fo®n) = [lyf(y)e!¥ v+ TEV||, gay and

I(B72) [Qar (1)} (@) s ca
=[BT )i 2 des(m)) 2 T AT [F( (et T (BT

Lr(R™)
—[det(B)|"/2||(BTa) [F(f(y)e' @ O+ TE0)] (BT )|

Lr(R™)

=|det(B)|/?~1/P

[ oo,



22 Luis Pinheiro Castro and Rita Correia Guerra

If f € L2(R"), then f(y)e!v" Cv+TEY) ¢ [2(R"). Using the Heisenberg-Pauli-Weyl uncertainty
principle for the multidimensional Fourier transform (cf. Lemma 5 of [4]), we have

()| Lo | (BT ) [Qar ()] ()] o iy
= | det(B)|"/271/7 ||y f(y)ei @ OV TED |

@ [F(fy)el ot TEn)] (z)

LP(R)

(8.12) > | det(B)|1/2—1/PM_
B 2

Additionally, | BTz|? = 2T BBTz. We note that the matrix BB7 is a real and symmetric matrix,
so there exists an orthogonal matrix U such that

UT(BBT)U = diag[\1, A2, ..., A\n)s

where A1, Az, ..., \, are eigenvalues of BBT.

We also have that
(3.13) |BTz|? = 2" BBT2 < A pae(BBY)2TUIUT 2 = \ppau(BBT)| 2|2
Therefore,

IBT2P < [Amaa(BBT)]"? |2]P.

So, considering also now (3.12), it follows

Panax (BBT)] Y2y )| 2o oy 12 1901 ()] (@) | 2o )
> [ly.f ()| oy | (BT @) [Qar (£)] ()] oy

1/271/pn||f||L2(]R”)
72 .

(B), then the inequality can be rewritten as

det(B)[ 27 ] ageny

(3.14) > | det(B)]

AS Ao (BBT) = o2

max

619 IOl o [Qur () @gsgery 2 L
From (3.13), we have that | BT z|? = A\,4.(BB7T)|z|? if and only if
(3.16) Amaz(BBT) = Apin(BBT) = 02,,,(B) = 02,;,(B) = 0*(B).

According to Lemma 5 of [4] (and also [6], for the unidimensional case), the equality in (3.14)
is attained if and only if p = 2 and f (y)eiw" Cv+TEy) jg 3 Gaussian function, that is,

F(y)elW Cu+TEY) _ coklyl®
where c is a constant and k < 0. So, we have

1 nllfllz@n)
Omaz(B) 2

if and only if B satisfies (3.16) and Fy)eiw Co+TEY) = cehlyl®, O

[y flle @)z Qe ()l Lo ®n) =

4. DONOHO-STARK UNCERTAINTY PRINCIPLES

In this section, we study the Donoho-Stark uncertainty principles of type LP. In a first sub-
section, we will do so in the most standard framework of p = 2, and then, in a second subsec-
tion, we will consider the case of p between 1 and 2.
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4.1. L?*-type Donoho-Stark uncertainty principles. We start by defining two operators on
L?(R"™):

Pyf=xaf
and
Qrf =9y xrQum(f)],

where A and I' are measurable sets on R"”, and xr denotes the characteristic function on I'.

Definition 4.2. (i) Let A be a measurable set on R, 0 < ey < land f € L*(R™). f is called
ea-concentrated on A if

[1Pae fllz2@n) < eallfllzzn)-

(ii) Let T be a measurable set on R", 0 < er < land f € L*(R"™). Qu(f) is said to be ep-
concentrated on T if

1Qrefllz2@®n) < erllfllz2@n)-
We will make use of the usual operator norms of Py, Qr : L?(R") — L?(R") defined by
[ Pa SNl 22 e
1Pall = T
rer2@y) I flle2@n
and
1Qr fl L2~
|Qrll = sup TR
rer2@n) 1 flle2@n
respectively.

In addition, we will also use the Hilbert-Schmidt norm of operators £ : L?(R") — L?(R")
of the form (Lf)(z) = [z, f(y)K (2,y)dy, where f € L*(R") and K (z,y) € L*(R™ x R"). We
recall that the Hilbert-Schmidt norm of £ is given by

1/2
ctus = ([ [ staPas)

Lemma 4.3. Let A and T be two measurable sets of R™ such that 0 < |A|, |T'| < co. Then,
1Qr Pallzrs = (2m)™/*|(B, n)[|A[Y/2|T[/2.
Proof. From the definitions of P, and Qr, we have
[QrPaf1(t) =Q4/ Ixr Qur (xa F)](t)
= [ [ NS @ n)kS .y
= | D) [ K8 ek Gy

=/, F)xa)K(t,y)dy,



24 Luis Pinheiro Castro and Rita Correia Guerra
with hy(2) := K (t,y) = [pn xr (DK (2,y)K 5 (2, t)dz. Let us now compute

Qarteam)lien) = [ s S ([ xe(OKS )k e dy

~ [ ) ([ el K e ) K8 (o1.0)

= [xa(Qx7 (XrKE)) (1) (1)
=xa(t)xr(21)KF (21, 1).

Note that ya(A)h:(A) € L?(R"). Using the last identity and the Plancherel Theorem, we
have

|QrPall7s = / / XA (YK (t,y)|? dydt
=[] o)y
=(27)" / / 119 (xahe)|(2)|? dadt

—en [ aOxe @K 0 deds
=(2m)" (B, m) PIAT).

So, [|QrPallms = (2m)"/*|Q(B, n)||A[V2[T]'/2. 0

The next Lemma gives a relation between || PaQr||zs and ||QrPa||#s-
Lemma 4.4. Let A and T be subsets of R™ with finite (nonzero) measure. Then,
[PAQrllrs = |QrPallms-

Proof. Let K(t,y) = [ K5 (z,y)K5(z,t)dx. We have that K(t,y) = K(y,t) € L*(R") with
respect to y. Let f € L?(R") and g € C°(R™). Then, we have

J1outn@rS et - [ st

-| [10ur - n@kS (e + [ 10u@l@RS w0~ [ fwntnay

< / [Qu(f — 9))(@)xr(2)KS (x, Dydz | +
.

[10u@I@RS w0~ [ fKtnay

= | [ 10u( = 9)a)r @ . )| +

/Fg(y)K(t,y)dy— f)K(t,y) dy‘

Rn

<T121B ) [ Qo (F — )l ey + \ fo- g)(y)K(@y)dy\

1
RE ICI21B ) f = gllzeen) + 1 = gllzeen 1K (£ 9) 2y

<
~(2r

<ce
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for a constant ¢ and an arbitrarily small positive €. So, this allows us to conclude that
[PAQr f1(t) =xaQx/ xr Qur (H)](1)
) [ [@u(NI@KS (@ s

=xa(t) - fy)K(t,y)dy.

Now, the last information together with the Plancherel Theorem give us

| PAQrIls = / xa(t) / K () dydt

= [ [ )Py
—(2n)" /]R ) /R 1@t (o) (@)

—(2n)" / xat) / e (@)K o ) drdt
R R
—(2m)" (B, m)PIA[T).
Therefore, || PAQr | us = (271')"/2|Q(B,n)\|A\1/2|F|1/2. O

Corollary 4.1. Suppose that f, A and T satisfy the conditions of Lemmas 4.3 and 4.4. Then,

(D) | QrPall < |QrPallms = (2m)"/2Q(B,n)||A|'/2|T]1/2,
(ii) ||PAQr|l < | PaQrllms = (2m)"/2|(B, n)[|A[V2[T|V/2.

This corollary follows directly from the definitions of || - || and || - || zs and Lemmas 4.3 and
44.

Theorem 4.5. Let A and T be two measurable sets of R™ such that 0 < |A], |T'| < oo, f € L?(R™) and
€1+ e < 1. If f is ep-concentrated on A and Qs (f) is ep-concentrated on T, then

1 1—ep—cer ?
4.17) AT = 5w ( 1Q(B, n)] )

Proof. By Lemma 2.2, we have that |Qr f| z2®n) < (2m)"2||Qar(f) |2y = || ]| 22(®n) and so
1Qr fllz> =)

< 1.
fer2@®yy  fllzz@n

(4.18) |Qrll =

Now, we consider
If — QrPafllrz@wey =If — Qrf + Qrf — QrPafllr2wr
<[|f = Qrfll2@n) + 1Qrf — QrPafllr2®ny-

Since Qs (f) is ep-concentrated on I', we have that || f — Qrf||L2rn) < er||fllz2®n). On the
other hand, using (4.18), we have

Qrf — QrPafllezmey < Qrllllf — Pafllee@ny <1 — Pafllze@wny < eallfllz2@ny,

since f is ep-concentrated on A.
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In this way, we have || f — QrPx f||2®») < (er + €a)llfllz2(rn), which gives that

| Qr Pa fllL2®n)
| £l 22 mmy
I fll2@ny = If — QrPafllr2@n)
I £1l 22 Rn)

|QrPall >

2l —er —ea
(where we have used the inequality
I fllL2eny = | f — QrPaf + QrPafllre@ny < |If — QrPaf|lr2mny + |QrPafllL2mny)-

By Corollary 4.1, we obtain (27)"/2|Q(B,n)||T|'/2|A|'/? > 1 — ep — ¢4, that is equivalent to
(4.17). 0

Theorem 4.6. Let A,I" C R™ be two measurable sets such that 0 < |A|,|T| < oo, and f € L*(R").
Let en,er > 0 be such that €3 + €% < 1. If f is ep-concentrated on A and Qy(f) is ep-concentrated

on T, then
2
1 1— 2 2
A > ( V““F)

@m)m \ 1B, n)

Proof. We have
I = Py + Ppe = PyQr + PrAQre + Phc,
where [ is the identity operator. From this identity, we obtain

If = PaQrfllZzgny = I1PAQref + Pac fll 22 (gn)-
From the orthogonality between Py and Px<, we have
If = PAQrfII72(ny = [PAQref + Pac fl|72(mny < 1Qre flIT2(mny + [1Pac fII72@n)-
This implies that

1/2
|f = PAQr fllL2@n) < (||PACfH%2(Rn) + HQFCf||2L2(R"))

2 2 2 2 1/2
< (RIS egny + RS2 )
1/2
< (e} +¢b) / I1fllz2@ny-
On the other hand, we have
If = PAQrfllczeey 2 fllL2@n) — [PAQr £l 2@y
2 fll2@ny = IPAQr|f [l £2(rmy
=1 = [|1PAQr|) I fll 2 (mn)-
Consequently, we have
1/2
(1= 1PAQr ) 1 fl 2@y < I = PaQrfllzaen < (63 +¢2)" 2 Ifllz2n)-
Corollary 4.1 gives us that || PAQr| < (2m)"/2|Q(B,n)||A|*/2|T'|*/2. Hence,
(1= @m)" 208, ) IA2I02) |z < (1= 1PAQE) I 2

1/2
< (e} +¢b) Ifllz2@ny,
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(2m)" 1B, )| [A[ T2 21— ([ + ek,
2
1- /T )

|A[[T] > (WW

ie.,

and so,

O

4.2. LP-type Donoho-Stark uncertainty principles, with 1 < p < 2. In this subsection we will
study certain Donoho-Stark uncertainty principles in the context of LP(R™) spaces, for which,
as preparatory results, we will obtain new inequalities that can also be compared, in a certain
sense, with the Hausdorff-Young inequality already obtained for Q,, in the previous section.
Those inequalities will also involve the essential supports (“esssupp”) of f € LP(R™) and its
MQFT.

Proposition 4.1. If f € L*(R™) N LP(R"), 1 < p < 2, then

| det(B)['/2
(27)n/2

1/p'
)

1901 () o gy < | £l Lo (e |ess supp |7 |ess supp Qpr (f)|

1 1 _
where St = 1.

Proof. By the Riemann-Lebesgue Lemma and Holder’s inequality, we have

1Q0s () Lo gy < Qast (F) 2o @ less supp Qs ()7

| det(B)|['/?
Sw“f”Ll(R“)

| det(B)|'/2
SWwHLﬁ(Rn)

‘1/1/

esssupp Qnr(f)

esssupp f|V/7 |ess supp Qas (f)[V/7.

O

Proposition 4.2. If f € L*(R™) N LP(R"), 1 < p < 2, with p' being such that 1/p + 1/p’ = 1, then
(4.19)

det(B)|/P—1/2
190 ()| ey < LAEBNTTE

| =2)/20
(271-)71/2

|| 1l 12 (nyless supp £/ |ess supp Qar(f)

Proof. By the Hausdorff-Young inequality and generalised Holder’s inequality, we obtain
1 (Nl 2 eny <IQar ()l Lo ey less supp Qar (£)|®' 272
(B)|V/p=1/2
(27’()”/2
(
(

|(p’—2)/2p/

Hf”LP(R") esssupp Qar(f)

< | =2)/20

| fIl L2 () |ess supp f\(2_p)/2p|ess supp 9 (f)

Corollary 4.2. If f € L*(R") N LP(R™), 1 < p < 2, then
less supp Qs (f)|® =272 > | det(B)|"/>~'/?|ess supp f|P~2/?P,

where p' is the conjugate exponent of p.
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Proof. We only have to consider the Plancherel Theorem for the MQFT, together with (4.19), to
obtain

| det(B)['/P~1/2[ess supp f*~P/*P|ess supp Qus ()| =2/ > 1.
0

Lemma 4.5. Let A, T be two measurable subsets of R™ such that 0 < |A[,|T'| < ccand f € L*(R™) N
LP(R™),1<p<2withl/p+1/p" = 1. Then,

. e 1/p—1/2
(i) 11Qar(Qrf)ll ot oy < H GRS Nl en;
(ii) | Qa1 (QrPaf )| ot oy < 1B, ) [|AIY7[T[/7) fl| o )

Proof. By the Hausdorff-Young inequality for Q,s, we have

)
, 1/p’
1Qnm (Qr )l Lo ey = (/FI[QM(f)](I)I” dw)
<[I1Qum ()l e )
| det(B)|!/P—1/2 .
Swufnmmn),
(i)
, 1/p’
@ (@A) = ([ NQus(PrT N )
o 1/p’
=< /f(y)’CA%(x,y) dy dx) :
rlJa
In addition, it holds
1/p , 1/p’
vy dy‘ (/ |f(y |de) (/A % (2, )P dy)
<I| £l @y | AP B, ).
So,
1/p’
19 (QePs D soy < [ 1Mol d) 0250
= || Il o ey | AP TP (B, ).
([l
Definition 4.3. (i) f € LP(R™) is said to be e x-concentrated on A in LP-norm if

| Pacllze@ny = [If — Paflloe@®ny < eallflle@mn)-

(ii) QO (f) is is called ep-concentrated on I" in LP-norm if

190 (Qre f)llrny = |19 (f) — Qui(Qrf)llLrwny < erl|Qar(f) | Lr®n)-
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Theorem 4.7. Let A, T" be two measurable subsets of R™ such that 0 < |A|,|T| < oo, and f € L*(R™)N
LP(R™), 1 < p < 2. If f is ep-concentrated on A in LP-norm and Qps(f) is ep-concentrated on T" in
L? -norm, and 1/p+1/p’ =1, then

Lt e+ 19(B,n) [ A[ =Y/ TP

190 ()l Lo ey < | fllLr gny-

1_51‘

Proof. Consider
190 ()l Lo ey =119 (f) = Qar(QrPaf) + Qaa(QrPaf) Lo )
<[1Qm(QrPaf) v @y + 120 (f) = Qs (Qr )l Lo (=)
HQm(Qrf) — Qu(QrPaf)ll o &n)
< Qu(@rPAS) 1o ey + el @aa (F)l 1o gy + 1 @e [Qr(f = PAS 1 eny -
By (¢) in Lemma 4.5 and the fact that f is e5-concentrated on A in the L? norm, we have

| det(B)['/P~1/2 | det(B)[!/P1/2

1QumQr(f = Paf)ll Lo mny < Rk If = Pafllze@n) < W€A||f“LP(R")~

By (i¢) in Lemma 4.5, we obtain

1@ (QrPaf) ot ey < 1B, )AL [T fl] oy

Consequently,
det(B)|/P~1/2
191 (g < Al ey + erllQar v o
+ 1B, ) [IA PO 2 f ) o,
which implies that

det(B)|'/P=1/2 N N
(1= el Qar(Dlaw oy < (L e+ 0B WAL I ) s

and so,

1/p—1/2
L e + 9B, ) [A]
190 ()l Lo ey < 11l e @n

1—€F
g

Theorem 4.8. Let A, T be two measurable subsets of R™ such that 0 < |A|,|T| < oo, and f € L*(R™)N
LP(R™), 1 < p < 2. If f is ep-concentrated on A in L'-norm and Qs (f) is ep-concentrated on T in
LP -norm, with 1/p + 1/p’ = 1, then

L[/ |AM7| det(B)[ /2
HQM(f)HLP’(R") < (1 _ EF)(l _ EA)( )n/g HfHLP(R"

Proof. We have
1Qm (Dl Lo @y <NQar(f) = Cua(@r ) Lo ey + 10 (@ ) 27 ey

1/p’
<er | Qut ()l e (/ 2u (@) da:)

<erl|Qu (Nl o @y + TP 11Qar ()] oo (n) -
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So, recalling that 0 < er < 1, we have

T 1/
10 oy <

and, by the Riemann-Lebesgue Lemma for the MQFT it follows

[T/ det(B)|'/2
(1 )( )n/2 ||f||L1(]R“

IIQM( Mz @)

” QM(f) ”LP’ (R™) <

ince f is ex-concentrated on A in L*-norm, we obtain
S trated on A in L! bt

£l ®ny < Pacfllr@ny + IPAfIlt@n)
<eallfllo e + /A (@) da

<eallfllr@ny + AP £l o),
by Holder’s inequality. This is equivalent to

A )
1— N Lp(R7)-

Il ey <

So, we obtain
[T/ [A]Y/P"| det(B)[M/2
/on < p(Rn
HQJ\/[(f)”LP R7) = (1 — 61")(1 _5A)( )n/g Hf”L (R™)

Remark 4.4. If p = p’ = 2, the previous theorem reduces to the classical case
|F|1/2|A|1/2 > (1 — €F)(1 - 61\)
[det(B)[/2
Theorem 4.9. Let A, T be two measurable subsets of R™ such that 0 < |A|,|T| < oo, and f € L*(R™)N
LIR™) N LP(R™), 1 < ¢ < p < 2. If f is ep-concentrated on A in Li-norm and Qps(f) is er-
concentrated on T in LP -norm, with 1 /p+1/p =1, then

(IT||A|)Y/2=1/P| det(B)|/P—1/2
”QM(f)HLP'(R”) - (27r)n/2(1 —er)(1—cp) ||f||Lp(Rn).

Proof. Since Qs (f) is ep-concentrated on I' in LP -norm, we have

190 (Pl Lo ey =190 (f) = Las(Qr f) + Qs (Qr ) Lo (gem)

1/p'
<[[@um(f) = Qum(Qr )l Lo rm) </|QM )P’ d96>

<erl| Qur ()l ey + P17~ 1Qur () Lo oy

‘l/q—l/p ‘ det(B)|1/p_1/2

<er||Qu ()l @ny + IT WHfHLq(Rn)a

by the Hausdorff-Young inequality with 1/¢ 4+ 1/¢’ = 1. So, since 0 < er < 1, we have

|T|*/a=1/P| det(B)|"/P—1/2
HQM(f)”LP’(]R”) < (27T)n/2(1 — €F> ||f||Lq(]R")'

Since
I fllzaeny < If — Pafllpocgny + [ Pafllna@ny < eallfllparny + 1AM T2) £l ogn),
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we have
A|V/a=1/p

aqpry < ——M8M—
e

£l e rn)-

Consequently,

|T|Y/a=1/P| det(B)|"/P—1/2 |A|V/a-1/p

19D ller ey < (2m)n/2(1 —er) 1—en 1ler -

O

Let us now prepare to culminate with the last significant result, which will have to do with
an uncertainty principle associated with bandlimited functions, in relation to a certain class of
functions, invariant under Qr, which we will now formalise. For 1 < p < 2 we shall consider
B (R™) := {h € L'(R") N LP(R") : Qrh = h}.

If f € LP(R™) satisfies

| f = hllr@ny < erllfllLe@n)

for some h € BgF(R”), then f is said to be er-bandlimited on I' in LP-norm.

Lemma 4.6. Let A, T be two measurable subsets of R™ such that 0 < [A[, |T| < oc. If h € By (R™),
1< p<2, then

(IT|AD | det(B)[*/?
||PAh||LP(R") < (277)” ||h||LP(Rn).

Proof. By the Holder inequality, the Hausdorff-Young inequality and the definition of the B7, (R™)
space, we have
1@ (M)l 1y =11Qm (Qrh) || L1 (mr)
=[x Qum (M)l L1 (mn)
<ITIY?)Qut (W)l o' vy

1/p [ det(B)[/P71/2

S‘]‘—‘| (271_)”/2 ||h||LP(]R")

and

19 (Rl L2ny =119 (Qrh)|| L2 (rny
=|Ixr Qum (h)| L2 ®n)
<D Qg () o gy

_iy2|det(B)[H/P1/2
<|r|V/P UQWWLHLP(RH)’

which implies that Qys(h) € L*(R™) N L?(R"). Therefore, we have

h(t) = (@Qrh)(t) = Qy; xr Qu(W](t) = /F[QM(h)](x)KJ%(xvt) dz.
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Hence,
01 < [ 1Qu ()@ (a.1)] do
\det )2
(2m) C(em)n/2 /‘QM o) de
| det(B)['?
_WW‘ /pHQM( )”LP’(]R")
| det(B)[MP
< p P(R")
S e T2 (2 ] L r
Consequently,

(ITYIAD | det(B) /7
|PAR ] pogeny < e

O

Theorem 4.10. Let A,T" be two measurable subsets of R™ such that 0 < [A|,|T'| < oo, and f €
LY R™) N LY(R™) N LP(R™), 1 < q < p < 2. If f is en-concentrated on A in Li-norm and er-
bandlimited on T in LP-norm, then

crlAJ/S e [D[/PIA[] det(B)]7(1 + )
L e Il

Proof. Since f is ep-concentrated on A in L?-norm, we obtain
I fllzany <IIf — Pafllzagny + | Pafllpan)
S5/\||f||L<1(IR") + |A|1/q_1/pHPAf||LP(]R”)7

which implies

IA\1

(4.20) 1l e @y < IIPAfIILp(Rn

As [ is ep-bandlimited on I' in LP-norm and by the previous lemma, there exists a function
h € BP(T") such that

| PAfllLe@ny SIPACf = R)llLe@ny + | PAR|| e me)
<If = hllze@ny + [|PAR|| e @ny

T||A])Y/7| det(B)|"/>
<erlflzrgee) + SIS I e,

Since
I8l Lo@ny = I flLe@ny < Ik = Flloey < erllfllLe@n),
we have that
[All ey < (1 + )|l fllLe@n)-
So,

L||A])Y/?| det(B)|/?P(1 +
P s S [

Consequently, recalling (4.20), we have

oy < (AL PP dUBIP A4 en) Yy
PED =\ 1 —ep (2m)"(1 — ea) Lo (®?)-
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If p = ¢, then the last result allows us to directly write the following corollary.

Corollary 4.3. Let A,T" be two measurable subsets of R™ such that 0 < |A|,|I'| < oo, and f €
LY(R™) N LP(R™), 1 < p < 2. If f is ep-concentrated on A and ep-bandlimited on T in LP-norm, then
(1 — EAN — Ep)p(QTF)np

[Aet(B)[(1 + er)?

ITIIA[ =
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