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ABSTRACT
Draglines, as massive and expensive stripping machines, are highly utilized in open cast mining 
to remove overburden. Reliabilities and availabilities of draglines play a critical role to sustain 
the continuity of overburden stripping and, hence, coal productions. Thorough understanding of 
the system and its components is required in order to accomplish high levels of availability and 
it can be achieved with an in depth reliability analysis. This study presents component-based 
reliability analysis of a walking dragline being operated in an open cast coal mine in Turkey. The 
main objective of the study is to understand the effects of each component or subsystem of a 
dragline on its reliability which will further provide insight into optimized maintenance schedule. 
The results of the study revealed that the system is expected to fail in 37.9 hours, most probably 
due to a failure in the rotation component of the movement subsystem. Dragging rope is predicted 
to have the highest contribution to number of failures within a year, but the motors and generators 
will cause the longest downtime if failed. Reliability importance (RI) values were also found to be 
useful to decide which components need attention at certain time intervals.

ÖZ
Çekme kepçeli yerkazarlar, açık ocak kömür madenlerinde örtükazı işleminde kullanılan büyük ve 
pahalı maden makineleridir. Bu yerkazarların güvenilirliği ve kullanılabilirliği, örtükazı işlemlerinin 
sürekliliğinde ve dolayısıyla kömür üretiminde önemli bir rol oynamaktadır. Yüksek seviyede 
kullanılabilirliği sağlamak için sistemin ve bileşenlerin kapsamlı bir şekilde anlaşılması gerekir ve 
bu kapsamlı bir güvenilirlik analizi ile başarılabilir. Bu çalışma, Türkiye’de açık ocak olarak işletilen 
bir kömür madeninde kullanılan bir çekme kepçeli yerkazarın bileşene dayalı güvenilirlik analizini 
sunmaktadır. Çalışmanın temel amacı, bu yerkazarın her bir bileşeninin ve alt sisteminin, sistem 
güvenilirliği üzerindeki etkilerini anlamak ve böylece optimize edilmiş bakım çizelgesine ilişkin 
daha fazla bilgi sağlamaktır. Sonuçlara göre, yerkazarın hareket alt sisteminin dönüş bileşeni 
arıza ihtimali en yüksek bileşen olarak belirlenmiştir ve yerkazarın 37.9 saatte arızalanacağı 
öngörülmüştür. Çekiş halatı ise bir yıl içinde arıza sayısına en fazla katkıda bulunacak bileşen 
olacağı tahmin edilmiş, ancak motorlar ve jeneratörler arıza halinde en uzun kesintilere neden 
olmaları beklenmektedir. Güvenilirlik önem (RI) değerlerinin, belirli zaman aralıklarında hangi 
bileşenlere dikkat edilmesi gerektiğine karar vermek için yararlı olduğu saptanmıştır.
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INTRODUCTION

Draglines, as massive and expensive stripping ma-
chines, are highly utilized in open cast mining to 
remove overburden. Unexpected breakdown of the 
dragline results in delayed stripping and deferred 
coal production and increased maintenance costs. 
The draglines are composed of several subsys-
tems or components which need to be maintained 
and available for the whole system to be available. 
Therefore, the reliabilities of each subcomponent 
significantly affects the whole system reliability. 
The reliability of the dragline can be increased by 
regular maintenance and renewal but since these 
operations also have a cost, the optimum frequen-
cy should be determined. In order to determine the 
intervals for maintenance and repair, the change 
in the reliability of the dragline with time should be 
observed and a suitable distribution should be pro-
vided.

The objective of the study is to construct a reliability 
model with the help of fault tree analysis in order to 
determine the roles of different components in the 
dragline’s overall reliability. The scope of this study 
is the development of a reliability model of a drag-
line considering both the system and the sub-units 
using statistical modeling software and characteri-
zation of the system with fault tree analysis which 
is an analytical technique used to analyze a system 
to determine all the credible ways in which a single 
undesired event (top event) can occur.

The research methodology essentially entails five 
steps: (i) collection of failure data from the mine 
and classification of the failure data and calcu-
lations to find times between failures and failure 
times, (ii) determination of the subsystems and 
their components considering expert opinion and 
determination of probability distributions of the 
failure data for each subsystem using the com-
puter software Weibull 7, (iii) reliability modeling 
of the subsystems, determining the change in re-
liability through time for the components reliability 
estimation, (iv) implementing Fault Tree Analysis 
(FTA) to combine subsystem reliabilities and de-
termining the reliability of the whole system, and 
(v) determination of critical components which 
require immediate maintenance.

Following the introductory chapter, section 2 com-
prehensively presents the implementation of the 
research methodology. Section 3 provides a case 
study to show the application of the developed mo-
del on one of the operating draglines in Turkey. Se-
ction 4 presents the main conclusions drawn from 

the study and recommendations for future studies 
in this research domain.

1. RESEARCH METHODOLOGY

1.1. Data Classification and Preliminary 
Analysis

The failure data usually consists of; description 
of the failure, time of failure and time of repair. 
The values required for the reliability analysis are 
the time between failure (TBF) and time to repair 
(TTR) data. Prior to calculating those values, fa-
ilure data should be classified into components 
and sub-units. Machines are mechanical and 
electrical systems operating with the coordina-
tion of many components carrying out different 
functions. Classification can differ in terms of ex-
tent, meaning a component can be selected as 
the motor of the machine as a whole or the motor 
itself can be classified into several components 
such as pistons, bearing, shaft etc. This classifi-
cation depends on the scope of the analysis.

After decomposing the system into components, 
TBF and TTR values are calculated for each com-
ponent for statistical analysis. TBF values should 
be calculated, keeping in mind that the compo-
nent is not working for the whole period between 
two component failures. Other component failu-
res in between should be taken into account for 
the calculations. TTR values are simple and ba-
sically the time it takes for the component to start 
working again. After preparing the data sets, they 
should be checked for trends and dependencies.

Monotonic increase or decrease in TBF data sug-
gest the component to be in non-stationary state, 
meaning the component is either in wear-out or 
infant mortality state. Non-stationary failure data 
can be modelled using non-homogenous Poisson 
process. The data should also be examined for 
correlation. Stationary but correlated data can be 
modeled using branching Poisson process. If the 
data are independent and identically distributed 
(i.i.d.), meaning there is no evidence of trend and 
data dependency, the reliabilities can be model-
led using best-fit distributions (Barabady and Ku-
mar, 2008).

In order to check data sets for trends, run charts 
are practical tools. The data sets can be exami-
ned for possible trends such as mixtures, oscil-
lations, trends, and clustering. The data can be 
considered trend free with p-values below 5%, 
rejecting the hypothesis of the presence of men-
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tioned anomalies. Figure 1. shows a sample run 
chart for a sample data set. The run chart is cons-
tructed using Minitab 17 software. A run is defi-
ned as succession of similar events proceeded 
and followed by a different event. In Figure 1., 
two type of runs are investigated; about median 
and up/down. One counts the runs of above and 
below the median value, and the other counts inc-
reasing and decreasing sequences. The p-values 
show that there are no apparent signs of cluste-
ring, mixtures, trends or oscillations (p-values > 
0.05). Pearson’s correlation coefficient can be 
used to check for linear correlations between 
two data sets. However, non-linear correlations 
shouldn’t be neglected and checked via graphical 
methods.

Figure 1. Run chart of a sample dataset

In order to see if the component is in its stationary 
period, cumulative TBF plots can be examined. 
If the component is in its useful life period (stati-
onary), the plot is expected to be a straight line. 
Figure 2. is the cumulative TBF plot of the same 
sample failure data that shows a stationary be-
havior.

Figure 2. Cumulative TBF plot of a sample dataset

1.2. Reliability Assessment using Fault Tree 
Analysis

Reliability assessment starts with determining 
the failure and repair behavior of components 
and representing those behaviors with a statisti-
cal model. After checking the data for trends and 
dependencies, the process that defines the data 
best is selected. In the scope of this paper, data 
is assumed to be i.i.d. and best-fit probability dist-
ributions are determined. There are various com-
puter softwares that will aid in fitting a distribution 
and Weibull ++7 is used in this paper. Each com-
ponent should be assigned two distributions; one 
for TBF data and one for TTR data.

Failure distribution assignments for TBF data 
start to give us some information about the com-
ponent reliabilities. A useful information to obtain 
from a failure distribution is the mean life time. 
This value is the expectation of the TBF distribu-
tion and gives the estimated time for that compo-
nent to work without failure. The distributions also 
give the change in component reliabilities with 
time. Component reliabilities after a certain time 
of operation can be determined. From the dist-
ributions assigned to TTR data gives the mean 
time it takes for the component to continue opera-
tion after a failure.

One of the most common distributions used in 
lifetime distributions in reliability engineering is 
the Weibull distribution. Due to its versatility, it 
can take on other distributions’ characteristics. 
and can be with 2 or 3 parameters. 2 parameter 
Weibull distributions contain the scale and shape 
parameters that determine the life characteristics. 
The cumulative density function of a Weibull dist-
ribution can be defined as (Reliasoft, 2015);

  (1)

The cumulative density function is the same fun-
ction used to calculate the failure probability, and 
the reliability is given as 1 – F(t).

3-parameter Weibull distribution has a location 
parameter in addition to those of 2-parameter 
Weibull distribution and it has a cumulative distri-
bution function of (Reliasoft, 2015):

  (2)
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In Equation 2, 𝛽𝛽 is the shape parameter, 𝜂𝜂 is the 
scale parameter, 𝛾𝛾 is the location parameter and t 
is time. 

Lower shape parameters (𝛽𝛽 < 1) suggest that the 
failure frequency is high at start and decreases 
continuously which is similar to an exponential 
distribution which occurs when β equals to one. 
Shape parameters greater than one suggest that 
the failure frequency increases to maximum and 
then decreases with time.  

The scale parameter is an estimate of the mean 
and gives the time when the failure probability is 
63.2%. The location parameter in the 3-
parameter Weibull distribution suggests that no 
failure occurs before a certain time. In other 
words, a location parameter greater than one 
indicates that the curve does not start from the 
origin, but starts from the right-hand side. In 
Figure 3a and 3b, the effect of shape and scale 
parameters can be seen. 
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In Equation 2, β is the shape parameter, ƞ is the 
scale parameter, ɣ is the location parameter and 
t is time.

Lower shape parameters (β < 1) suggest that the 
failure frequency is high at start and decreases 
continuously which is similar to an exponential 
distribution which occurs when β equals to one. 
Shape parameters greater than one suggest that 
the failure frequency increases to maximum and 
then decreases with time.

The scale parameter is an estimate of the mean 
and gives the time when the failure probability is 
63.2%. The location parameter in the 3-parameter 
Weibull distribution suggests that no failure occurs 
before a certain time. In other words, a location 
parameter greater than one indicates that the cur-
ve does not start from the origin, but starts from 
the right-hand side. In Figure 3a and 3b, the effect 
of shape and scale parameters can be seen.

(a)

(b)

Figure 3. Effect of Shape (a) and Scale (b) parameters 
on Weibull pdf (Reliasoft, 2015)

Another widely used distribution is exponenti-
al distribution which suggests a failure behavior 
starting with high failure frequency and decrea-

sing continuously. The exponential distribution 
has one parameter which is the failure rate (λ) 
which is the inverse of mean. There can also be 
2-parameter Exponential distributions where the 
other parameter is the location parameter similar 
to the one in the Weibull distribution which shifts 
the curves t0 location to the right or left. The fai-
lure probability from an exponential distribution is 
calculated as (Reliasoft, 2015);

 (3)

After determining component failure distributions, 
fault tree analysis (FTA) is the graphical tool that 
aids in bringing the components together. FTA is 
an analytical technique for analyzing the system 
in terms of different component failures leading to 
system failure which is called top event. FTA is a 
top to down, failure oriented symbolic logic model 
used to determine the probability of system failure 
by identifying failure paths leading to it (Ericson 
II, 1997).

The system at hand should be constructed care-
fully and thoroughly where every possible cause 
for system failure should be taken into account. 
Components can cause system failures with vari-
ous ways. In order to represent component roles 
in system operability, different logic operators are 
used in fault tree construction:

• OR gate: occurrence of at least one input is 
enough for the output to occur.

• AND gate: all input events must occur for the 
output event to occur.

• Exclusive OR gate: only one input should oc-
cur for the output event to occur.

• Priority AND gate: all input events must occur 
in a specific sequence for the output to occur.

• Inhibit gate: inputs must occur and a conditi-
on should be satisfied for the output event to 
occur.

With these in mind, the fault tree is constructed with 
component failures as basic events, leading up to 
the top event which is the system failure. Events 
and gates are represented with different symbols 
and some of them can be seen in Figure 4.
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Figure 4. Symbols used for operators in Fault 
Tree Analysis (Vesely et al., 1981) 

AND gate represents a parallel system where OR 
gate represents a series configuration. Figure 5a 
and 5b shows the fault tree representations of 
simple series and parallel systems and reliability 
of the systems can be calculated accordingly. 

 
(a) (b) 

Figure 5. Fault tree representations and reliability 
calculations of simple series (a) and parallel (b) 
configurations 
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Figure 4. Symbols used for operators in Fault Tree 
Analysis (Vesely et al., 1981)

AND gate represents a parallel system where OR 
gate represents a series configuration. Figure 5a 
and 5b shows the fault tree representations of 
simple series and parallel systems and reliability 
of the systems can be calculated accordingly.

(a) (b)

Figure 5. Fault tree representations and reliability cal-
culations of simple series (a) and parallel (b) configu-
rations

The knowledge and expertise of the analyst is 
crucial for fault tree analysis so it is difficult to de-
fine how to construct a fault tree. Fault tree requ-
ires detailed analysis and may require compre-
hensive assumptions, but other than those, the 
main steps can be listed as (Öktem, 2006);

• Determining the Top Event: The undesired 
event to be analyzed is chosen.

• Combining the Known Causes: Existing faulty 
states and failure events are determined with 
the available knowledge. Even though the fa-
ilure list can be lacking, it is important for the 
fault tree construction.

• Construction of Fault Tree: Independent 
events that may cause the top event are de-
termined. These events are connected with an 
OR gate and the construction continues from 
top to bottom trying to find other failure cau-
ses.

• Revision, Addition and Testing: Fault tree 
construction is a trial and error process no fai-
lure causes should be overlooked.

• Evaluation of the Results: The completed fault 
tree is evaluated according to the purpose of 
the analysis. The evaluation can include vari-
ous stages: listing minimum cut sets, grading 
minimum cut sets, and calculation of probabi-
lities etc.

After constructing the fault tree for the whole 
system, system reliability can be calculated and 
analyzed. In addition to obtaining system reliabi-
lity characteristics, importance factors are other 
important outputs. Those factors determine the 
components that have the highest influence on 
system reliability at a given time. This information 
can be put into good use in terms of preventive 
maintenance. Birnbaum’s Importance measure is 
one of the commonly used factors and calculated 
as the partial derivative (Reliasoft, 2017);

   (4)

where I(t) is the importance value, Rs(t) and Ri(t) 
are the system’s and ith component’s reliabilities 
at time “t”. Since it is a time dependent value, 
most important components may vary at different 
time intervals.

1.3. Simulation

Until now, the analyses are done using only the 
TBF data and the time it takes to repair different 
components is not taken into account. A compo-
nent may have high reliability but its repair may 
take a considerable time. In order to see the effe-
ct of repair times, obtained TTR data distributions 
are introduced to the fault tree and the system 
is simulated for a period of time. The availability 
simulation gives important information about the 
component contributions to system failures and 
downtimes. There are two results obtained from 
the simulation that are important for maintenan-
ce planning and they are: Failure Criticality In-
dex (FCI) and Operational Criticality Index (OCI). 
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availability simulation gives important information 
about the component contributions to system 
failures and downtimes. There are two results 
obtained from the simulation that are important 
for maintenance planning and they are: Failure 
Criticality Index (FCI) and Operational Criticality 
Index (OCI). They are calculated as; 
 

𝐼𝐼=>?@(𝑡𝑡) =
ABCDEF	GH	IJK:EC	LGMNONP	>QORBFEK	

?QBKES	DJ	?GCTGNEN:	=	ON	(U,:)
ABCDEF	GH	IJK:EC	>QORBFEK	ON	(U,:)

			(5) 

𝐼𝐼=W?@(𝑡𝑡) =
XG:QR	SGMN	:OCE	GH	YGCT	
MZEN	KJK:EC	SGMN	ON	(U,:)

XG:QR	KJK:EC	SGMN	:OCE	ON	(U,:)
													(6) 

FCI value is the percentage of a components 
failures in a time interval to total number of 
system failures in that time interval. Only the 
number of failures are considered without the 
influence of downtime. Other parameter is OCI 
which is defined as the percentage of a 
component’s down time over the system 
downtime. Both these values should be 
considered in determination of critical 
components. 

Another issue that should be kept in mind is that 
repair efficiencies may vary from component to 
component. In other words, some components 
may be replaced and brought back to as-good-
as-new condition where other components may 
be repaired to its condition right before the failure 
(as-bad-as-old). There is a parameter called 
“Restoration Factor” to be entered for the 
simulation that governs the reliability of the 
component after it is repaired. 

2. CASE STUDY 

The subject of the case study is a dragline 
operating in Western Lignite Enterprises (GLİ) 
owned by Turkish Coal Enterprises (TKİ) in 
Tunçbilek/Kütahya since 1970. The failure data 
since 1998 to 2011 for the dragline is obtained 
from GLİ. The data included type of failure, failure 
definition and explanation, time of failure, and 
time the failure is fixed. After picking out the 
duplicate data, there were 1023 failure data for 
the dragline.  

The TTR data for each failure and the TBF data 
(operational time) are calculated considering that 
the dragline works 21 hours a day. Before the 
TBF are calculated, the dragline is decomposed 
into its components and they are listed in Table 1. 

As seen in Table 1, even though the most 
number of failures occur in the dragging unit 
taking up 27% of all failures with 281 failures, the 
downtime due to the failures in the machinery 
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They are calculated as;

 (5)

 (6)

FCI value is the percentage of a components fa-
ilures in a time interval to total number of system 
failures in that time interval. Only the number of 
failures are considered without the influence of 
downtime. Other parameter is OCI which is de-
fined as the percentage of a component’s down 
time over the system downtime. Both these valu-
es should be considered in determination of criti-
cal components.

Another issue that should be kept in mind is that 
repair efficiencies may vary from component to 
component. In other words, some components 
may be replaced and brought back to as-good-
as-new condition where other components may 
be repaired to its condition right before the fai-
lure (as-bad-as-old). There is a parameter called 
“Restoration Factor” to be entered for the simula-
tion that governs the reliability of the component 
after it is repaired.

2. CASE STUDY

The subject of the case study is a dragline ope-
rating in Western Lignite Enterprises (GLİ) owned 
by Turkish Coal Enterprises (TKİ) in Tunçbilek/
Kütahya since 1970. The failure data since 1998 
to 2011 for the dragline is obtained from GLİ. The 

data included type of failure, failure definition and 
explanation, time of failure, and time the failure is 
fixed. After picking out the duplicate data, there 
were 1023 failure data for the dragline.

The TTR data for each failure and the TBF data 
(operational time) are calculated considering that 
the dragline works 21 hours a day. Before the 
TBF are calculated, the dragline is decomposed 
into its components and they are listed in Table 1.

As seen in Table 1, even though the most num-
ber of failures occur in the dragging unit taking up 
27% of all failures with 281 failures, the downti-
me due to the failures in the machinery house is 
7,805 hours which is more than 50% of the total 
down time.

Following the classification of the data, TBF 
values are calculated for each component and 
checked for randomness. There were no appar-
ent trends in the data sets so they are modeled 
by their best-fit distributions. Distributions of each 
component of each subsystem were determined 
using the Weibull ++7 software (Reliasoft, 2011a). 
Since boom component does not have sufficient 
failure data, it was omitted in the analysis. Most 
of the components were found to have a Weibull 
distribution as their best-fit failure distributions 
with one having exponential distribution. The fail-
ure distributions of the rigging components can 
be seen in Table 2. Using the determined distribu-
tions, reliability plots of the components are gen-
erated and the reliability vs. time plot of the same 
components are presented in Figure 6.

SUBSYSTEM Components # of failures Down Time (hrs)

Dragging Rope, Chain, Socket, Ringbolt, Control 281 1,491.58

Hoisting Rope, Brake, Socket, Control 101 1,229.83

Rigging Rope, Ringbolt, Socket, Pulley 182 380.25

Bucket Chain, Pins, Bucket Main Body, Ringbolt, Teeth 182 653.50

Boom Boom 10 99.00

Movement Rotation, Walking, Warning 121 2,307.70

Machinery House Motors, Generators, Lubrication 146 7,805.11

TOTAL 1,023 13,948.52

Table 1. Dragline components and summary of subsystem failure data

		

The knowledge and expertise of the analyst is 
crucial for fault tree analysis so it is difficult to 
define how to construct a fault tree. Fault tree 
requires detailed analysis and may require 
comprehensive assumptions, but other than 
those, the main steps can be listed as (Öktem, 
2006); 

- Determining the Top Event: The undesired 
event to be analyzed is chosen. 

- Combining the Known Causes: Existing faulty 
states and failure events are determined with 
the available knowledge. Even though the 
failure list can be lacking, it is important for 
the fault tree construction. 

- Construction of Fault Tree: Independent 
events that may cause the top event are 
determined. These events are connected with 
an OR gate and the construction continues 
from top to bottom trying to find other failure 
causes. 

- Revision, Addition and Testing: Fault tree 
construction is a trial and error process no 
failure causes should be overlooked. 

- Evaluation of the Results: The completed 
fault tree is evaluated according to the 
purpose of the analysis. The evaluation can 
include various stages: listing minimum cut 
sets, grading minimum cut sets, and 
calculation of probabilities etc. 

After constructing the fault tree for the whole 
system, system reliability can be calculated and 
analyzed. In addition to obtaining system 
reliability characteristics, importance factors are 
other important outputs. Those factors determine 
the components that have the highest influence 
on system reliability at a given time. This 
information can be put into good use in terms of 
preventive maintenance. Birnbaum’s Importance 
measure is one of the commonly used factors 
and calculated as the partial derivative (Reliasoft, 
2017); 

𝐼𝐼 𝑡𝑡 = 678(:)
67<(:)

                          (4) 

where I(t) is the importance value, Rs(t) and Ri(t) 
are the system’s and ith component’s reliabilities 
at time “t”. Since it is a time dependent value, 
most important components may vary at different 
time intervals. 
 

1.3. Simulation 

Until now, the analyses are done using only the 
TBF data and the time it takes to repair different 
components is not taken into account. A 
component may have high reliability but its repair 
may take a considerable time. In order to see the 
effect of repair times, obtained TTR data 

distributions are introduced to the fault tree and 
the system is simulated for a period of time. The 
availability simulation gives important information 
about the component contributions to system 
failures and downtimes. There are two results 
obtained from the simulation that are important 
for maintenance planning and they are: Failure 
Criticality Index (FCI) and Operational Criticality 
Index (OCI). They are calculated as; 
 

𝐼𝐼=>?@(𝑡𝑡) =
ABCDEF	GH	IJK:EC	LGMNONP	>QORBFEK	
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			(5) 
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XG:QR	SGMN	:OCE	GH	YGCT	
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													(6) 

FCI value is the percentage of a components 
failures in a time interval to total number of 
system failures in that time interval. Only the 
number of failures are considered without the 
influence of downtime. Other parameter is OCI 
which is defined as the percentage of a 
component’s down time over the system 
downtime. Both these values should be 
considered in determination of critical 
components. 

Another issue that should be kept in mind is that 
repair efficiencies may vary from component to 
component. In other words, some components 
may be replaced and brought back to as-good-
as-new condition where other components may 
be repaired to its condition right before the failure 
(as-bad-as-old). There is a parameter called 
“Restoration Factor” to be entered for the 
simulation that governs the reliability of the 
component after it is repaired. 

2. CASE STUDY 

The subject of the case study is a dragline 
operating in Western Lignite Enterprises (GLİ) 
owned by Turkish Coal Enterprises (TKİ) in 
Tunçbilek/Kütahya since 1970. The failure data 
since 1998 to 2011 for the dragline is obtained 
from GLİ. The data included type of failure, failure 
definition and explanation, time of failure, and 
time the failure is fixed. After picking out the 
duplicate data, there were 1023 failure data for 
the dragline.  

The TTR data for each failure and the TBF data 
(operational time) are calculated considering that 
the dragline works 21 hours a day. Before the 
TBF are calculated, the dragline is decomposed 
into its components and they are listed in Table 1. 

As seen in Table 1, even though the most 
number of failures occur in the dragging unit 
taking up 27% of all failures with 281 failures, the 
downtime due to the failures in the machinery 
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Table 2. Distribution parameters of components of rig-
ging subsystem

Component Distribution Distribution 
Constants

Rope Weibull-3P

b 1.66
h 663.91
g -6.92

Socket Weibull-3P

b 0.95
h 2,553.02
g -28.73

Pulley Weibull-2P
b 1.054
h 1,232.87

Ringbolt Weibull-3P

b 0.63
h 3,348.66
g 82.74

From the plot it is observed that the rope has 
the lowest reliability among rigging components. 
Also, until around 1200 hours, socket is the most 
reliable component and gives its place to the ring-
bolt after 1200 hours.

Another parameter obtained from the distribu-
tions is the mean life estimations. Mean life esti-
mations are calculated for all components and the 
10 components with the lowest mean life estima-
tions are listed in Table 3.

Table 3. Ten components with lowest estimated mean 
lives 

Component Mean Life Time (hr)

Dragging Rope 567

Rigging Rope 587

Dragging Chain 908

Bucket Pin 950

Lubrication 968

Dragging Ringbolt 1048

Bucket Teeth 1125

Movement Warning 1157

Hoisting Rope 1179

Bucket Ringbolt 1197

After determining the failure probability density 
functions, they are introduced to the fault tree. Top 
event, which is the undesired event, is determined 
and that is the failure of the dragline for this case. 
The relations of the components are then repre-
sented in the fault tree by using gates. Dragline 
components are connected in series (OR Gate) 
since any failure in a component results in the halt 
of the whole system. There is also a “Voting Gate” 
in the bucket subsystem and it is a special kind of 
OR gate where output occurs when more than a 
specific number of input events occur. BlockSim 7 
(Reliasoft, 2011b) is used for the fault tree analy-

Figure 6. Reliability curves of rigging components
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sis in this paper. In Figure 7., the fault tree repre-
sentation of the dragging subsystem can be seen 
and the reliability of the subsystems are expres-
sed as Equation 7-12.

Figure 7. Fault tree representation of dragging subsys-
tem

Rdragging=Rrope × Rcontrol × Rchain × Rringbolt × Rsocket  (7)

Rbucket=Rchain × Rpin ×Rbucket main body × Rringbolt × ( 5Rtooth
4 – 4Rtooth

5)      (8)

Rhoisting=Rrope × Rbrakes × Rsocket × Rcontrol   (9)

Rrigging=Rrope × Rsocket × Rpulley × Rringbolt   (10)

Rmovement=Rrotation × Rwalking × Rwarning  (11)

Rmachinery house = Rlubrication × Rgenerators × Rmotors  (12)

The bucket teeth are connected by a Voting Gate 
that suggest the system failure occur if more than 
one tooth fails. The plot of subsystem reliabilities 
can be seen in Figure 8. It is observed that the bu-
cket subsystem has the lowest reliability where ho-
isting is the most reliable. However, there are some 
changes in the ranking at different time intervals.

Finally, all subsystems are connected to constru-
ct the system fault tree. The final fault tree of the 
dragline system is given in Figure 9. Final fault tree 

is then used to determine system reliability, system 
mean life and component importance factors.

As a result of the fault tree analysis, the mean life 
estimation of the dragline was found to be 37.9 
hours. At 37.9 hours of operation, using Birnba-
um’s measure, five most important components 
are shown in Figure 10. Rotation component of 
the movement subsystem was found to have the 
highest reliability importance (RI). These valu-
es can be calculated for different time intervals 
to determine the components to be maintained. 
For example, although the hoisting brakes are not 
shown in Figure 10 among the 5 most important 
components, at 100 hours, it becomes the third 
most important component which is caused by 
different reliability behavior of components. Some 
of the component reliabilities decrease more ra-
pidly with time.

Figure 8. Time varying reliabilities of subsystems

Figure 9. Fault tree representation of the dragline system
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Figure 10. Five components with highest RI values at 
dragline’s mean life

The final plot of system reliability with respect to 
time is presented in Figure 11. The reliability of 
the dragline falls below 60% at around 20 hours. 
The reason system reliability is not 100% at time 
t=0 is that there are some components with failu-
re probability functions with positive location pa-
rameters (prone to failure at t=0).

Figure 11. Reliability plot of the dragline

Finally, availability simulation is conducted. As 
mentioned earlier, machinery house failures take 
significantly longer to repair and should be taken 
into consideration. In this sense, analysis simi-
lar to time between failure data is conducted for 
time to repair data. Appropriate distributions are 
fitted to the repair time data and introduced to the 
fault tree analysis. Availability simulation is con-
ducted to see the contribution of components to 
total number of failures (FCI) and total downtime 
(OCI). Table 4. shows the results of availability si-
mulation for one year of operation (7665 hours). 
Number of simulations are selected as 2000 and 
Figure 12 shows a sample simulation showing the 

up and down times of selected components and 
the system.

In the simulation, repair characteristics are assu-
med as “repaired to as good as new condition” 
meaning when a failure occurs, the failed compo-
nent is repaired to its state at t=0. That analysis 
is not in the scope of this paper, but maintenan-
ce characteristics should be considered for an in 
depth analysis.

Considering number of failures, dragging and ri-
gging ropes cause the most number of system 
stops. Those two components cause more than 
20% of the total number of system failures. Howe-
ver, if we look at downtimes, the motors and ge-
nerators in the machinery house cause more than 
50% of total downtime.

Table 4. Simulation results for one year of operation 
time

SUBSYSTEM COMPONENT FCI OCI

BUCKET

Ringbolt 5,58% 0,86%
Bucket Main Body 2,35% 1,35%

Chain 1,11% 0,25%
Pin 6,60% 0,95%

Tooth 0,07% 0,01%
Tooth 0,08% 0,01%
Tooth 0,08% 0,01%
Tooth 0,07% 0,01%
Tooth 0,07% 0,01%

DRAGGING

Socket 1,10% 0,17%
Ringbolt 5,67% 1,87%

Rope 10,87% 3,48%
Chain 6,86% 2,26%

Control 3,29% 0,50%

HOISTING

Control 0,58% 0,95%
Rope 4,82% 3,21%

Brakes 2,36% 0,45%
Socket 0,71% 0,11%

MOVEMENT
Warning 5,71% 13,87%
Walking 3,46% 1,02%
Rotation 5,65% 1,61%

MACHINERY 
HOUSE

Lubrication 6,28% 0,79%
Air Conditioning - -

Motors 5,08% 25,88%
Generators 2,47% 37,61%

RIGGING

Pulley 4,98% 0,86%
Rope 10,08% 1,25%

Socket 2,37% 0,37%
Ringbolt 1,74% 0,27%
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CONCLUSIONS AND RECOMMENDATIONS

Fault tree analysis was conducted for a dragline 
operating in a coal mine in Tunçbilek. The failu-
re data between the years 1998 and 2011 were 
classified and checked for trends and correlations 
and then introduced to the software “Weibull ++7” 
in order to determine their probability distributions 
and reliability modelling. The obtained distributi-
ons were then combined with a constructed fault 
tree to examine the system reliability model. Fi-
nally, the fault tree model is used for simulation of 
failure behavior and component contributions on 
system failures. It was determined that the sys-
tem is expected to fail in 37.9 hours, most pro-
bably due to a failure in the rotation component of 
the movement subsystem. Dragging rope is pre-
dicted to have the highest contribution to number 
of failures within a year, but the motors and ge-
nerators will cause the longest downtime if failed. 
Reliability importance (RI) values were also found 
to be useful to decide which components need 
attention at certain time intervals.

The results of these analysis would be beneficial 
in preparing a maintenance plan considering the 
critical components in terms of both reliabilities 
and repair times. An adequate maintenance plan 
will help improve machine availability, thus dec-
reasing the direct and indirect costs caused by 
unplanned down times of the machinery. Additi-
onal analysis can be conducted considering the 
effect of working conditions on some component 
specific failures. Finally, optimization of preven-

tive and corrective maintenance intervals can 
be investigated considering maintenance costs, 
repair efficiencies and losses in revenue due to 
breakdowns.
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