
MANAS Journal of Engineering
ISSN 1694-7398 — e-ISSN 1694-7398

Volume 12 (Issue 2) (2024) Pages 208-214
https://doi.org/10.51354/mjen.1538494

Detection and Identification of Stuttering Types Using Siamese
Network

Venera Adanova1*, Maksat Atagoziev2
1 Department of Computer Engineering, TED University, Ankara, 06420, Türkiye, venera.adanova@tedu.edu.tr,

ORCID: 0000-0001-7247-0288
2 Department of Computer Engineering, OSTIM Technical University, Ankara, 06374, Türkiye,
maksat.atagoziev@ostimteknik.edu.tr, ORCID: 0000-0001-7799-7636

A B S T R AC T A R T I C L E I N F O

Stuttering is a complex speech disorder characterized by disruptions in the fluency
of verbal expression, often leading to challenges in communication for those
affected. Accurate identification and classification of stuttering types can greatly
benefit persons who stutter (PWS), especially in an era where voice technologies
are becoming increasingly ubiquitous and integrated into daily life. In this work, we
adapt a simple yet effective Siamese network architecture, known for its capability to
learn from paired speech segments, to extract novel features from audio speech data.
Our approach leverages these features to enhance the detection and identification of
stuttering events. For our experiments, we rely on a subset of the SEP-28k stuttering
dataset, initially implementing a single-task model and gradually evolving it into a
more sophisticated multi-task model. Our results demonstrate that transitioning
the network from a single-task learner to a multi-task learner, coupled with the
integration of auxiliary classification heads, significantly improves the identification
of stuttering types, even with a relatively small dataset.
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1. Introduction

Stuttering, a.k.a. stammering, is a complex speech disor-
der that negatively affects the communication ability of 1%
of the population. Persons who stutter (PWS) often know
what they want to say, however the speech is interrupted
by involuntary pauses and word or sound repetitions.
Identification of stuttering in a speech is a challenging
problem involving multiple disciplines such as pathology,
psychology, acoustics, and signal processing.
With the advance of machine and deep learning the re-
search done on speech domain have dramatically devel-
oped. Thus, current Automatic Speech Recognition (ASR)
systems have good accuracy leading to voice assistants
such as Alexa, Siri or Google. However, these systems
are built based on fluent speech, and they fail to recognize

speech accompanied with pauses and repetitions. Consid-
ering that voice technologies are becoming ubiquitous, if
the developers continue assuming ideal speech scenarios,
the future world seems to be the place where people with
speech disorders will feel greatly deprived.
The studies on the stuttered speech have gained a speed
recently as Apple released SEP28k stuttering dataset[14].
The data was collected from podcast where PWS are
interviewed and is the first largest annotated dataset.
In this work, we perform our experiments on the subset
of SEP28k dataset. We build a simple single task model
which learns to differentiate between stuttering types, and
then gradually convert the model into multi-task learner
with multiple heads. We then observe improvements that
these transformations bring into the classification task.
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2. Related Work

Though speech recognition systems have evolved dra-
matically over the last decade, with the development of
machine and deep learning, there is a scarce number of
studies involving stuttering detection and identification.
The majority of studies conducted on stuttering data aim
to detect and identify the dysfluency types in audio record-
ings. These types of dysfluency are generally defined as:
blocks, prolongations, sound/word/phrase repetitions, and
interjections [14, 18]. Blocks are defined as involuntary
pauses before words. Prolongations are elongated syllable,
like I am s[sss]ory. Repetitions involve sound, word or
phrase repetitions. For example, I made [made] dinner
represents a word repetition. In order to avoid above
defined stuttering types a person who stutters learns to use
filler words like um, uh, you know, etc. These filler words
are known as interjections. Note that the dysfluency types
might be named differently in different studies.

2.1. Datasets

The main reason for the deficiency of studies in stuttered
speech is the lack of data. Just like any speech related
problem, detecting stuttering requires lots of data for
accurate learning. Typically, works conducted on stutter-
ing detection and identification are done based on some
datasets, either in-house or public, and learn to classify
between fluent and dysfluent speech ( stuttering detection),
and distinguish dysfluency types (identification).
The works that use in-house datasets [1, 8, 9, 11, 15]
collect their own data, label them manually and report the
stuttering detection and identification accuracy based on
their own data. This type of dataset is very small and is
not shared publicly.
There is only a handful number of publicly available
stuttering datasets. The very first and also the smallest
one is the UCLASS dataset [10]. It contains 457 audio
recordings of monologues, conversations and readings,
and only small amount of them has transcriptions. The
dataset is not labeled according to dysfluency types.
The FluencyBank dataset [16] contains audio and video
files with transcriptions for the interviews conducted for
32 adults and children who stutter. However, the dataset
is not labeled.
The scarcity of labeled data led to the creation of synthetic
dataset LibriStutter [12], which consists of 50 speakers
(approximately 20 hours). The dataset was generated by
injecting random stuttering to LibriSpeech dataset, which
consists of fluent speech. The audio signals were seg-
mented into four-second windows, and for every window
either one of the stuttering events, as sound, word and
phrase repetitions, prolongations, and interjections, were
injected, or left untouched.

The largest dataset, Stuttering Events in Podcasts (SEP-
28k) was released recently by [14]. SEP-28k is the first
publicly available annotated dataset. It contains about
28000 3-second clips from podcast recordings. The
SEP28k corpus also has 4144 3-second annotated clips
from the FluencyBank dataset. [6] subsequently intro-
duced an extended SEP-28k, which contains also the
gender and speaker information. Along with the extended
data they proposed a possible partitioning of data into
train and test set.
[4] suggest their own dataset namely, Kassel State of
Fluency (KSoF), which consists of 5500 clips of stut-
tered speech in German. The clips were labeled with
the six stuttering event types: blocks, prolongations,
sound/word/phrase repetitions, interjections and speech
modifications. The last type is therapy specific and indi-
cates whether the speaker’s speech is modified after the
therapy. The dataset also has some metadata, like the
gender of a speaker, therapy status, type of microphone
used, etc.

2.2. Stuttering Identification

One of the studies that aimed to identify all dysfluency
types in stuttered speech was conducted by [13]. The
work was based on UCLASS and LibriStutter datasets.
They build a deep neural network, named FluentNet, con-
sisting of Squeeze-and-Excitation Residiual Network and
bidirectional LSTM. The four-second long audio clips
from the dataset are converted to spectrograms using
Short Time Fourier Transform (STFT), and these spectro-
grams formed the inputs to FluentNet. Though the work
demonstrates promising results it has some limitations.
The results were reported for the small subset of speakers,
probably because they needed to label the data manually
first. Also, the work does not consider fluent speech and
their models learn to classify between stuttering types only.
The other limitation is that they trained a model for every
dysfluency type leading to computationally expensive
system due to large number of parameters.
As an alternative to the FluentNet, [17] proposed their
own time delay neural network, called StutterNet. The
model was trained and tested on UCLASS. The audio
recordings for over 100 speakers were manually labeled as
in [13]. Only core behaviors (prolongations, blocks, and
repetitions) and fluent part of the speech were considered.
Each audio recording was sliced into four-second clips and
for each clip mel-frequency cepstral coefficients (MFCCs)
were computed. The MFCC features are then fed to
StutterNet as features. In contrast to the aforementioned
approach a single model was trained for identification
of all types of dysfluency and a slight improvement was
observed.
In [7] KSoF is used for stuttering detection. Each audio
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recording is sliced into three-second clips. For each clip
the features are extracted from pretrained wav2vec 2.0 [3]
network. Wav2vec network is learned on large amount of
fluent speech, and takes raw data as an input and produces
a feature vector describing each audio data. In [7] before
using the wav2vec features the network was fine-tuned
using SEP-28k dataset. The features obtained from the
fine-tuned network are subsequently fed to SVM model
for dysfluency identification purposes.
The work in [19] reports on the dysfluency identification
results based on multi-task and adversarial leaning using
SEP-28k dataset. Each clip in the dataset was represented
by 20 MFCC features. Instead of learning a single task in
the network, a multi-task learning was used. A network
consists of three parts. First part learns to classify between
fluent and dysfluent speech, second part learns to classify
between dysfluency types, and the third part is just an
auxiliary part which prevents the network from overfitting
and learns to classify between show names from which
the clips were taken. All three parts share a single encoder,
meaning that they share weight in the encoder part.
[2] proposed automatic detection and correction for three
types of dysfluencies: repetitions, prolongations and long
pauses, using signal processing methods. In this research
MFCCs and Linear Predictive Coefficients (LPC) are used
to extract the features. The downside of this approach
is that it largely relies on empirical thresholds to detect
dysfluency types. Thus, to detect repetitions the MFCC
and LPC features of consecutive words are extracted and
their correlation factor is computed. If the correlation is
above a certain threshold then the words are considered
to be similar, and one of the words is deleted.
Another two approaches [1, 8] also use empirical thresh-
old to detect prolongations in speech. These studies deal
with detection and correction of prolongations and repe-
titions. To correct the prolongations, amplitudes of the
audio signal are compared against predefined threshold
value, and the values below that threshold are deleted. To
detect repeated words the audio signal is first converted
to text, in the text format the repeated words are detected
and deleted. Subsequently, the text is converted back to
speech.

3. Dataset
In our work, we use a subset of SEP28k. The audio
data was collected from eight podcast shows and every
episode was divided into 3 second clips. The total number
of clips in the dataset is 28177 (approx. 23.5 hours)
and every clip was annotated by three annotators. The
annotations for every clip have two types: stuttering and
non stuttering. Stuttering types include 𝑝𝑟𝑜𝑙𝑜𝑛𝑔𝑎𝑡𝑖𝑜𝑛,
𝑏𝑙𝑜𝑐𝑘 , 𝑖𝑛𝑡𝑒𝑟 𝑗𝑒𝑐𝑡𝑖𝑜𝑛, 𝑠𝑜𝑢𝑛𝑑/𝑤𝑜𝑟𝑑 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛 and 𝑛𝑜

𝑠𝑡𝑢𝑡𝑡𝑒𝑟𝑒𝑑 𝑤𝑜𝑟𝑑, where former five types represent dys-

fluency types and the last one is the fluent type. Non
stuttering types include 𝑢𝑛𝑖𝑛𝑡𝑒𝑙𝑙𝑖𝑔𝑖𝑏𝑙𝑒, 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑝𝑎𝑢𝑠𝑒,
𝑢𝑛𝑠𝑢𝑟𝑒, 𝑚𝑢𝑠𝑖𝑐 and 𝑝𝑜𝑜𝑟 𝑎𝑢𝑑𝑖𝑜 𝑞𝑢𝑎𝑙𝑖𝑡𝑦. We are mainly
interested in the stuttering types.

Figure 1: The distribution of podcast shows in the dataset.
WomenWhoStutter and HeStutters have common host.

The SEP28k is a challenging dataset and these challenges
come in three ways. First, it is highly imbalanced. More
than half of the data contains fluent speech, and approx-
imately 10% is given for a particular dysfluency type.
Second, each clip might have several annotations. Thus,
a single clip might contain both prolongation and block
dysfluency types, while being also annotated by one of the
annotators as a fluent speech. Lastly, it is also imbalanced
in terms of speaker. Thus, host speech dominates 60%
of the data. Also, the distribution of podcast shows is
imbalanced as shown in Figure 1. The number of clips
for one of the shows, Women Who Stutter, form 33% of
overall clips. Considering that Women Who Stutter and
He Stutters share the same host (Pamela Mertz), a large
amount of clips is dominated by the speech of a single
person.
As has been discussed previously, each clip in the dataset
might have multiple labels. Typically, it is not clear how
much the annotators should be trusted. For example, con-
sider a clip where three annotators identify it as having
prolongation, two annotators also note that some part of
it has blocks, and one annotator states that it has no other
disfluency. We do not know how much weight should
be given to that single label. It might also be the case
that each annotator votes for a different stuttering type,
further increasing our confusion. All studies that have
used this dataset have somehow neglected to mention
their approach to dealing with these labels. We, on the
other hand, decided to take a more cautious approach
by constructing a smaller subset from SEP-28k, which
we refer to as the confidence list. This list consists of
clips that were consistently assigned a single type by all
three annotators. However, the 𝑖𝑛𝑡𝑒𝑟 𝑗𝑒𝑐𝑡𝑖𝑜𝑛 type was
never annotated alone, as it always co-occurs with the 𝑛𝑜
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𝑠𝑡𝑢𝑡𝑡𝑒𝑟𝑒𝑑 𝑤𝑜𝑟𝑑 type. Therefore, we also include clips
where all three annotators selected both 𝑛𝑜 𝑠𝑡𝑢𝑡𝑡𝑒𝑟𝑒𝑑

𝑤𝑜𝑟𝑑 and 𝑖𝑛𝑡𝑒𝑟 𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠. Moreover, clips where all three
annotators selected both 𝑛𝑜 𝑠𝑡𝑢𝑡𝑡𝑒𝑟𝑒𝑑 𝑤𝑜𝑟𝑑 and 𝑛𝑎𝑡𝑢𝑟𝑎𝑙

𝑝𝑎𝑢𝑠𝑒 are also included. We also formed a confidence
list for the FluencyBank dataset. However, only clips
with disfluency types were included, as the percentage
of fluent clips already constitutes a large portion of the
dataset. In total, our dataset contains 3,901 clips, and the
distribution of different types is illustrated in Fig. 2. It is
important to note that the dataset is highly imbalanced,
with 65% of the clips consisting of fluent speech.

Figure 2: The distribution of stuttering types in our dataset.
Observe that fluent data forms 65% of the dataset.

4. Proposed Framework
Given the audio clips, we initially extract their Mel Fre-
quency Cepstral Coefficients, MFCCs. The extracted
MFCCs are further fed to our baseline model, training
which we learn new embeddings (features) for the clips.
The baseline model that we use to extract embeddings
is the Siamese network with contrastive loss shown in
Fig. 4(gray region). The choice of this network is not
random, as we favor it because of its ability to learn well
the data which consists of small number of representatives
from each class. This is indeed the case for our data.
There are two inputs to the network and two identical
subnetworks that share the weights. For each pair the
two subnetworks produce embeddings which are then
used to compute the Euclidean distance between a pair
of inputs. The main goal of the network is not to learn
to classify different stuttering types but to differentiate

between them.
The subnetwork consist of three blocks. Each block con-
tains a convolutional layer followed by max pooling and
dropout layers. The last layer does global averaging which
returns the desired 64x1 dimensional vector. The details
on input and output dimensions are illustrated in Fig. 3.
As a loss function for the baseline model we use contrastive
loss which is defined as following:

𝐿𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 𝑦 · 𝑑2 + (1 − 𝑦) · max(𝑚𝑎𝑟𝑔𝑖𝑛 − 𝑑, 0)2 (1)

where, 𝑦 is a true label, 1 if the audio pairs are of the
same class, 0 otherwise, and 𝑑 is the Euclidean distance
between the outputs of twin network embeddings. Margin
is 1.

Figure 3: The architecture of our subnetwork.

Our baseline model does a single task learning (STL). Dur-
ing our experiments we extend the model to do multi task
learning (MTL). Thus, we add a classification head to the
model so that the model can also learn to classify between
the six stuttering types. In our other experiment, we add
another classification head, which also forces the network
to differentiate between show types. These extension are
shown in Fig. 4, where each of the classification heads is
fed with the new features computed for the first input of
the baseline model. For both of these classification heads
we use sparse categorical crossentropy loss function. The
addition of auxiliary tasks as this, are suggested in the
literature [5, 19] for generalization and regularization
purposes.
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Figure 4: Proposed framework. The model within the gray box is the baseline model (BM). Then we add one
classification head that learns to classify between six stuttering types (gray plus green regions) (BSM). The third model
is formed by adding one more classification head to the second model (gray plus green plus blue regions), which also
learns to classify shows (BSSM).

Hence, the overall loss of an MTL model is given by:

𝐿 = 𝜆𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 · 𝐿𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 + 𝜆𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟 𝑦 · 𝐿𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟 𝑦 (2)

As was mentioned before, our model learns new features
(embeddings) for the audio data, which are subsequently
fed to machine learning models for classification purposes.

5. Experimental Results
5.1. Features
We first compute MFCC features for every audio clip,
which are then fed to our model. All clips are read with
the sampling frequency of 16000. The MFCC features are
computed using 𝑠𝑝𝑒𝑒𝑐ℎ𝑝𝑦 library, with the frame length
of 0.025, frame stride of 0.01 and number of filters of 40.
For every 3 seconds long clip, using these parameters, we
produce 297x40 features.

5.2. Data Augmentation
The data is highly imbalanced, so we produce new samples
using augmentation techniques. The augmented data is
used only during the training process. Since fluent speech
already takes up to 65% of the data we only augmented
the clips with dysfluency labels.
Data augmentation is done using 𝑎𝑢𝑑𝑖𝑜𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑠 li-
brary. For every dysfluent clips in the training set we add
Gaussian noise with min. amplitude of 0.001 and max.
amplitude of 0.015, time stretch up/down to 25%, and
shift pitch up/down 4 semitones.

5.3. Data Splitting
The data is divided into three: train, validation and test
sets. The train set contains clips of 10 most frequent

speakers, plus the dysfluency clips from FluencyBank,
which gives us overall 2434 clips. What is left is divided
between validation and test sets. Thus validation set
consist of 734 clips of next most frequent speakers, and
the test set contains 733 clips of less frequent speakers.

5.4. Training
We train three different models: baseline model, base-
line model with stuttering classification head, baseline
model with stuttering classification and show classifica-
tion head. We call them BM, BSM and BSSM (See
Figure 4), respectively. The latter two are MTL mod-
els. For all three models we use Adam optimizer with
𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = 0.001, batch size is 32 and the number of
epochs is 20. For the first MTL model the weights of losses
are equal, thus 𝜆𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 0.5 and 𝜆𝑠𝑡𝑢𝑡𝑡𝑒𝑟𝑖𝑛𝑔 = 0.5. For
the second MTL model we pay less importance to the
show classification head as it is used more like regulariza-
tion, hence the weights are distributed as 𝜆𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 0.4,
𝜆𝑠𝑡𝑢𝑡𝑡𝑒𝑟𝑖𝑛𝑔 = 0.4, 𝜆𝑠ℎ𝑜𝑤 = 0.2.

5.5. Experimental Results
After training the models, we extract new features for
the data and perform classification on Support Vector
Machine (SVM) and K-Nearest Neighbor (KNN). The
SVM with polynomial kernel of degree 7, and the 𝐶

parameter of 100 is found to be most optimal one for
the validation set. For KNN model the 𝑘 is 1 in all our
results. All performance evaluations in this section are
conducted on test data, which was not used during the
training of either the feature extraction network or the
SVM and KNN models.
Table 1 presents the results of the classification done
using different model combinations. Observe that, when
we switch to MTL models (BSM and BSSM) there is
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a significant improvement in the f1-scores of different
stuttering types. Although switching to BSSM does not
introduce improvements to SVM model’s classification
performance, it has major impact on KNN model. Recall
that, our data has only 2% of 𝑏𝑙𝑜𝑐𝑘 dysfluency types. So
the models find hard to learn it, hence, we observe such
small number of detected block types.

Table 1: F1-score for stuttering classification. (P: Pro-
longation, B: Block, SR: Sound Repetition, WR: Word
Repetition, I: Interjection, F: Fluent, BM: Baseline Model,
BSM: Baseline with stuttering classification head, BSSM:
BSM with show classification head).

F1-Score
Model P B SR WR I F

BM SVM 0.14 0.03 0.08 0.06 0.11 0.72
BM KNN 0.10 0.00 0.11 0.09 0.14 0.66

BSM SVM 0.31 0.04 0.13 0.11 0.33 0.74
BSM KNN 0.21 0.08 0.12 0.11 0.29 0.64

BSSM SVM 0.26 0.00 0.15 0.08 0.30 0.74
BSSM KNN 0.36 0.04 0.11 0.10 0.34 0.68

The classification results for the case when only dysflu-
ency types are considered is reported in Table 2. Observe
that the 𝑏𝑙𝑜𝑐𝑘 type classification accuracy improves in
this case. While the baseline model learns the embed-
dings that differentiate between different stuttering types,
adding stuttering classification head enforces the model
to learn the embeddings that also represent the stuttering
types themselves. Once again, we can observe the im-
provement in classification that bring the MTL models.
The embedding computed using BSM model brings al-
most 100% improvement to 𝑝𝑟𝑜𝑙𝑜𝑛𝑔𝑎𝑡𝑖𝑜𝑛, 𝑏𝑙𝑜𝑐𝑘 and
𝑠𝑜𝑢𝑛𝑑 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛 types’ f1-score, and almost 400% im-
provement for 𝑤𝑜𝑟𝑑 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛 type in SVM, in contrast
to BM model. The BSSM embedding brings significant
improvements to KNN’s classification performance.

Table 2: Results of classification dysfluency types only.
(P: Prolongation, B: Block, SR: Sound Repetition, WR:
Word Repetition, I: Interjection, BM: Baseline Model,
BSM: Baseline with stuttering classification head, BSSM:
BSM with show classification head).

F1-Score
Model P B SR WR I

BM SVM 0.19 0.09 0.15 0.08 0.40
BM KNN 0.13 0.10 0.21 0.18 0.40

BSM SVM 0.35 0.21 0.27 0.27 0.61
BSM KNN 0.26 0.11 0.22 0.19 0.60

BSSM SVM 0.39 0.12 0.21 0.27 0.59
BSSM KNN 0.43 0.16 0.22 0.31 0.58

We combine the five dysfluency types into one group and

name the group as non fluent type and perform the binary
classification. The f1-scores are illustrated in Table 3. It
turns out that MTL models improve fluent data classifica-
tion, while non fluent type has small improvement. Thus,
BSM embeddings bring 55% improvement to fluent data
classification in SVM, while it is 9.7% for non fluent data.

Table 3: F1-score for binary classification.

F1-Score
Model Fluent Non Fluent

BM SVM 0.49 0.41
BM KNN 0.66 0.41

BSM SVM 0.76 0.44
BSM KNN 0.64 0.44

BSSM SVM 0.73 0.45
BSSM KNN 0.68 0.45

Table 4: Accuracy results for binary, dysfluency type only
and total classification.

Accuracy
Model Binary Dysfluency Total

BM SVM 0.45 0.25 0.52
BM KNN 0.56 0.25 0.45

BSM SVM 0.66 0.43 0.57
BSM KNN 0.56 0.35 0.47

BSSM SVM 0.64 0.42 0.57
BSSM KNN 0.59 0.40 0.51

The accuracy of classification results are reported in Ta-
ble 4. The accuracy of binary classification do not change
much for KNN. However, SVM achieves 47% improve-
ment with the MTL models. We observe significant
accuracy improvement for the dysfluency type classifica-
tion (when only 5 dysfluent categoris considered) both
in KNN and SVM. We observe that the total accuracy
does not change while the dysfluency type classification
improves.

6. Conclusion
Stuttering detection is a complex problem. The complex-
ity increases with the scarcity of the data. The existing
datasets are highly imbalanced which leads to the learned
models that favor the majority class. Since the data size
is too small it is usually impossible to build complex
networks because of the overfitting. By constructing
networks that learn multiple tasks we can regularize the
weights of the network. In this work, we built and learnt
rather simple network on small and highly imbalanced
dataset. Our findings show that by converting the net-
work from a single task learner to a multi task learner,
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and adding some auxiliary classification heads, we can
significantly improve the identification of stuttering types.
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(2022c). Detecting dysfluencies in stuttering therapy using
wav2vec 2.0. In Interspeech 2022. ISCA.

[8] Dash, A., Subramani, N., Manjunath, T., Yaragarala, V.,
and Tripathi, S. (2018). Speech recognition and correction
of a stuttered speech. In 2018 International Conference on
Advances in Computing, Communications and Informatics
(ICACCI), pages 1757–1760.

[9] Heeman, P., Lunsford, R., McMillin, A., and Yaruss, J. S.
(2016). Using clinician annotations to improve automatic
speech recognition of stuttered speech. In Interspeech, pages
2651–2655.

[10] Howell, P., Davis, S., and Bartrip, J. (2009). The UCLASS
archive of stuttered speech. Journal of Speech, Language,
and Hearing Research, 52:556–596.

[11] Howell, P. and Sackin, S. (1995). Automatic recognition
of repetitions and prolongations in stuttered speech. In Pro-
ceedings of the First World Congress on Fluency Disorders,
pages 372–374.

[12] Kourkounakis, T., Hajavi, A., and Etemad, A. (2020).
Detecting multiple speech dysfluencies using a deep residual
network with bidirectional long-short-term memory. In IEEE
International Conference on Acoustics, Speech and Signal
Processing, ICASSP 2020, pages 6089–6093.

[13] Kourkounakis, T., Hajavi, A., and Etemad, A. (2021).
Fluentnet: End-to-end detection of stuttered speech dysfluen-
cies with deep learning. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 29:2986–2999.

[14] Lea, C., Mitra, V., Joshi, A., Kajarekar, S., and Bigham,
J. P. (2021). Sep-28k: A dataset for stuttering event de-
tection from podcasts with people who stutter. In IEEE
International Conference on Acoustics, Speech and Signal
Processing, ICASSP 2021, pages 6798–6802.
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