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Abstract
Rock structures built in rock masses will remain under constant load during the process starting 
with the construction phase and continuing throughout their service life. Particularly, medium 
strength rocks will undergo time-dependent deformation under constant load after the commence-
ment of mining or civil engineering works. Following the beginning of deformations start with the 
closing of the discontinuities, the rock material will undergo deformation depending on the load 
of which it is exposed to. In this case, the deformation properties of the rock mass can become im-
portant for the stability of an engineering structure. Generating empirical equations in the design 
of rock structures will pave the way for more practical designs as compared to more expensive 
and time-consuming in situ testing. These equations use laboratory-acquired uniaxial compressive 
strength and elastic modulus values of rocks as parameters. These formulas produced for design 
can be used safely in engineering. In this study, time-dependent deformation properties under 
constant load on four different and medium strength rocks from different locations were analyzed. 
The results showed that rocks of medium hardness deform differently under various constant 
loads. In addition, a significant time-load-strength-deformation function was obtained from the 
results of laboratory experiments performed on different rock types under various constant loads.   
Key Words: Deformation mechanism, hypersurface approximation, medium strength rocks 

Özet
Kaya kütleleri içine inşa edilen kaya yapıları, inşaat aşamasından başlayarak hizmet ömrü boyunca 
devam eden süreçte sürekli yük altında kalacaktır. Özellikle orta mukavemete sahip kayaçlar, madenci-
lik veya inşaat mühendisliği çalışmalarının başlamasından sonra sabit yük altında zamana bağlı defor-
masyona uğrayacaktır. Süreksizliklerin kapanımıyla birlikte deformasyonlar başladıktan sonra kayaç 
malzemesi maruz kaldığı yüke bağlı olarak deformasyona uğrayacaktır. Bu durumda, kaya kütlesinin 
deformasyon özellikleri mühendislik yapısının stabilitesi açısından önemli hale gelmektedir. Kaya yapı-
larının tasarımında ampirik denklemlerin üretilmesi, pahalı ve zaman alıcı yerinde testler yerine daha 
pratik tasarımların önünü açacaktır. Bu denklemler, kayaçların laboratuvarda elde edilen tek eksenli 
basınç dayanımı ve elastisite modülü değerlerini parametre olarak kullanmaktadır. Tasarım için üretilen 
bu formüller mühendislikte güvenle kullanılabilmektedir. Bu çalışmada, farklı konumlardaki dört farklı 
ve orta dayanımlı kayanın sabit yük altında zamana bağlı deformasyon özellikleri analiz edilmiştir. Elde 
edilen sonuçlar, orta sertlikteki kayaçların çeşitli sabit yükler altında farklı şekilde deforme olduklarını 
göstermiştir. Ayrıca, farklı kayaç türleri üzerinde çeşitli sabit yükler altında yapılan laboratuvar deneyle-
rinin sonuçlarından önemli bir zaman-yük-dayanım-deformasyon fonksiyonu elde edilmiştir.
Anahtar Kelimeler: Deformasyon mekanizması, hiperyüzey yaklaşımı, orta dayanımlı kayalar.



Şafak 

14 

1. Introduction

In a rock engineering design, the properties of the rock should be appropriately represented. 

Many researchers developed empirical equations widely used instead of in situ tests, as in situ 

tests are expensive, time consuming and inconsistent (Palmström and Singh 2001). Therefore, 

it became more common to determine the deformation modulus of the rock mass with the 

empirical equations (Nicholson and Bieniawski 1990; Mitri et al. 1994; Hoek and Diederichs 

2006; Aksoy et al. 2012; Aksoy et al. 2022). The other parameter is the rock mass strength, 

which can also be determined by empirical equations. The Uniaxial Compressive Strength 

(UCSi) of intact rock is a parameter in empirical equations (Cai et al. 2007; Dinc et al. 2011; 

Kalamaris and Bieniawski 1995; Brown 2008; Aksoy et al. 2018). 

Barla (2002) stated that some rocks have high deformation ability which may take a long time. 

The time dependent behavior of the rock mass in fractured rocks is very important (Bieniawski 

1973). In this study, the deformation behavior of four different rocks of medium strength under 

various loads was investigated. Finally, meaningful equations representing the time-load-

strength dependent deformation properties of the rocks were introduced. 

2. Material and Method

A hydraulic servo-controlled loading machine was installed to analyze the deformation 

behavior of rocks under constant load and over time. (Fig. 1) 

Fig. 1. Hydraulic servo controlled loading machine 

After preparing the samples according to ISRM Recommended Method (2007), various 

constant loads were applied to samples taken from various rock types. The level of constant 
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load to be applied was determined as 50%, 60%, 70% and 80% of the UCSi value of the rock. 

The set-up system (Fig. 2) was able to measure the deformations in the sample. The experiment 

was considered to be completed when no more deformation was recorded on the sample.  

Fig. 2. Deformation recording system 

This study aims to estimate the deformation that occurs over time under constant load in various 

rocks. The environmental parameters related to tests such as temperature and humidity were 

kept constant during the experiments. The detailed information regarding the rock samples used 

in this study is given in Table 1, while the results of the tests are illustrated in Table 2. Within 

the context of the study, deformability tests were performed on a sum of 64 rock samples with 

medium-strength and their average results are presented in Table 2. 

Table 1. Types, properties and lithology of the rocks tested 

Sample 

No 
Project Rock Properties Lithology and Rock Description 

TC 

Tavşanlı-

Ömerler 

Underground 

Coal Mine 

UCSi: 28.40 MPa 

Ei: 3210 MPa 

ʋ: 0.33 

Φi:39.92 

ci:0.297 MPa 

Gray-dark gray, generally jointed, hard-medium 

strength, Claystone, 

GSI: 45 

IC 

Soma-Işıklar 

Underground 

Coal Mine 

UCSi: 27.02 MPa 

Ei: 4900 MPa 

ʋ: 0.31 

Φi: 38.94 

ci: 0.793 MPa 

Gray-dark gray, locally jointed, generally massive, 

hard-medium-weak strength, Claystone 

GSI: 50 
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IM 

Soma-Işıklar 

Underground 

Coal Mine 

UCSi: 34,26 MPa 

Ei: 1560 MPa 

ʋ: 0.26 

Φi: 47.70 

ci: 0.445 MPa 

Homogeneous structure, hard and generally massive. 

Gray-light gray, and when they are broken, they turn 

into a light gray color called ash color. They are 

medium thick layers., Marl, GSI: 55 

IL 

Soma-Işıklar 

Underground 

Coal Mine 

UCSi: 47.11 MPa 

Ei: 4420 MPa 

ʋ: 0.27 

Φi: 53 

ci: 0.862 MPa 

Gray-light gray, generally massive, locally jointed, 

clay infilling, hard, sometimes medium, Limestone, 

GSI: 60 

UCSi: uniaxial compressive strength, Ei: elastic modulus of intact rock, ʋ: Poisson’s ratio, Φi: internal 

friction angle of intact rock, ci: cohesion. 

Tab. 2. Time-Dependent Deformations for Rocks under Constant Load 

Sample 

No 

Rock 

Type 

Time – Deformation graphs under constant loads 

TC Claystone 

IC Claystone 

IM Marl 

IL Limestone 
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3. Hypersurface model for time-dependent deformation behavior of rocks

The results of the time dependent deformation tests under constant load and uniaxial 

compressive strength of rocks were evaluated and the new mathematical model was developed 

to define load – time – uniaxial compressive strength hypersurface of rock deformation 

characteristics. 

In this section, multivariable function 𝑢 = 𝑓(𝑥, 𝑦, 𝑧)   is defined on ℜ4 for the function with

three independent variables 𝑥, 𝑦 , 𝑧 𝑎𝑛𝑑 𝑢 the dependent variable. The hypersurface 𝑢 =

𝑓(𝑥, 𝑦, 𝑧)  is considered to approximate over a region that is gridded by (𝑥𝑖 , 𝑦𝑗 , 𝑧𝑘) on ℛ3

and  𝑢𝑖𝑗𝑘 = 𝑓(𝑥𝑖 , 𝑦𝑗 , 𝑧𝑘)  data given for the function of three variables at the distinct points in 

the solid rectangular region where 𝑥 is load (kN), 𝑦  is time (h), 𝑧 is the uniaxial compressive 

strength (MPa) and 𝑢 is horizontal or vertical deformation (mm). 

The partial derivative of the function having three variables is its derivative with respect to one 

of those variables where the others are held constant. Partial differentiation is used when we 

take one of the tangent lines of the graph of the given function and obtain its slope. For medium-

strength rocks, the rate of change in the deformation with respect to the load or the time is 

linearly proportional to the deformation and their slopes are positive. The rate of change in the 

deformation with respect to the strength is inversely proportional to the deformation and its 

slope is negative.  Accordingly, the following definition is: 

Let 

𝜕𝑢

𝜕𝑥
= 𝐿𝑛𝑏. 𝑢 > 0 , 

𝜕𝑢

𝜕𝑦
= 𝐿𝑛𝑐. 𝑢 > 0 and  

𝜕𝑢

 𝜕𝑧
= 𝐿𝑛𝑑. 𝑢 < 0      (1)   

where 𝑢  𝑖𝑠 positive variable 𝑏, 𝑐 and 𝑑 are positive constants. The total differential 𝑑𝑢 of the 

function 𝑓(𝑥, 𝑦, 𝑧) is 

𝑑𝑢 =
𝜕𝑓

𝜕𝑥
𝑑𝑥 +

𝜕𝑓

𝜕𝑦
𝑑𝑦 +

𝜕𝑓

𝜕𝑧
 𝑑𝑧 .  (2) 

This differential is rewritten as 

𝑑𝑢

𝑢
= 𝐿𝑛𝑏. 𝑑𝑥 + 𝐿𝑛𝑐. 𝑑𝑦 + 𝐿𝑛𝑑. 𝑑𝑧   (3) 

and the general solution of this differential is obtained as 

𝐿𝑛𝑢 = 𝐿𝑛𝑏. 𝑥 + 𝐿𝑛𝑐. 𝑦 + 𝐿𝑛𝑑. 𝑧 + 𝑘       (4) 

𝑢 = 𝑒log𝑒 𝑏 .𝑥+log𝑒 𝑐.𝑦+log𝑒 𝑑.𝑧+𝑘 = (𝑒log𝑒 𝑏 )
𝑥

(𝑒log𝑒 𝑐 )
𝑦

(𝑒log𝑒 𝑑 )
𝑧
𝑒𝑘 (5)
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and 

𝑢 = 𝑓(𝑥, 𝑦, 𝑧) = 𝑎 𝑏𝑥𝑐𝑦𝑑𝑧   (6) 

where 𝑎 = 𝑒𝑘 and 𝑘 is the integral constant.

Given a hypersurface 𝑢 = 𝑓(𝑥, 𝑦, 𝑧) to approximate over the solid rectangular region that  

𝑢𝑖𝑗𝑘 = 𝑓(𝑥𝑖 , 𝑦𝑗 , 𝑧𝑘) = 𝑎 𝑏𝑥𝑖𝑐𝑦𝑗𝑑𝑧𝑘 passes through each point in the solid rectangular region.

The problem of the hypersurface approximation satisfying the data with minimum error is 

called finding the most optimal function. 

Let us suppose that there exists a nonlinear hypersurface with independent variables load, time 

and uniaxial compressive strength that are called 𝑥, 𝑦 and 𝑧 respectively, and dependent 

variables horizontal and vertical deformations named as  𝑢ℎ = 𝑎ℎ 𝑏ℎ
𝑥𝑐ℎ

𝑦𝑑ℎ
𝑧
and 𝑢𝑣 =

𝑎𝑣 𝑏𝑣
𝑥𝑐𝑣

𝑦can be formulated. Finally, the least squares method can be used for determining the

coefficients 𝑎ℎ  and 𝑎𝑣 and parameters 𝑏ℎ, 𝑐ℎ,  𝑑ℎ, 𝑏𝑣, 𝑐𝑣 ,  𝑑𝑣 which are obtained by various 

methods using  the generalized inverses, especially the least squares method which is applied 

to the best approximate solution for the inconsistent system of the linear equations (Penrose 

1955; Bazaraa et al. 1993). 

These hypersurface can be transformed to the linear forms as follows: 

𝑈ℎ = 𝐴ℎ + 𝐵ℎ𝑥 + 𝐶ℎ𝑦 + 𝐷ℎ𝑧 = 𝑔(𝑥, 𝑦, 𝑧) (7) 

and 

𝑈𝑣 = 𝐴𝑣 + 𝐵𝑣𝑥 + 𝐶𝑣𝑦 + 𝐷𝑣𝑧 = ℎ(𝑥, 𝑦, 𝑧)  (8) 

where 𝑈ℎ = 𝐿𝑛𝑢ℎ , 𝑈𝑣 = 𝐿𝑛𝑢𝑣 , 𝐴ℎ = 𝐿𝑛𝑎ℎ, 𝐴𝑣 = 𝐿𝑛𝑎𝑣, 𝐵ℎ = 𝐿𝑛𝑏ℎ , 𝐵𝑣 = 𝐿𝑛𝑏𝑣, 𝐶ℎ =

𝐿𝑛𝑐ℎ, 𝐶𝑣 = 𝐿𝑛𝑐𝑣, 𝐷ℎ = 𝐿𝑛𝑑ℎ and 𝐷𝑣 = 𝐿𝑛𝑏𝑣.   

We now consider  Eq. 7 and Eq.8  to approximate over the solid rectangular region. Assumed 

that 𝑈ℎ𝑖𝑗𝑘
= 𝑔(𝑥𝑖 , 𝑦𝑗 , 𝑧𝑘) and 𝑈𝑣𝑖𝑗𝑘

= ℎ(𝑥𝑖 , 𝑦𝑗 , 𝑧𝑘) data are given for the function of three

variables at the distinct points in the solid rectangular region, there are the best hyperplanes 

approximation on  ℜ4.

In our experimental study, there have been about 9167 measurements involving horizontal and 

vertical deformation values of each rock. The problem is formulated for using data as 
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𝐴ℎ + 𝐵ℎ𝑥𝑖 + 𝐶ℎ𝑦𝑖 + 𝐷ℎ𝑧𝑖 = 𝑈ℎ𝑖
, for  𝑖 = 1,2, … , 𝑛      (9) 

and 

𝐴𝑣 + 𝐵𝑣𝑥𝑖 + 𝐶𝑣𝑦𝑖 + 𝐷𝑣𝑧𝑖 = 𝑈𝑣𝑖
 , for  𝑖 = 1,2, … , 𝑛  (10) 

where n is experimental number of data. Eq. 9 and Eq.10 can be defined the matrix equation, 

which is used to find the coefficients as follows: 

[

1 𝑥1
𝑦1 𝑧1

1 𝑥2 𝑦2 𝑧2

⋮
1

⋮
𝑥𝑛

⋮
𝑦𝑛

⋮
𝑧𝑛

] [

𝐴ℎ

𝐵ℎ

𝐶ℎ

𝐷ℎ

] = [

𝑈ℎ1

𝑈ℎ2

⋮
𝑈ℎ𝑛

]  (11) 

and 

[

1 𝑥1
𝑦1 𝑧1

1 𝑥2 𝑦2 𝑧2

⋮
1

⋮
𝑥𝑛

⋮
𝑦𝑛

⋮
𝑧𝑛

] [

𝐴𝑣

𝐵𝑣

𝐶𝑣

𝐷𝑣

] = [

𝑈𝑣1

𝑈𝑣2

⋮
𝑈𝑣𝑛

]             (12) 

or 

𝐀𝒘ℎ = 𝒕𝒉        (13) 

𝐀𝒘𝑣 = 𝒕𝒗        (14) 

where  𝐀 = [

1 𝑥1
𝑦1 𝑧1

1 𝑥2 𝑦2 𝑧2

⋮
1

⋮
𝑥𝑛

⋮
𝑦𝑛

⋮
𝑧𝑛

], 𝒘ℎ = [

𝐴ℎ

𝐵ℎ

𝐶ℎ

𝐷ℎ

],  𝒘𝑣 = [

𝐴𝑣

𝐵𝑣

𝐶𝑣

𝐷𝑣

] ,  𝒕𝒉 = [

𝑈ℎ1

𝑈ℎ2

⋮
𝑈ℎ𝑛

],  𝒕𝒗 = [

𝑈𝑣1

𝑈𝑣2

⋮
𝑈𝑣𝑛

] and 𝐀 is an 

𝑛 × 4 coefficient matrix  with rank 4, 𝒘ℎ and 𝒘𝑣 are  4 × 1 vectors of the unknown parameters 

and coefficients,  𝒕𝒉 and 𝒕𝒗 are 𝑛 × 4 vectors consist of the horizontal and vertical deformations, 

respectively. The rank of  𝑛 × 4 rectangular matrix is 4 and the rank of the augmented matrix 

[𝐀 ⋮  𝒕𝒉] or [𝐀 ⋮  𝒕𝒗] 𝑖𝑠 5. Since systems have the same coefficient matrix, the matrix equation

to find the best approximate solutions is defined as follows:   

[
𝐀 0
0 𝐀

] [
𝒘ℎ

𝒘𝑣
]=[

𝒕ℎ

𝒕𝑣
]  (15) 

(𝐀 ⊗ I2)𝒘 = 𝒕    (16) 

where I2 is a 2 × 2 identity matrix, 𝒘 = [
𝒘ℎ

𝒘𝑣
]  is the 8× 1𝑣𝑒𝑐𝑡𝑜𝑟  𝑎𝑛𝑑 𝒕 = [

𝒕ℎ

𝒕𝑣
] is the 2𝑛 × 1

and ⊗ is the Kronecker product. Furthermore, the optimal solution is the one that has the 
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minimum length one of errors ‖(𝐀 ⊗ I2)𝒘 − 𝒕‖ . This solution with minimum norm is also the

best approximate the least squares solution of any inconsistent linear system (Penrose, 1956).   

The least squares method is applied to the system defined in Eq.16 as follows: 

𝑃(𝒘) =  ‖(𝐀 ⊗ I2)𝒘 − 𝒕‖𝟐 = (𝒘𝑻(𝑨𝑻⊗I2)−𝒕𝑻) ((𝐀 ⊗ I2)𝒘 − 𝒕)=𝜺𝑻𝜺  (17) 

is to be minimized respect to  𝒘 coefficients elements of the matrix where 𝑨𝑻  is the transpose

matrix of  𝐀 and 𝜺 is 2n× 1 error vector. The least squares estimator must satisfy 

∇𝑃(𝒘) =
𝝏𝑷

𝝏𝐰
= 2(𝑨𝑻𝐀 ⊗ I2)𝒘 − 𝟐𝐀𝑇𝒕 = 𝟎                                                              (18)

which simplifies to the normal equation 

(𝐀𝑻𝐀 ⊗ I2)𝒘 = 𝐀𝑇𝒕.                                                                                               (19)

The Moore-Penrose generalized inverse 𝐀+ of A is obtained by using the normal equation and

the unique solution of the normal equation is found in the form 

𝒘 = ((𝐀𝑻𝐀)−𝟏 ⊗ I2)𝐀𝑇𝒕 = [𝐀+ 𝟎
𝟎 𝐀+] 𝒕  (20) 

where 𝐀+ = (𝐀𝐀𝑻)−𝟏𝐀𝑇   is the Moore-Penrose inverse  𝐀+ of 𝐀. Using Eq. 20, the vectors 𝒘ℎ

and 𝒘𝑣 of the unknown parameters and coefficients are computed easily as  

𝒘ℎ = 𝐀+𝒕ℎ = (𝐀𝐀𝑻)−𝟏𝐀𝑇𝒕ℎ and 𝒘𝑣 = 𝐀+𝒕𝑣 = (𝐀𝐀𝑻)−𝟏𝐀𝑇𝒕𝑣.                                            (21)

The coefficients 𝑎ℎ  and 𝑎𝑣 and parameters 𝑏ℎ,𝑐ℎ,  𝑑ℎ, 𝑏𝑣, 𝑐𝑣 ,  𝑑𝑣 are calculated  using Eq.21. 

Finally, the coefficient and parameters of the horizontal and vertical deformations formulas for 

4 different medium-strength rocks types are computed, respectively. 

4. Results and discussions

Consequently, it is seen that the amount of deformation tends to increase with increasing 

constant load. When the graphs are scrutinized, it is seen that deformation curves (horizontal 

and vertical) generally form a cluster. Deformation curves generally cluster at loads of 50%, 

60%, 70% of the UCSi of the rock. In experiments performed at 80% of the UCSi of the rock, 

there is no change in deformation characteristic of the sample, but there is a visible rise for 

deformation which it is exposed to. 

UCSi is used as a parameter in the formulas when the strength of rock masses UCSrm is 

calculated. Nonetheless, when the adequacy of rock mass strength is questioned in rock 
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engineering designs, time and load on the rock mass are not considered. From this point of 

view, the strength of the rock material gains more importance. Although the deformation 

characteristics differ according to the discontinuity properties (Carter et.al., 2007; Carvalho 

et.al., 2007; Komurlu et al., 2017; Diederichs et.al., 2007), the amount of time-dependent 

deformation of the rock material under constant load and its characterization are significant in 

terms of stability. Especially, it should be considered while determining the deformation model 

of the rocks in numerical modeling analysis. While describing the deformation characteristics 

of the rock mass, it is useful to identify deformation behavior of rock masses under various 

loads. 

The characterizations of the rock mass deformation dependent on time, load and uniaxial 

compressive strength were determined for four different medium-strength rock samples. The 

characterizations of the function with four variables were determined as a mathematical model. 

The defined hypersurfaces were stated with exponential function formulas and a mathematical 

model was developed to define load–time–uniaxial compressive strength hypersurface of rock 

deformation and the multivariable functions 𝑢ℎ = 𝑎ℎ 𝑏ℎ
𝑥𝑐ℎ

𝑦𝑑ℎ
𝑧
 and  𝑢𝑣 = 𝑎𝑣 𝑏𝑣

𝑥𝑐𝑣
𝑦𝑑𝑣

𝑧   are

as follows: 

𝒘ℎ = 𝐀+𝒕ℎ = [

11,08501
 0,01014
0,00091

−0,47701

] , 𝒘𝑣 = 𝐀+𝒕𝑣 = [

12,56977
0,00166

0,000477
−0,48055

] 

From Eq. 7 and Eq. 8, the hypersurfaces are obtained as 

𝑢ℎ = 65186,77943(1,01019)𝑥(1,00091)𝑦(0,620634)𝑧        (22) 

and 

𝑢𝑣 = 287727,53882 (1,00166)𝑥(1,00048)𝑦(0,61844)𝑧   (23) 

As a result of the performed experiments, an equation was developed as explained in the 

previous section for the purpose of determining time-dependent deformation. It should be noted 

that the equation has unique constants for each rock type. Verification of the derived equations 

are given Eq. 22 and Eq.23.The correlation between the deformation values predicted by means 

of equations and the measured deformation values that were obtained from the results of the 

laboratory tests belonging 64 different rock samples, is given in Figure 3. 
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Fig. 3. Performance of the developed equation for horizontal and vertical deformation 

When the graphs that illustrate the result of horizontal deformations obtained from the derived 

equation are scrutinized, it can be noted that accuracy ratios were calculated by the equation 

0,9143 and 0,9345 for horizontal and vertical deformations, respectively (Figure 3). The 

amount of deformation measured for the same conditions under a constant load of 30kN (80% 

of the UCSi) was  nearly 0,391 mm while the final deformation amount after 168 hours under 

a constant load of 25 kN (70% of the UCSi) was 0,377 mm in TC sample. The same rock 

underwent 96% more deformation under a constant load of (30kN). In TC, accuracy ratio 

happened to be 0.9345 when results obtained from the equation were analyzed. 

As the amount of load applied to the rocks increases, the amount of deformation will also 

increase depending on the UCSi and type of intact rock.  However, there will be no change in 

the behavior of deformation.  

5. Conclusions

The studies in literature about time-dependent deformation behavior of rocks under constant 

load is limited. Since the rock structures remain under constant loads for a long time, the loads 

are crucial for long-term stability of rocks. The deformation behavior of the rock mass is also 

important for the safety of the design. In this research, an exponential empirical formula was 

developed to determine the deformation behavior of medium strength rocks under various 

constant loads. This formula predicts deformation with a high degree of accuracy when 

analyzed on the basis of rock type. The deformation estimated by this equation can be used to 

evaluate the amount of deformation allowed for the rock structure. In other words, all the 

characteristics of the rock mass, including the weakness, are taken into account when 

determining the rock class of the rock mass. The UCSi of the rock is an important parameter in 

many rock mass classification systems, being a constant derived from laboratory experiments 

as well as the elasticity modulus. The most important contribution of this research is to propose 
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a new empirical formula for the estimation of rock deformation under different constant loads 

to which medium strength rock is exposed over time in rock structure design. This study will 

serve to guide practical mining and civil engineers working in underground conditions. The 

most significant contribution of the paper will be in tunnel construction projects, espacially in 

the phase of selecting excavation techniques. Also, it will assist underground engineers to plan 

the excavation and design of long-term support systems of underground structures thus enabling 

the managers for precise decision-making. 
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