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Abstract
This study presents an efficient pricing framework for European call options under a bi-
nary control regime that switches to a triple-factor stochastic volatility model, tailored for
recessionary and stable market phases. The model captures regime transitions via binary
controls and incorporates triple volatility sources. We derive the characteristic function
and implement a semi-analytical pricing formula using trapezoidal and Gauss-Laguerre
quadrature in MATLAB. The economic recovery process is influenced by the control pa-
rameter α, while the impacts θ3 are considered secondary to other factors driving recovery.
The results show that the option prices under recessionary conditions were lower compared
to the recession-free regime, thereby validating the model’s sensitivity to macroeconomic
uncertainty. It further confirms that the binary control regime switching triple-factor sto-
chastic volatility model offers greater accuracy and adaptability across economic states,
making it a promising tool for option pricing in dynamic financial environments.
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1. Introduction
Uncertainty study in financial market models becomes prominent as risky financial se-

curities exhibit uncertain characteristics. Following the observed limitations of the Black
and Scholes deterministic volatility model [6], there has been a paradigm shift in the
formulation and application of stochastic volatility models in financial markets. The eco-
nomic state of a nation determines the financial well-being of the people and the expected
development of the nation [23, 24]. The United Nations provides an analysis of the world
economic situation and prospects for 2025, examining macroeconomic factors such as youth
employment, inflation in most developing countries, and fiscal policy challenges, and how
these affect economic growth [26]. The analysis supports evidence-based decision-making
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to promote economic stability and growth. Hence, in an unstable economy, such as a
recessed economy, a stochastic model description of asset prices is indispensable.

Future returns of investments and various financial securities have been tailored to
the application of mathematical model formulations suitable for forecasting asset prices,
especially risky assets such as stock. Several mathematical models are reported in the
literature to address option valuation ([2], [7], [11], [14]). Recently, Liu and Lio [21] applied
the uncertain canonical space of Liu [19] to study the power option pricing problem of the
uncertain exponential Ornstein-Uhlenbeck model. Gao et al. [12] extended the uncertainty
theory of Liu [20] to the calibration of the European option pricing model. In the literature,
a high level of contributions to option valuation is reported involving stochastic volatility
modeling.

Several stochastic volatility models are formulated for option pricing by [15,17]; a uni-
variate stochastic volatility Heston model by [16], and the double Heston model by [9].
Some authors added jumps to stochastic volatility models, such as Jiexiang et al. [18] and
Naik [22] to mention a few. Charlotte et al. [8] recently modified the single stochastic
volatility model of Heston to forecast stock prices. The concept of stochastic volatility
induced by economic recession was introduced by [3,4]. Bankole and Adinya [5] proposed
a model for option pricing in which the underlying stock asset is driven by a stochastic
interest rate and recession-induced stochastic volatility. In this paper, our attention is
given to the formulation of a new class of stochastic volatility models in which a binary
control parameter is incorporated. The binary control parameter is to ensure that one
could transit between economy recession state and economy recession-free state.

The paper is structured as follows: The background to the model formulation is given in
Section 2. The binary control regime switching triple factor stochastic volatility (BCRSTSV)
model is defined and we obtain a partial differential equation representation for the
BCRSTSV model followed by the model characteristic function derivation in Section 3. In
Section 4, we obtain the European call option pricing formula. The application to option
prices forecast under the BCRSTSV model is presented and sample paths are given under
the proposed model in Section 5. The conclusion is given in Section 6.

2. Background
Christoffersen et al. [9] added a second source of variance to the univariate version of

the Heston model [16] driven by its own stochastic differential equation (SDE). The set of
the SDEs emerged are given as

dS(t)
S(t) =

(
r − q

)
dt +

√
v1(t)dW1(t) +

√
v2(t)dW2(t), S(0) = S0 > 0

dv1(t) = κ1
(
θ1 − v1(t)

)
dt + σ1

√
v1(t)dŴ1(t), v1(0) = v10 > 0.

dv2(t) = κ2
(
θ2 − v2(t)

)
dt + σ2

√
v2(t)dŴ2(t), v2(0) = v20 > 0.

(2.1)

subject to the following stochastic correlation structure

cor
(
dW1, dW2

)
t

= cor
(
dW1, dŴ2

)
t

= cor
(
dW2, dŴ1

)
t

= cor
(
dŴ1, dŴ2

)
t

= 0,

cor
(
dW1, dŴ1

)
t

= ρ1dt, cor
(
dW2, dŴ2

)
t

= ρ2dt,

where r is the interest rate, q is the dividend rate, κj , j = 1, 2 are the mean reverting
rate, θj , j = 1, 2 are the volatility of variance (vol of vol) constant.

In the next section, we propose a new class of stochastic volatility models that are
dependent on the economic state by incorporating a binary control parameter α.
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3. The BCRSTSV model
Let St be a stock asset indexed in a regime-switching unstable economy defined in

a filtered probability space (Ω,Ft,Q,F). Assume that market filtration is driven by the
standard Wiener process in the time horizon t ∈ (0, T ] where Q is a risk-neutral probability
measure. Suppose that the economy obeys the binary switch system between the state of
recession-free and the state of recession.

Suppose further that economic recession induced another source of volatility uncertainty
on the stock market driven by its own stochastic differential equation independent of the
two sources of volatility emphasized in double Heston model since the uncertainty level
of financial assets is inevitably at the high side during recession. This assumption is
considered since information flow from a recessed economy influences price instability in
the stock market. The proposed BCRSTSV model for stock asset S(t) at time t ∈ (0, T ]
is given as

dS(t)
S(t) =

(
r − q

)
dt +

√
v1(t)dW1(t) +

√
v2(t)dW2(t) + α

(√
v3(t)dW3(t)

)
,

dv1(t) = κ1
(
θ1 − v1(t)

)
dt + σ1

√
v1(t)dŴ1(t), v1(0) = v10 > 0

dv2(t) = κ2
(
θ2 − v2(t)

)
dt + σ2

√
v2(t)dŴ2(t), v2(0) = v20 > 0

dv3(t) = α
(
κ3

(
θ3 − v3(t)

)
dt + σ3

√
v3(t)dŴ3(t)

)
recession

, v3(0) = v30 > 0

(3.1)

where S(0) = S0 > 0 and α is a binary control parameter defined as

α =
{

0, if the economy is not in recession;
1, if the economy is in recession.

Here, α is used as a transition between double Heston model in Eq. (2.1) and the proposed
BCRSTSV model in Eq. (3.1) depending on the state of the economy. This is so to ensure
that the model is applicable in any state of the economy.

The control parameter is considered useful as it ensures the BCRSTSV model in Eq.
(3.1) is valid for option valuation even when the economy’s recession varnishes. Setting
the control parameter to zero (0) will return to the double Heston model presented in
Eq. (2.1). The underlying asset at time t is S(t), the interest rate is r, the dividend
rate is q, the first two volatilities, v1, v2 emanate from the double Heston model while v3
emerged from the economic recession-induced volatility process, the constants κ1, κ2, κ3
are mean reverting rates for the three volatility processes respectively, θ1, θ2, θ3 are long-
term volatility constants and σ1, σ2, σ3 are volatility of variance (vol of vol) constants
which are both positive The economic analysis on the effect of α and θ3 is given in Section
5.

The Wiener process, W3 in Eq. (3.1) , describes the Brownian movement in stock prices
relative to the volatility of the recession, while W1 and W2 originate from the double Heston
model. The remaining Wiener processes Ŵj , j = 1, 2, 3, show the stochastic movement of
the stock volatilities from the three sources. The model is subjected to the following
stochastic correlation structure:


cor

(
dW1, dW2

)
t

= cor
(
dW1, dW3

)
t

= cor
(
dW2, dW3

)
t

= 0,

cor
(
dW1, dŴ2

)
t

= cor
(
dW2, dŴ1

)
t

= cor
(
dŴ1, dŴ2

)
t

= 0,

cor
(
dW1, dŴ3

)
t

= cor
(
dW2, dŴ3

)
t

= cor
(
dŴ1, dŴ3

)
t

= cor
(
dŴ2, dŴ3

)
t

= 0,

cor
(
dW1, dŴ1

)
t

= ρ1dt, cor
(
dW2, dŴ2

)
t

= ρ2dt, cor
(
dW3, dŴ3

)
t

= ρ3dt.

(3.2)

Remark 3.1. The inclusion of the third volatility process emanated from economy reces-
sion factor which leads to three different correlations given in Eq. (3.2).
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4. Main results
In this section, we present the main findings of the paper. First, we give a partial

differential equation representation for the BCRSTSV model followed by the derivation
of the characteristic function of the model. We also give the European call option pricing
formula, the numerical computation of prices under the proposed model, as well as the
stock prices sample paths.

4.1. Partial differential equation of the BCRSTSV model
Let f(yt, v1, v2, v3) be a twice-continuously differentiable function with respect to Itô’s

Calculus. Suppose further that f(yt, v1, v2, v3) satisfies the BCRSTSV model in Eq. (3.1),
then the partial differential equation (PDE) representation is given as

∂f
∂t = 1

2(v1 + v2 + v3)∂2f
∂y2 +

(
r − q − 1

2(v1 + v2 + v3)
)

∂f
∂y + 1

2σ2
1v1

∂2f
∂v2

1

+1
2σ2

2v2
∂2f
∂v2

2
+ 1

2σ2
3v3

∂2f
∂v2

3
+ ρ1σ1v1

∂2f
∂y∂v1

+ ρ2σ2v2
∂2f

∂y∂v2
+ ρ3σ3v3

∂2f
∂y∂v3

+κ1(θ1 − v1) ∂f
∂v1

+ κ2(θ2 − v2) ∂f
∂v2

+ κ3(θ3 − v3) ∂f
∂v3

.

(4.1)

We state the Feynman-Kac formula for the proposed BCRSTSV-model as follows:

Proposition 4.1 (Feynman-Kac formula for the BCRSTSV-model). Let f(y, t) be C2,1-
differentiable function with respect to some Itô diffusion processes. The PDE of f(y, t) is
given by

∂f

∂t
+ Lf(y, t) − r(y, t) = 0 (4.2)

subject to the boundary condition (fτ , τ). The solution is given in the form

f(yt, t) = EQ

[
exp

( ∫ τ

t
r(yu, u)du

)
f(yτ , τ)

∣∣∣Ft

]
where Ft is the filtration up to time t.

L is an infinitesimal generator of the BCRSTSV-PDE defined by

L :=
n∑

i=1
µi

∂

∂yi
+ 1

2

n∑
i=1

n∑
j=1

(
σσT )

ij

∂2

∂yi∂yj
(4.3)

with y = ln S(t), µ and (σσT ) are defined in Equations (4.9) and (4.11). This implies that
L could generate the right hand side of the BCRSTSV-PDE and Eq. (4.1) is equivalently
stated as

∂f

∂t
= Lyt,vj(t)f, j = 1, 2, 3 (4.4)

subject to terminal condition, f(ω, 0, y) = exp(iωy), with

Lyt,vj(t)f = 1
2(v1 + v2 + v3)∂2f

∂y2 +
(
r − q − 1

2(v1 + v2 + v3)
)∂f

∂y
+ 1

2σ2
1v1

∂2f

∂v2
1

+ 1
2σ2

2v2
∂2f

∂v2
2

+ 1
2σ2

3v3
∂2f

∂v2
3

+ ρ1σ1v1
∂2f

∂y∂v1
+ ρ2σ2v2

∂2f

∂y∂v2

+ ρ3σ3v3
∂2f

∂y∂v3
+ κ1(θ1 − v1) ∂f

∂v1
+ κ2(θ2 − v2) ∂f

∂v2
+ κ3(θ3 − v3) ∂f

∂v3

(4.5)
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4.2. The characteristic function of the BCRSTSV model
Theorem 4.2. Let the price of the stock asset evolve using the BCRSTSV model (3.1) and
let the logarithmic stock price be denoted by yτ = ln S(t). The characteristic function ϕ(·)
of the logarithm stock asset price y(t) with respect to time T -forward measure Q is given
as f

(
ω0, ω1, ω2, ω3; yt, v1(t), v2(t), v3(t)

)
for

(
yT , v1(T ), v2(T ), v3(T )

)
in log linear form as

f
(
ω0, ω1, ω2, ω3; yt, v1(t), v2(t), v3(t)

)
= E

(
eiω0yt+iω1v1(t)+iω2v2(t)+iω3v3(t)

)
= exp

(
A(τ, ω) + B0(τ, ω)yt + B1(τ, ω)v1(t) + B2(τ, ω)v2(t) + B3(τ, ω)v3(t)

)
(4.6)

where A, B0, B1, B2, and B3 are the coefficients terms of the stochastic processes
yt, v1(t), v2(t), v3(t) which depends on the time to expiry τ = T − t and each ωi, i =
0, 1, . . . , 3.

Given that the stock asset S(t) evolves by the BCRSTSV model in Eq. (3.1) and
the logarithm stock price is denoted by xτ = ln S(t). Applying the result of [10] which
established the fact that a characteristic function could be given as a system of Ricatti
equations in [15] and [25]. We express Eq. (3.1) as a system of Ricatti differential equations

∂B0
∂t = −JT

1 β − 1
2βT H1β

∂B1
∂t = −JT

2 β − 1
2βT H2β

∂B2
∂t = −JT

3 β − 1
2βT H3β

∂B3
∂t = −JT

4 β − 1
2βT H4β

∂A
∂t = −JT

0 β − 1
2βT H0β

(4.7)

where βT := (B0, B1, B2, B3) and the boundary conditions to the above Ricatti equations
are given as 

B0(0) = iω0
B1(0) = iω1
B2(0) = iω2
B3(0) = iω3
A(0) = 0

(4.8)

The coefficient matrices’ terms Ji, Hi, i = 1, 2, · · · , 4, emanated from the drift term
µ(yt, t) and the volatility σ(yt, t). The matrix representation of the drift and volatility
terms are given respectively as

µ =


r − q − 1

2(v1 + v2 + v3)
κ1(θ1 − v1)
κ2(θ2 − v2)

ακ3(θ3 − v3)

 (4.9)

The volatility is defined as

σ(yt, t) =


√

v1
√

v2
√

v3 0 0 0
σ1

√
v1ρ1 0 0 σ1

√
v1(1 − ρ2

1) 0 0
0 σ2

√
v2ρ2 0 0 σ2

√
v2(1 − ρ2

2) 0
0 0 ασ3

√
v3ρ3 0 0 ασ3

√
v3(1 − ρ2

3)


(4.10)
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The product of the volatility matrix in Eq. (4.10) and its transpose matrix σT gives the
symmetric volatility matrix below

σσT =



v1 + v2 + v3 σ1v1ρ1 σ2v2ρ2 σ3v3ρ3

σ1v1ρ1 σ2
1v1 0 0

σ2v2ρ2 0 σ2
2v2 0

α2σ3v3ρ3 0 0 α2σ2
3v3


(4.11)

The symmetric volatility matrix makes the coefficients of terms associated with partial
differential equation formulation for the BCRSTSV model in Eq. (3.1) easy to behold.
The coefficient matrices terms Ji, Hi, i = 1, 2, · · · , 4 are given as

J0 =


r − q
κ1θ1
κ2θ2

ακ3θ3

 , J1 =


0
0
0
0

 , J2 =


−1

2
−κ1

0
0

 , J3 =


−1

2
0

−κ2
0

 , J4 =


−1

2
0
0

−κ3


satisfying

µ = J0 + J1y + J2v1 + J3v2 + J4v3 (4.12)
while

H0 = H1 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , H2 =


1 σ1ρ1 0 0

σ1ρ1 σ2
1 0 0

0 0 0 0
0 0 0 0

 ,

H3 =


1 0 σ2ρ2 0
0 0 0 0

σ2ρ2 0 σ2
2 0

0 0 0 0

 , and H4 =


1 0 0 ασ3ρ3
0 0 0 0
0 0 0 0

ασ3ρ3 0 0 σ3
3


such that

σσT = H0 + H1y + H2v1 + H3v2 + H4v3. (4.13)
Next, upon the use of Eq. (4.8), the first Ricatti equation in Eq. (4.7) with respect to
its own boundary condition yields a solution B0(τ) = iω0. The Ricatti equations in Eq.
(4.7) are further transformed upon substituting the boundary condition for other terms
and reversing the sign so as to get derivatives in form of time-to-maturity, τ leads to

∂B1
∂τ

= 1
2σ2

1B2
1 −

(
κ1 − iω0ρ1σ1

)
B1 − 1

2ω0(ω0 + i)

∂B2
∂τ

= 1
2σ2

2B2
2 −

(
κ2 − iω0ρ2σ2

)
B2 − 1

2ω0(ω0 + i)

∂B3
∂τ

= 1
2σ2

3B2
3 −

(
κ3 − iω0ρ3σ3

)
B3 − 1

2ω0(ω0 + i)

∂A

∂τ
= κ1θ1B1 + κ2θ2B2 + α · κ3θ3B3.

(4.14)

The fourth equation in the above set of transformed Ricatti differential equations only re-
quires a straightforward integration, while the first three equations are just one-dimensional
Ricatti equations. The initial conditions for Eq. (4.14) reduce to B1(0) = B2(0) = B3(0) =
0 but B0(0) = iω as obtained earlier while A(0) = 0 so that we can set ω = ω0. The deci-
sion is based on the fact that the characteristic function for the log stock price yT = ln ST
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is of paramount interest to us rather than the joint characteristic function for the stochas-
tic processes

(
yT , v1(T ), v2(T ), v3(T )

)
. The solution for B1(τ), B2(τ) and B3(τ) follows

the pattern of univariate and bivariate counterparts. Hence, we gave the solution of the
Ricatti equations in Eq. (4.14) for the BCRSTSV model as



A(ω, τ) = (r − q)ω1(τ) + κ1θ1
σ2

1

[
(κ1 − ρ1σ1ω1i + d1)τ − 2 ln

(
1−g1ed1τ

1−g1

)]
+(r − q)ω2(τ) + κ2θ2

σ2
2

[
(κ2 − ρ2σ2ω2i + d2)τ − 2 ln

(
1−g2ed2τ

1−g2

)]
+α(r − q)ω3(τ) + ακ3θ3

σ2
3

[
(κ3 − ρ3σ3ω3i + d3)τ − 2 ln

(
1−g3ed3τ

1−g3

)]
B1(ω, τ) = 1

σ2
1
(κ1 − ρ1σ1ωi + d1)

[
1−g1ed1τ

1−g1

]
B2(ω, τ) = 1

σ2
2
(κ2 − ρ2σ2ωi + d2)

[
1−g2ed2τ

1−g2

]
B3(ω, τ) = α

σ2
3
(κ3 − ρ3σ3ωi + d3)

[
1−g3ed3τ

1−g3

]
(4.15)

where



d1 =
√

(κ1 − ρ1σ1ωi)2 + σ2
1ω(ω + i)

d2 =
√

(κ2 − ρ2σ2ωi)2 + σ2
2ω(ω + i)

d3 =
√

(κ3 − ρ3σ3ωi)2 + σ2
3ω(ω + i)

g1 = κ1−ρ1σ1ωi−d1
κ1−ρ1σ1ωi+d1

g2 = κ2−ρ2σ2ωi−d2
κ2−ρ2σ2ωi+d2

g3 = κ3−ρ3σ3ωi−d3
κ3−ρ3σ3ωi+d3

(4.16)

Applying the [1] representation called "The Little Heston Trap", we give an alternate
solution to the solution in Eq. (4.15). This is done by replacing the positive sign attached
to the term dj , j = 1, · · · , 3 by a negative sign. In our own case, we set cj = 1

gj
. A

comparison can be made between the Albrecher and Little Heston Trap approach in the
papers [1] and [13]. Thus, ensuring that one has a well-behaved integrand for the proposed
BCRSTSV model requires setting cj = 1

gj
. This gives the following result



A(ω, τ)= (r − q)ω1(τ) + κ1θ1
σ2

1

[(
κ1 − ρ1σ1ω1i − d1

)
τ − 2 ln

(
1−c1e−d1τ

1−c1

)]

+(r − q)ω2(τ) + κ2θ2
σ2

2

[(
κ2 − ρ2σ2ω2i − d2

)
τ − 2 ln

(
1−c2e−d2τ

1−c2

)]

+α · (r − q)ω3(τ) + ακ3θ3
σ2

3

[(
κ3 − ρ3σ3ω3i − d3

)
τ − 2 ln

(
1−c1e−d3τ

1−c3

)]

B1(ω, τ) = 1
σ2

1

(
κ1 − ρ1σ1ωi + d1

)[
1−c1e−d1τ

1−c1

]
B2(ω, τ) = 1

σ2
2

(
κ2 − ρ2σ2ωi + d2

)[
1−c2e−d2τ

1−c2

]
B3(ω, τ) = α

σ2
3

(
κ3 − ρ3σ3ωi + d3

)[
1−c3e−d3τ

1−c3

]
(4.17)
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where 

d1 =
√

(κ1 − ρ1σ1ωi)2 + σ2
1ω(ω + i)

d2 =
√

(κ2 − ρ2σ2ωi)2 + σ2
2ω(ω + i)

d3 =
√

(κ3 − ρ3σ3ωi)2 + σ2
3ω(ω + i)

c1 = κ1−ρ1σ1ωi−d1
κ1−ρ1σ1ωi+d1

c2 = κ2−ρ2σ2ωi−d2
κ2−ρ2σ2ωi+d2

c3 = κ3−ρ3σ3ωi−d3
κ3−ρ3σ3ωi+d3

.

Hence, the characteristic function for the BCRSTSV model holds from Eq. (4.7) through
Eq. (4.17) as

f
(
ω0, ω1, ω2, ω3; yt, v1(t), v2(t), v3(t)

)
= E

(
eiω0yt+iω1v1(t)+iω2v2(t)+iω3v3(t)

)
= exp

(
A(τ, ω) + B0(τ, ω)yt + B1(τ, ω)v1(t) + B2(τ, ω)v2(t) + αB3(τ, ω)v3(t)

)
(4.18)

In a more similar fashion to double Heston model but differs in terms of additional state
variable and volatility imposed owing to recession, the call pricing formula is given as

C(K) = Ste
−qτ P1 − Ke−rτ P2 (4.19)

such that

P1 = 1
2 + 1

π

∫ ∞

0
Re

[
exp(−iω ln K) f

(
ω − i; yt, v1(t), v2(t), v3(t)

)
iωSte(r−q)τ

]
dω,

P2 = 1
2 + 1

π

∫ ∞

0
Re

[
exp(−iω ln K) f

(
ω; yt, v1(t), v2(t), v3(t)

)
iω

]
dω

where "Re" is the real part of the expression. The characteristic function f
(
ω−i; yt, v1(t), v2(t), v3(t)

)
is exactly the same as the one given in Eq. (4.6).

5. Numerical results
We set the control parameter α = 1, indicating that the economy is in a recession

state. The parameter values used to generate the following sample paths are specified in
Table 1 in addition to the initial asset price S0 = 100.. The sample paths demonstrate
the likely returns of assets under the recession state with respect to the BCRSTSV model
subject to regular grid points using the number of time steps N = {5000, 3000, 1000, 500},
respectively.

Table 1. Parameters used for the numerical computation.

Initial volatility (v0i) σi κi ρi θi

v01 = 0.62 σ1 = 0.10 κ1 = 0.90 ρ1 = −0.4 θ1 = 0.10
v02 = 0.72 σ2 = 0.15 κ2 = 0.80 ρ2 = −0.3 θ2 = 0.10
v03 = 0.92 σ3 = 0.13 κ3 = 0.40 ρ3 = −0.3 θ3 = 0.0001
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In this section, two categories of discussion are presented. We give a detailed economic
analysis of the control parameter α, the mean reversion parameter θ3 on SDEs in Eq.
(3.1). Recession is controlled with α as given in the model. The dynamics in the values
of α for economic recovery could be influenced by a range of factors that include fiscal
policy, technological innovations, monetary policy, and global economic trends, among
others. If the mean reversion parameter θ3 is increased faster, it can lead to a reduction
in uncertainty and volatility from the recessed economy, which may improve investors’
decisions and contribute to economic recovery.

The decrease in recession-induced volatility can lead to increased investor confidence,
and can influence investment and economic growth. A lower θ3 would imply a slower mean
reversion, leading to more persistent and elevated volatility in the state of recessions.
Variation in θ3 would influence option prices, particularly longer-maturity options. An
increase in θ3 could cause an increase in correlation values with the entire model. However,
the recovery process is fully influenced by the control parameter α, while impacts θ3 are
considered secondary to other factors that drive recovery.

The numerical results presented in Table 2 show the option prices on the underlying
stock based on the trapezoidal and Gauss-Laguerre quadrature for the BCRSTSV model.
This shows the effectiveness and efficiency of the two numerical approaches used for the
numerical computation of the BCRSTSV model. Setting the control parameter α = 0 in
the BCRSTSV model in Eq. (3.1) will lead to the double Heston model in Eq. (2.1). This
is possible if the economy is fully recovered from the recession.

Table 2. European call option prices based on trapezoidal and Gauss-Laguerre
quadrature for the BCRSTSV model (α = 1).

BCRSTSV- Trapezoidal BCRSTSV-Gauss-Laguerre
Strike K Original Little Trap Original Little Trap

71.33 17.0273 17.0273 17.0273 17.0273
71.33 29.3181 29.3181 29.3181 29.3181
86.62 9.7580 9.7580 9.7580 9.7580
86.62 24.6827 24.6827 24.6827 24.6827
89.67 8.3042 8.3042 8.3042 8.3042
89.67 23.7556 23.7556 23.7556 23.7556
96.81 4.9118 4.9118 4.9118 4.9118
96.81 21.5924 21.5924 21.5924 21.5924
101.90 2.4887 2.4887 2.4887 2.4887
101.90 20.0473 20.0473 20.0473 20.0473

A clear variation in option prices was observed in Table 3 as one passes from a recession-
free state to a recession-free state. One of the inferences we could draw from Table 3 is
that option prices are affected in a recession state compared to the recession-free state.
This verifies the uncertainty effect of the volatile economy on the performance of financial
derivatives in an unstable market situation.

Table 3. European call option for the BCRSTSV model price comparison in
economic state 1 & 2.

Recession state-(BCRSTSV) Recession-free state-(BCRSTSV)
Strike K Original Little Trap Original Little Trap

71.33 17.0273 17.0273 46.5273 46.5273
71.33 29.3181 29.3181 76.4599 76.4599
101.90 2.4887 2.4887 33.3090 33.3090
101.90 20.0473 20.0473 70.1271 70.1271
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Figure 1 and Figure 2 show the sample paths of the stock prices ST and the trends of the
stock prices generated at the specified time steps N = {5000, 3000, 1000, 500} respectively,
under the BCRSTSV-model.

(a) (b)

(c) (d)

Figure 1. The sample paths of stock prices generated using the BCRSTSV-
model.

(a) (b)

(c) (d)

Figure 2. Stock price trends visualization under the BCRSTSV model.
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6. Conclusion
This study introduced a novel binary control regime that switches the triple-factor

stochastic volatility (BCRSTSV) model for the calculation of option prices under volatile
economic conditions, particularly in a recessionary economy. The core innovation lies
in the incorporation of a binary control parameter α, which enables dynamic switching
between recession and recession-free regimes. This improves the flexibility of the model in
capturing macroeconomic shocks and makes it particularly suitable for financial markets
experiencing structural economic transitions.

A closed-form characteristic function and a pricing formula for European-style call op-
tions were derived and implemented using both the trapezoidal and Gauss-Laguerre quad-
rature methods. The numerical results clearly demonstrate that the BCRSTSV model pro-
duces significantly different option prices depending on the economic regime, as highlighted
in Table 3. In particular, option prices under recessionary conditions were lower compared
to the recession-free regime, thereby validating the model’s sensitivity to macroeconomic
uncertainty.

The BCRSTSV model offers a richer volatility structure by introducing a third volatil-
ity factor activated only during recessions compared to the classical Heston model [16].
Although the double Heston model of Christoffersen et al. [9] improves the fitting of im-
plied volatility through two variance sources, it lacks regime sensitivity. The proposed
BCRSTSV model fills this gap by embedding an economic-state-dependent mechanism,
enhancing realism and practical relevance. Similarly, while Liu and Lio [21] developed an
option pricing model using uncertainty theory, specifically applying an uncertain exponen-
tial Ornstein-Uhlenbeck process within the canonical space framework, their formulation
operates outside the traditional probabilistic setting and is thus less adaptable to classical
risk-neutral valuation. Their model effectively handles ambiguity but lacks the flexibility
to transition between economic regimes. In contrast, the present BCRSTSV model is em-
bedded within a fully stochastic and arbitrage-free framework, facilitating both analytical
tractability and consistency with real-world financial market mechanisms, especially under
varying macroeconomic conditions.
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