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1. Introduction 
 

The current world population of 8.1 billion people 
as of May 2024 is estimated to reach 9.8 billion by 
2050, hence humanity has to find sustainable ways 
to feed an extra 1.8 billion mouths (UN DESA, 
2017). This situation underscores the urgent need 
for innovative agricultural practices, improved crop 
varieties with superior yield and resistant to biotic 
and abiotic stresses. Moreover, the issue is 
compounded by the gradual reduction in the amount 

of land available for agriculture (Godfray et al., 
2010). In crop plants, many agronomically important 
traits such as yield, grain size, fruit weight, and plant 
height are governed by the collective effects of 
several genes with smaller effects called as 
quantitative trait loci or QTLs (Falconer, 1996). The 
QTL-identification is an arduous task yet of 
paramount importance for genetic enhancement of 
many important crops. Once these QTLs are 
identified, the next step is the integration of 
favorable alleles of QTLs into elite germplasm 

Abstract 
 
QTL-seq is a powerful method that integrates whole-genome sequencing 

(WGS) with bulk-segregant analysis to rapidly and reliably identify 

quantitative trait loci (QTLs) associated with specific traits. This approach 

significantly advances traditional QTL mapping by eliminating the need for 

genome wide DNA markers such as SSR, RFLP, and INDELs, which are 

typically used in linkage-based QTL mapping. Instead, QTL-seq leverages 

WGS to detect all genetic variations such as SNPs, Indels, and Structural 

Variants across the entire genome, providing a comprehensive resource 

for marker development in marker-assisted selection. The QTL-seq 

process begins with the creation of genetically diverse mapping 

populations, such as F2 or RILs, followed by detailed phenotypic 

characterization. DNA from plants exhibiting similar phenotypes is pooled 

into bulk groups and sequenced, allowing for cost-effective and efficient 

QTL identification. Identified QTLs can be further validated through fine 

mapping using recombinant screenings and progeny testing, leading to the 

identification of candidate genes associated with traits of interest. In this 

study, we outline a user-friendly QTL-seq pipeline, from sequencing to data 

visualization to demonstrate its practical application. While the manuscript 

primarily focuses on describing the pipeline, we also conducted a case 

study analysis with real data to showcase its effectiveness. Our work 

contributes to the broader understanding of QTL-seq applications and 

offers practical recommendations for optimizing this method in future 

breeding programs. 
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mostly via backcrossing with the help of marker 
assistant selection (Collard and Mackill, 2008; 
Ribaut and Hoisington, 1998). One of the oldest yet 
reliable QTL-mapping approaches was linkage-
based QTL mapping, in which DNA markers are 
tightly linked to targeted QTL. However, limitations 
in linkage mapping such as a restricted number of 
DNA markers, low marker density across the entire 
genome, long duration required for developing 
mapping populations, and difficulty in capturing all 
the recombination events, presence of 
heterogeneity in early generations 
(Abdurakhmonov and Abdukarimov, 2008; 
Madhusudhana, 2015) prompted researchers to 
seek alternative rapid, cost-effective, and reliable 
methods. QTL-seq was introduced by Takagi et al. 
(2013) more than a decade ago and offered as an 
alternative tool that may overcome these above-
mentioned hurdles. This method simply relies on the 
advantages of next generation sequencing and bulk 
segregant analysis (BSA). The BSA method 
involves selecting individuals with extreme 
phenotypes from a segregating population, after 
which the DNA from these selected plants is pooled 
together into two separate bulks based on the 
phenotype. Each bulk is expected to be genetically 
identical within the regions linked to the target trait 
but different from the other bulk in these regions. 
This genetic difference between the two bulks is 
used to identify markers associated with the trait of 
interest. Essentially, the two pooled DNA samples 
are genetically identical (monomorphic) except for 
the regions linked to the trait, where they exhibit 
genetic dissimilarities (heterozygosity). The 
advances in whole-genome sequencing have 
opened a new era for plant breeders. This is mostly 
because several accessions have been re-
sequenced and high-quality reference genomes for 
many crops such as tomato (Tomato Genome 
Consortium, 2012), maize (Jiao et al., 2017), rice 
(Kawahara et al., 2013), soybean (Schmutz et al., 
2010), arabidopsis (Cheng et al., 2017) have 
become available over the past years. Another key 
component of the QTL-seq is BSA, which is 
introduced early in 1990s to map a downy mildew 
resistance in lettuce (Michelmore et al., 1991). In 
this method, individuals displaying extreme 
phenotypes are selected from a segregating 
population, after which the DNAs from these plants 
are bulked together. Within each pool, the plants are 
assumed to be genetically identical for a target 
region, but the pools themselves are dissimilar, 
variants used for developing markers are 
polymorphic and highly associated with the trait of 
interest (Takagi et al., 2013; Wang and Wang, 
2023). In other words, two pooled DNA samples 
exhibit genetic dissimilarities solely within the 
targeted region, appearing heterozygous and 
monomorphic for all other regions. Even though 
BSA offers numerous advantages, genotyping of 
each marker mostly based on restriction fragment 
length polymorphism (RFLP) or simple sequence 

repeat (SSR) for the two bulked DNAs is still a 
laborious and limiting factor. In contrast to RFLP 
and SSR commonly used in the past, single 
nucleotide polymorphisms (SNPs) have numerous 
advantages due to their abundance, high-
throughput genotyping capabilities, cost-
effectiveness, and genome-wide distribution 
(International Rice Genome Sequencing Project, 
2005; Nelson et al., 2004; Seeb et al., 2011; Singh 
et al., 2013). Therefore, BSA equipped with next-
generation sequencing is capable of rapid, cost-
effective, and reliable QTL mapping in various 
crops. To date, numerous traits have been mapped 
and utilized in plant breeding studies. Some of these 
traits were summarized in Table 1.  

The main goal of this research is to present a 
comprehensive and user-friendly QTL-seq pipeline 
that encompasses all stages from sequencing to 
data visualization. By leveraging the methodology 
and data from Takagi et al. (2013), we aim to 
provide a clear and practical framework for 
implementing QTL-seq in plant breeding. Through a 
detailed case study analysis, we demonstrate the 
pipeline's effectiveness and offer insights for 
optimizing this approach, thereby advancing the 
application of QTL-seq in future breeding programs. 

 
 
2. Material and Method 
 
2.1. DNA extraction procedures and library 
preparation for sequencing 

 
The DNA isolation and library preparation 

determines the success of the following steps. 
Hence, a high-quality DNA (high molecular weight 
and contaminant-free such as polysaccharides or 
phenolics) must be extracted with kits such as 
DNeasy Plant Mini Kit (Qiagen, Valencia, California, 
USA), Genomic DNA Purification Kit (Thermo 
Scientific™ Waltham, Massachusetts, USA), and 
Quick-DNA Plant/Seed 96 Kit (Zymo Research, 
Irvine, California, USA). Before NGS library 
preparation, it is essential to quantify both the 
quality and quantity of DNA from the selected 
individuals using NanoDrop ND-1000 
spectrophotometer (Thermo Scientific) to ensure 
that the UV absorbance A260/A280 ratio falls within 
the range of 1.8 and 2.0 and A260/A230 ratio ≥ 1.5). 
Moreover, Qubit 2.0 Fluorimeter (Invitrogen, 
Carlsbad, CA, USA) could also be employed for the 
same reason. With respect to library preparation, 
NEBNext Ultra™ II DNA Library Prep Kit (New 
England Biolabs, USA) in conjunction with 
barcoded primers from the NEBNext® Multiplex 
Oligos obtained from Illumina kits (New England 
Biolabs, USA) could be used.  
 
2.2. Comparative variant analysis  

 
Whole genome sequencing can be performed 

using platforms such as the Illumina NextSeq 550, 
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Table 1. Summary of QTL-seq studies. 

Crop Trait of interest Population size Generations QTL interval Mb Reference 

Rice 

Magnaporthe oryzae 
(rice blast) resistance 

n=241  RILs Chr 6 2.39 to 4.39  
Takagi et al. 
(2013) 
Takagi et al. 
(2013) 

Seedling vigor n=531 F2 Chr 3 36.21 to 37.31 

Salt tolerance n=199  F2:3 Chr 7 20.16 to 24.33 
Lei et al. 
(2020) 

Grain length and 
weight 

n=176 NIL-F2 Chr 5 15.00 to 20.00 
Yaobin et al. 
(2018) 

Cucumber 

Early flowering n=232 F2 Chr 1 22.86 to 26.31  
Lu et al. 
(2014) 

Pre-harvest sprouting n=298 F2 
Chr 4 7.30 Mba Cao et al. 

(2021) Chr 5 0.15 Mb 

Tomato 

Heat-tolerance n=200 F2 

Chr 1 23.80 to 63.52 
Wen et al. 
(2019) 

Chr 2 38.98 to 40.85 

Chr 7 10.08 to 52.20 

Fruit weight n=100 F2 Chr 1 12.48 to 51.58 

Illa-
Berenguer et 
al. (2015) 

Fruit weight n=100 F2 Chr 11 49.73 to 51.35 

Fruit weight 

n=200 F2 

Chr 03 60.86 to 61.72 

Locule number Chr 2 33.67 to 35.30 

Locule number Chr 5 3.25 to 3.98 

Locule number Chr 6 41.16 to 43.93 

Blossom-end rot 
n=192 F2 Chr 3 54.21 to 59.89 Topcu et al. 

(2021)   Chr 11 48.13 to 52.12 

Yellow shoulder 
disorder 

n=192 F2 

Chr 1 21.36 to 55.92 

Topcu (2024) Chr 4 30.57 to 53.50 

Chr 11 51.33 to 53.26 

Chickpea Seed weight n=221 F4 Chr 1 0.84 to 0.87 
Das et al. 
(2015) 

Groundnut 
Rust resistance n=268 RIL Chr A03 131.60 to 134.66 Mb 

Pandey et al. 
(2017) 

Late leaf spot 
resistance 

n=268 RIL Chr A03 131.67–134.65 Mb 

Melon Stigma color n=150 F2 
Chr 6 141.48–152.83 cM Qiao et al. 

(2021) Chr 8 19.71–57.33 cM 

Peanut Seed weight n=242 RIL 

Chr A05 101.70−111.64 Mb 
Wang et al. 
(2022) 

Chr B02 103.90−111.75 Mb 

Chr B06 0.30−50.22 Mb 

Maize Semi-dwarfism n=533 F2 Chr 9 111.07 to 124.56 Mb 
Chen et al. 
(2018) 

Soybean Two-seed pod length  BC3F2-n 

Chr03 0.50 to 4.76 Mb 
Xie et al. 
(2021) 

Chr11 3.38 to 7.06 Mb 

Chr12 9.72 to 11.25 Mb 
aResults were given as interval. 

 

 

 

 

 

 

 

 

 

 

1000, and 2000, which utilize paired-end 150 base 
pairs (bp) (PE150) flow cells. Once sequencing 
procedure is finished, the raw fastq.gz files can be 
downloaded directly from the sequencing webpage 
using the "wget [option] [URL]”. Before proceeding 
with further analysis, the FASTQ files are suggested 
to be filtered and trimmed, which can be done using 
Trim Galore (version 0.6.5, 
https://github.com/FelixKrueger/TrimGalore) to 
ensure a minimum quality value of 28. For this 
purpose, the following command “trim_galore --
paired file_R1.fastq.gz file_R2.fastq.gz --quality 28 
--fastqc --stringency 3 --length 60 --illumina” could 
be used, in which  “--quality 28” removes low-quality 
ends from reads based on the phred score 
threshold of 28, “--fastqc” runs the FastQC in the 
default mode on the FastQ files once trimming is 
completed, “--paired” specifies the paired 
sequencing files, “--illumina” trims the first 13bp of 
the Illumina universal adapter 

'AGATCGGAAGAGC', “--length 60” discards reads 
that became shorter than 60bp, “--stringency 3” 
enables that a minimum of 3 base pairs of the 
adapter must be present for it to be trimmed. The 
next step involves aligning the remaining high-
quality reads to the reference genome which can be 
downloaded from public databases using “wget”. 
This reference genome can either be one of the 
parental accessions to be sequenced along with the 
bulks or a high-quality reference genome. Before 
aligning with the bowtie2 (Version 2.4.1) 
(Langmead and Salzberg, 2012), or SpeedSeq 
(Chiang et al., 2015), reference genome should be 
indexed using the “bowtie2-build 
reference_sequence.fasta index_name” where 
reference_sequence.fasta is the reference genome 
fasta file to be indexed, and index_name is the 
output name. After indexing is done, the aligning 
can be performed using the following command line 
“bowtie2 -p 8 n -x index_name -1 file_R1.fastq.gz -

https://github.com/FelixKrueger/TrimGalore
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2 file_R2.fastq.gz -S output.sam”. In this command 
line, “-p” is the number (8) of processors/threads 
used, “-x” is the genome index, “-1 file_R1.fastq.gz” 
is the file of first paired end read, “-2 
file_R2.fastq.gz” is the file of second paired end 
read, and “-S output.sam” is the output alignment in 
sam format. Next, the “output.sam” files need to be 
converted to BAM files using samtools (version 
1.16.1) (Li and Durbin, 2009). To achieve this step, 
the following command line “samtools view -@ 10 -
bS output.sam > output.bam” can be utilized. While 
“-@ 10” defines the number of threads which in this 
case is 10, -bS defines the output in the BAM format 
and ignores the compatibility with previous 
samtools versions. This step is followed by sorting 
of the bam files using “samtools sort -@ 10 -m 3G 
output.bam -o output_sorted.bam”, in which “-m” 
defines the maximum required memory per thread 
to be used and “-o” writes the final sorted output. 
Upon indexing the sorted bam files with following 
command “samtools index output_sorted.bam” 
Picard tools (Picard version 2.27.5) 
(https://broadinstitute.github.io/picard/) will be 
employed to replace read groups and identify 
duplicate reads. To achieve this step, the following 
command “java -jar $EBROOTPICARD/picard.jar 
AddOrReplaceReadGroups --INPUT= output_ 
sorted.bam --OUTPUT=output_sorted.RG.bam --
RGID=4 --RGSM=output --RGLB=output --
RGPL=ILLUMINA --RGPU=ignore” and “java -jar 
$EBROOTPICARD/picard.jar MarkDuplicates 
INPUT= output_sorted.RG.bam OUTPUT= 
output_sorted_mkdupl.RG.bam METRICS_FILE= 
output_sorted_mkduplMetrics.txt” can be used. 
While “AddOrReplaceReadGroups” consolidates all 
the reads in a file under a singular new read-group, 
“MarkDuplicates” locates, and tags duplicate reads 
in a BAM-files. The command “java -jar 
$EBROOTPICARD/picard.jar” utilizes Java to run a 
JAR file named picard.jar, which is located in the 
directory specified by the environment variable 
$EBROOTPICARD. In the command lines, “--
INPUT” shows Input file, “--OUTPUT” designates 
Output file, “--RGID” defines Read-Group ID, “--
RGSM” displays Read-Group sample name, “--
RGLB” denotes Read-Group library, “--RGPL” 
illustrates Read-Group platform (such as ILLUMINA 
and SOLID) and finally “--METRICS_FILE” 
specifies the file where metrics about the duplicates 
will be written. These metrics may contain data such 
as the count of identified duplicates, their respective 
locations, and other pertinent statistical information. 
After completing the previous step, the next step 
involves indexing the sorted and marked BAM file. 
This is accomplished by executing the command 
"samtools index output_sorted_mkdupl.RG.bam". 
 
2.3. Variant calling 

 
The variant calling is of utmost importance since 

QTL-seq heavily depends on the variance between 
created bulks. Hence, to get reliable results and 

enhance the accuracy, we must annotate potential 
insertions/deletions (INDELs) or misalignments 
accurately. The first step in variant calling pipeline 
begins with reference genome indexing. The 
reference genome can be indexed with “SAMtools” 
developed by Li and Durbin (2009) using the 
“Samtools faidx reference_sequence.fa” command. 
The INDEL realignment is performed utilizing the 
Genome Analysis Toolkit (GATK, Version 3.8-1) 
(McKenna et al., 2010) by following the commands 
“ -T RealignerTargetCreator” which identifies what 
regions need to be realigned and “-T 
IndelRealigner” that performs the actual 
realignment. Both determine false positive SNPs 
and perform a local realignment in a sequencing 
dataset. While the first command, “java -Xmx150g -
jar $EBROOTGATK/GenomeAnalysisTK.jar -T 
RealignerTargetCreator -R reference_sequence.fa 
-I output_sorted_mkdupl.RG.bam -o output 
_intervals.list” creates a list of target intervals for the 
following step, the second command “java -
Xmx150g –jar$EBROOTGATK/GenomeAnalysis 
TK.jar -T IndelRealigner -R reference_sequence.fa 
-I output_sorted_mkdupl.RG.bam -targetIntervals 
output_intervals.list -o output_realigned_reads 
.bam” executes the real realignment of reads based 
on the target intervals. In both commands 
abovementioned, “-Xmx” defines the memory to be 
allocated, “-R” designates the reference genome to 
be used, “-I” describes the input BAM file containing 
aligned reads, “-targetIntervals” designates the 
interval file generated from the 
RealignerTargetCreator step and finally “-o” 
specifies the output file where the information about 
potential realignment sites will be stored. Before 
proceeding to the final step of variant calling, the 
output of the previous command 
(output_realigned_reads.bam) needs to be 
indexed. The final command in variant calling step 
utilizes GATK to call haplotypes from aligned reads 
in the “output_realigned_reads” BAM file. The 
command is “java -Xmx150g -jar 
$EBROOTGATK/GenomeAnalysisTK.jar -T 
HaplotypeCaller -nct 10 -R reference_sequence.fa 
-I output_realigned_reads.bam –emitRef 
Confidence GVCF --variant_index_type LINEAR --
variant_index_parameter 128000 -o raw_ 
variants_gvcf.vcf”. In the command line, “-T 
HaplotypeCaller” specifies the tool as 
HaplotypeCaller, which identifies potential variants. 
Furthermore, “-nct 10” indicates the number of CPU 
threads to use for parallel execution, “-R” refers to 
reference genome fasta sequence, “-I” designates 
Input BAM file, the “emitRefConfidence” option 
emits reference confidence scores for each site in 
the (Genomic Variant Call Format) GVCF file, 
providing information about the likelihood that a 
particular reference allele is actually present at a 
given genomic position. “Variant_index_type 
LINEAR” parameter specifies the indexing strategy 
as LINEAR, meaning that variants are indexed 
sequentially according to their genomic position for 

https://broadinstitute.github.io/picard/
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the output GVCF. The final parameter required in 
GATK versions older than 3.4 is 
“variant_index_parameter 128000” indicating the 
size of the bins used in the linear indexing strategy.  
 
2.4. Combining variant callings and filtering  

 
In QTL-seq studies, two representative bulks are 

typically created to identify genomic regions 
associated with the trait. In the following command, 
the variant calls that were previously done for each 
bulk separately are merged into a single VCF file for 
the downstream analysis. The command is “java -
Xmx150g -jar $EBROOTGATK/Genome 
AnalysisTK.jar -T GenotypeGVCFs -R 
reference_sequence.fa --variant raw1_variants 
_gvcf.vcf --variant raw2_variants_gvcf.vcf -nt 10 -o 
merged.vcf”. While “-T GenotypeGVCFs” 
parameter specifies the tool in GATK being used to 
perform joint genotyping that involves combining 
variant calls from multiple samples on GVCF files 
generated by HaplotypeCaller, “--variant” 
parameter designates which files need to be 
merged. The following command “java -Xmx150g -
jar $EBROOTGATK/GenomeAnalysisTK.jar -T 
SelectVariants -R reference_sequence.fa -V 
merged.vcf -selectType SNP -o SNPs.vcf” is used 
to extract SNPs from merged variant calling VCFs, 
in which “-T SelectVariants” indicates the tool being 
used in GATK that allows selection of specific 
variants whereas “-selectType SNP” or “--select-
type-to-include SNP” selects SNP variant from the 
supplied VCF file, designated by “-V”. Once SNPs 
have been selected, the subsequent steps involve 
identifying and flagging SNPs with poor quality 
based on genotype quality, read depth, allele 
frequency, and various annotation scores, and then 
filtering them out. This filtering step is crucial to 
identify high quality SNPs that can be converted into 
genotyping markers such as KASP (Kompetitive 
Allele-Specific PCR). To tag low quality SNPs, the 
following command can be used “java -Xmx150g -
jar $EBROOTGATK/GenomeAnalysisTK.jar -T 
VariantFiltration -R reference_sequence.fa -V 
SNPs.vcf --filterExpression "QD < 2.0 || FS > 60.0 || 
MQ < 40.0 || MQRankSum < -12.5 || 
ReadPosRankSum < -8.0" --filterName 
"Default_recommended" -o Filtered_snps.vcf”. In 
the command line, “-T VariantFiltration” indicates 
the tool in GATK being used to filter variants, “-V 
SNPs.vcf” shows the input VCF file containing 
SNPs that need to be filtered, “--filterExpression 
"QD < 2.0 || FS > 60.0 || MQ < 40.0 || MQRankSum 
< -12.5 || ReadPosRankSum < -8.0” defines the 
filtering criteria based on QD < 2.0: Variant Quality 
by Depth (QD) less than 2.0, FS > 60.0: 
FisherStrand (FS) greater than 60.0, MQ < 40.0: 
Mapping Quality (MQ) less than 40.0, MQRankSum 
< -12.5: Mapping Quality Rank Sum Test less than 
-12.5, ReadPosRankSum < -8.0: Read Position 
Rank Sum Test less than -8.0. Furthermore, “--
filterName "Default_recommended” defines the 

name of the filter to be applied to variants. The next 
step involves filtering using VCFtools (version 
0.1.16) (Danecek et al., 2011). To keep only high 
quality SNPs and the following command “vcftools -
-vcf Filtered_snps.vcf --remove-filtered-all --recode 
--max-missing 1 -c > Filtered_passed_snps.vcf” is 
performed, in which “vcftools” defines which tools to 
be used in VCFtools, “--vcf Filtered_snps.vcf” 
specifies the input VCF file containing variants that 
need to be filtered, “--remove-filtered-all” removes 
all variants that have been flagged as filtered by 
previous filtering steps, “--recode” forces VCFtools 
to output the filtered variants into a new VCF file as 
“Filtered_passed_snps.vcf” designated in the 
command line. The last criteria are “-max-missing 1” 
that filters variants where more than one sample 
has missing data, and “-c” defines the output as 
compressed VCF files. The steps described above 
are summarized in Figure 1.  

Additionally, a master script detailing each step 
is provided in Supplemental File 1. Using this script 
we re-analyzed the QTL-seq data (Takagi et al., 
2013) which identified a QTL located in the 2.39 to 
4.39 Mb region on chromosome 6, associated with 
partial resistance to Magnaporthe oryzae, the 
causal agent of rice blast disease in the rice. The 
final VCF file that shows the SNPs and INDELs 
between R-bulk (Mainly Nortai-type genomic 
segments) and S-bulk (Mainly Hitomebore-type 
genomic segments) was given in (Supplemental 
File 2).  
 
 
3. Results and Discussion 

 
The last step in the QTL-seq pipeline is 

visualizing the SNP allele frequencies or SNP-
indexes along the genome and identify QTL regions 
associated with the trait of interest. This 
visualization can be done using an R package 
called QTLseqr (Mansfeld and Grumet, 2018). 
Since, the R package requires a tabular file format, 
we need to convert VCF file that has the SNP 
variants identified between two bulks into tabular 
format using following command “java -jar 
$EBROOTGATK/GenomeAnalysisTK.jar -T 
VariantsToTable -R reference_sequence.fa -V 
Filtered_passed_snps.vcf -F CHROM -F POS -F 
REF -F ALT -GF AD -GF DP -GF GQ -GF PL -o 
QTL-seqr.table”. While “-T VariantsToTable” in the 
command line designates the tool that converts the 
variant information from VCF format to a tabular 
format, “-R” defines the reference fasta, “-V” 
specifies the input VCF file containing the filtered 
SNP variants. Further, “-F CHROM -F POS -F REF 
-F ALT” specifies the components such as 
chromosome, position, reference allele, and 
alternate allele of each variant to be included in the 
output table. Finally, “-GF AD -GF DP -GF GQ -GF 
PL” defines the genotype fields (GF) to be included 
in the output table such as allelic depths (AD), total 
read depths (DP), genotype quality (GQ), and 

https://horticulturalstudies.org/uploads/Hortis_41_34_Supplemental_Files_1_4.pdf
https://horticulturalstudies.org/uploads/Hortis_41_34_Supplemental_Files_1_4.pdf
https://horticulturalstudies.org/uploads/Hortis_41_34_Supplemental_Files_1_4.pdf


 
111 

Topcu et al. / HortiS (2024) 41(1):106-115 

 

 

 
Figure 1. General outline of a QTL-seq script. a) The phenotypic distribution of a hypothetical mapping population. A 
dataset of 10,000 continuous values was generated using a normal distribution with a mean of 0 and a standard deviation 
of 6. A seed (set.seed (123)) was used to ensure reproducibility. The 5th percentile of the data defined the lower extreme 
values (low bulk), while the 95th percentile defined the upper extreme values (high bulk). b) The workflow began with library 
preparation for each bulk, followed by whole genome sequencing to generate raw reads. These reads were then aligned 
to a reference genome, and variant calling was used to identify genetic variants (SNPs). The process concluded with data 
visualization for the analysis and presentation of the results. 
 

 

 

 

 

 

 

 

 

 

 

phred-scaled likelihoods (PL) for each genotype. 
The corresponding “QTL-seqr.table” file for the rice 
data was also given as Supplemental File 3. In the 
QTL-seqr package, further filtering steps can be 
used based on reference allele frequency, 
maximum total depth, minimum total depth, sample 
depth and genotype quality. After desired filtering 
criteria are met, the “runQTLseqAnalysis() function 
“can be implemented with some minor changes to 
original pipeline of (Takagi et al., 2013). The 
modified “R” script that contains further filtering and 
QTL-visualization steps was given in Supplemental 
File 4. We successfully mapped the fungal rice blast 
disease QTL, qPi-nor1(t), with our script and 
validated the results obtained by Takagi et al. 
(2013). The rice blast disease trait, which was used 
to test our QTL-seq analysis, was estimated to 
exhibit moderate broad-sense heritability (54.16%) 
previously (Salleh et al., 2022), underscoring the 
genetic basis of this trait. The corresponding QTL-
seq results were given in Supplemental Figure 1. 
We identified two QTLs associated with the blast 

resistance Figure 2. Although the previously 
identified QTL on chr 6, qPi-nor1(t), was located 
between 2.39–4.39 Mb (P < 0.01), we defined the 
border of qPi-nor1(t) as 2.50- 5.39 (P < 0.01) Figure 
2a. In addition, we identified another QTL (named 
as blast9.1) on chr9, which locates between 9.28- 
10.20 (P < 0.05) Figure 2b.  

The power of next generation sequencing, 
especially the advances in long and short read 
sequencing with reduced costs, has opened a new 
era for QTL mapping and dramatically changed the 
way of crop breeding practices and genetic studies 
in various organisms (Varshney et al., 2009; Kim et 
al., 2016; Varshney et al., 2020). Once more plant 
genome assemblies along with complete 
annotations are readily available in plant science, 
numerous QTL mapping methods have been 
proposed, and several innovative concepts have 
been introduced to map QTLs (Bazakos et al., 2017; 
Wang & Han, 2022). SHOREmap, introduced by 
Schneeberger et al. (2009) can be seen a corner 
stone as it was one of the original approaches that 

https://horticulturalstudies.org/uploads/Hortis_41_34_Supplemental_Files_1_4.pdf
https://horticulturalstudies.org/uploads/Hortis_41_34_Supplemental_Files_1_4.pdf
https://horticulturalstudies.org/uploads/Hortis_41_34_Supplemental_Files_1_4.pdf
https://horticulturalstudies.org/uploads/Hortis_41_34_Supplemental_Figure_1.jpeg
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Figure 2. QTL-seq identifies qPi-nor1(t) and blast9.1 QTLs associated with Magnaporthe oryzae (rice blast disease) 

resistance on a) chr 6 and b) chr 9, respectively. The tricube-smoothed absolute Δ(SNP-index) is shown in red, while 

confidence intervals of P < 0.05 and P < 0.01 are depicted in grey and black lines, respectively. The X-axis represents the 

genomic position in megabases (Mb), and the Y-axis shows the absolute Δ(SNP-index) values. The blue shaded areas on 

chr6 and chr9 show the QTL-intervals for qPi-nor1(t), and blast9.1 responsible for the rice blast disease. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

integrates whole genome resequencing and 
phenotyping in a large pool of recombinants. 
Moreover, BSA equipped with genome analysis 
using microarray-based genotyping or massively 
parallel sequencing was another pioneering 
approach that was focusing on mapping of QTLs 
with minor effects (Ehrenreich et al., 2010). This 
method, called as Extreme QTL mapping (X-QTL), 
has three main components. Creating of a large 
segregating population and selecting progenies 
from this large mapping population with extreme 
trait values for comprehensive analysis are of 
foremost importance for the method (Ehrenreich et 
al., 2010). The last component is microarray-based 
genotyping or massively parallel sequencing of 
pooled allele frequencies. In a similar manner, Next 
Generation Mapping (NGM) approach, introduced 
by Austin et al. (2011), detects mutations by 
sequencing a small pooled F2 population, without 
prior knowledge of genetic analysis. Following 
these ideas, Abe et al. (2012) developed MutMap, 
a method based on whole-genome resequencing of 
pooled DNA from a segregating plant population. 
While MutMap offers significant utility, crop 
breeding has predominantly relied on QTL 
breeding, leveraging genetic variations among 
diverse cultivars and species. Hence, examining 
QTL variations in natural variants is highly essential 
for identifying important alleles of genes controlling 
essential agronomic traits and enhancing breeding 
efforts. By combining the power of next-generation 
sequencing with BSA, Takagi et al. (2013) proposed 
the QTL-seq method as reliable, quick and most 
importantly cost-effective approach to QTL 
mapping, leading the way for significant 
enhancements in crop improvements and 
sustainable agriculture. Until now, numerous 
agronomically important traits have been 
successfully mapped using QTL-seq, and 
researchers were able to rapidly fine-map and 
ultimately identify candidate genes in many 
agronomically important crops (Table 1). 

The effectiveness of QTL-seq is mostly 
determined by the population size, the heritability of 
the trait, the percentage of plants chosen for each 
bulk and population structure (e.g., F2, F5, NILs or 
RIL). In addition to these factors, the nature of the 
trait whether it is governed by single major QTL or 
many QTLs with minor effects plays a crucial role. 
Moreover, read depth of the sequencing along with 
recombination frequency are also important factors. 
Furthermore, and more importantly, the inheritance 
of traits, including various forms such as complete 
dominance, incomplete dominance, 
overdominance, additive effects, recessive effects, 
and epistasis, plays a critical role in determining the 
success of QTL-seq (Takagi et al., 2013). The way 
these inheritance patterns exhibits in a given 
population can significantly impact the identification 
and mapping of QTLs. For example, additive effects 
allow for a more straightforward association 
between genotype and phenotype, while 
dominance and epistasis can complicate QTL 
detection. Additionally, gene-by-environment 
interactions (GxE) further influence trait expression, 
adding another layer of complexity to QTL-seq 
analysis. These genetic factors, along with the 
heritability of the traits, precision and depth of 
sequencing, size of the mapping population, and 
accuracy in phenotyping, are all crucial components 
that contribute to the identification of significant 
QTLs and understanding their effects across 
various genetic backgrounds and environmental 
conditions. Based on the previous studies, a 
minimum population size of 200 is mostly used for 
QTL mapping, although successful QTL 
identification has been achieved even with 
population sizes as small as 100 in tomato (Table 
1). The second consideration is the percentage of 
individuals included in each bulk. Based on a study 
conducted by Takagi et al. (2013), it was 
recommended to bulk 10-15% of the population. 
Furthermore, the appropriate read depth for 
sequencing largely depends on factors such as the 
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generation of the population (F2 vs F7), genome size 
of the crop, and the genetic effects under 
consideration, such as dominance versus complete 
dominance. For F2 populations, a minimum read 
depth of 10x to 20x is recommended, whereas even 
5x read depth may suffice in the F7 generation to 
detect codominant QTL. However, for QTLs 
exhibiting a dominance effect, it is advisable to have 
a read depth of at least 20x or higher in F2 
populations to ensure successful QTL identification 
(Takagi et al., 2013). Since its conceptualization 
and widespread adoption of the QTL-seq, several 
modifications or improvements have been 
implemented. To accelerate genetic mapping 
process, Wang et al. (2019) introduced 
“GradedPool-Seq” approach, in which individuals 
from F2 population are assigned into three or more 
graded groups based on their phenotypic values. 
Once GradedPool-Seq is compared with the 
previous methods like MutMap, SHOREmap, Next-
Generation Mapping, and QTL-seq, it has several 
advantages such as high-resolution genetic 
mapping (~400-kb) and detecting multiple QTLs 
along with the ability of evaluating multiple 
phenotypic characters in a single F2 population. 
(Wang et al., 2019). "Modified QTL-seq," which is a 
novel strategy of NGS-BSA application, was 
introduced by Wang and Wang (2023). The main 
advantage of this method is multiple comparison 
analysis, which can effectively speed up QTL 
mapping for complex traits, thereby accelerating the 
breeding process in crops (Wang and Wang, 2023). 
Although QTL-seq and other modified approaches 
have various advantages, there are still concerns 
that may hinder successful QTL mapping using 
these methods (Ott et al., 2011; Slate, 2013; Ashton 
et al., 2017; Bazakos et al., 2017). These 
constraints encompass genetic basis of complex 
traits like epigenetic and epistatic factors, family 
based experimental designs, pooling errors in BSA, 
the potential omission of minor QTLs, the influence 
of environmental interactions, the prevalence of 
high rates of false positive SNP detection (Flint and 
Mott, 2001; Mackay, 2001; Clevenger et al., 2018). 
To address many of these challenges, the size of 
the mapping population plays a pivotal role as it is 
related to allele frequency and statistical power 
(Hamblin et al., 2011; Hong and Park, 2012). 
Previous studies employing QTL-seq have 
indicated an average population size of 241, 
suggesting a reasonable benchmark for future QTL 
investigations. However, adjustments to the 
population size should be made based on the 
specific trait under scrutiny especially to avoid 
Beavis effect and capture the minor QTL effects 
(Slate, 2013). Traits with high heritability may 
tolerate smaller population sizes, whereas traits 
with lower heritability may benefit from larger 
population sizes to enhance the detection of minor 
QTLs and narrow down QTL intervals early in the 
mapping process (Topcu et al., 2021). To minimize 
the errors in pooling, the phenotyping should be 

evaluated in controlled conditions and if it is 
possible in different environments to minimize the 
environment effects. Nevertheless, it's important to 
note that many of these concerns are relevant to 
other QTL mapping methods as well. 
 
 
4. Conclusion 

 
In conclusion, the QTL-seq method has 

demonstrated its effectiveness as a rapid, cost-
effective, and reliable approach to QTL mapping 
across various contexts. This study provides a 
comprehensive overview of the entire process, from 
initial DNA isolation to data visualization, offering a 
valuable pipeline for researchers, particularly in the 
field of plant breeding. 
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