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Abstract 

Stroke occurs when the blood flow to the brain is suddenly interrupted. This 

interruption can lead to the loss of function in the affected area of the brain and cause 

permanent damage to the corresponding part of the body. Stroke can develop due to 

various factors such as age, occupation, chronic diseases, and a family history of 

stroke. Assessing these factors and predicting stroke risk is often a costly and time-

consuming process, which can increase the risk of permanent damage for the 

individual. However, with today's technology, Artificial Intelligence (AI) and 

Machine Learning (ML) models can process millions of data points to determine 

stroke risk within seconds. In this study, the risk of stroke in individuals is predicted 

most reliably using ML methods such as Logistic Regression (LR), Decision Tree 

(DT), Support Vector Machines (SVM), and k-Nearest Neighbors (KNN), with the 

aim of saving time, protecting human health, and enabling early diagnosis of the 

disease. As a result of the study, the highest accuracy rate was achieved by the DT 

model with 91%. The accuracy rates of the other models were found to be 89% for 

SVM, 81% for KNN, and 75% for LR. 
 

 
1. Introduction 

 

Stroke, medically referred to as “stroke” or 

“paralysis,” is a condition that leads to the loss of 

muscle movement in a specific area of the body or the 

entire body [1]. It typically occurs due to an 

interruption or reduction in blood flow to the brain. 

This interruption causes brain cells to be damaged due 

to a lack of oxygen and nutrients [1], [2]. Depending 

on the region of the brain affected by the stroke, it can 

lead to various sensory and motor function losses [2]. 

Stroke is categorized into three main types: 

Ischemic stroke occurs as a result of a blockage in an 

artery that supplies blood to the brain and is the most 

common type of stroke. It usually occurs due to the 

blockage of blood vessels by causes such as blood 

clots or atherosclerosis. 

Hemorrhagic stroke happens when a blood 

vessel in the brain ruptures and blood leaks into the 

brain tissue. This type of stroke is associated with 
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conditions such as high blood pressure, aneurysms, or 

head trauma. 

A transient ischemic attack is a temporary 

condition caused by a short-term reduction in blood 

flow to the brain. It typically lasts for a few minutes 

and does not cause permanent damage but can be a 

warning sign of a more severe stroke [3], [4]. 

The symptoms of a stroke appear suddenly 

and usually include sudden numbness and weakness 

in the face, arm, or leg, sudden confusion, difficulty 

speaking or understanding speech, sudden loss of 

vision or blurred vision, sudden difficulty walking, 

dizziness, loss of balance or coordination, and sudden 

severe headache. The presence of any of these 

symptoms requires urgent medical intervention [5]. 

Several factors increase the risk of stroke, 

including high blood pressure, diabetes, high 

cholesterol, smoking, obesity, physical inactivity, a 

family history of stroke, and heart disease. 
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Understanding these risk factors is crucial for stroke 

prevention and early intervention [6]. 

Stroke treatment varies depending on the type 

and severity of the stroke. In the case of an ischemic 

stroke, medications or surgical interventions may be 

used to dissolve or remove the clot. For hemorrhagic 

stroke, the goal is to stop the bleeding and reduce the 

pressure on the brain. The rehabilitation process 

includes methods such as physical therapy, speech 

therapy, and occupational therapy. Early diagnosis 

and treatment can significantly reduce the effects of 

stroke and increase the chances of recovery [6], [7]. 

The diagnosis of stroke is made through 

physical examination and clinical evaluation. The 

physician evaluates the patient's symptoms, medical 

history, and when the stroke symptoms began. This 

includes checking consciousness, speech ability, 

mobility, balance, and coordination. Additionally, the 

“FAST” test is used for rapid diagnosis; this test 

focuses on factors such as the face, arms, speech, and 

time [8]. 

AI and ML are two significant concepts that 

have a profound impact on the modern technology 

world. AI is a field of science aimed at enabling 

computers and machines to exhibit human-like 

intelligence behaviors. These behaviors include 

abilities such as problem-solving, learning, reasoning, 

and decision-making. ML, on the other hand, is a 

subfield of AI that allows computers to automatically 

perform specific tasks by learning from data. ML 

enables systems to improve their performance 

through experiences and examples without being 

explicitly programmed [9]. 

AI and ML are used in many fields. These 

technologies have created a significant revolution in 

the healthcare sector. They are particularly used in 

areas such as early diagnosis of diseases, treatment 

planning, drug discovery, and patient monitoring. AI-

based systems can analyze large datasets to detect 

disease symptoms more quickly and accurately, 

contributing to the development of more effective 

treatment processes. ML models, trained on millions 

of medical data points, can successfully perform 

complex tasks such as predicting stroke risk or 

forecasting disease progression [10]. 

The use of AI and ML in the healthcare sector 

also makes it possible to develop clinical decision 

support systems. These systems assist doctors in 

making more accurate diagnoses and treatment 

decisions by providing better insights into patients' 

conditions. Additionally, with these technologies, 

patient data can be analyzed in real-time, enabling the 

early identification and prevention of potential 

complications. By making healthcare services more 

efficient, accessible, and personalized, AI and ML 

offer significant conveniences in the field of 

healthcare [11], [12]. 

 

2. Literature Review 

 

Several studies have been conducted on stroke 

prediction datasets in the literature, utilizing various 

AI models. 

Emon et al. (2020) evaluated 10 different ML 

methods for stroke prediction and found that the 

Weighted Voting Algorithm provided the highest 

performance with an accuracy rate of 97% [13]. 

Singh and Choudhary predicted stroke risk 

using AI techniques, achieving an accuracy rate of 

97.7% by using the CART algorithm for feature 

selection, PCA for dimensionality reduction, and 

Backpropagation Neural Network (BP) for 

classification [14]. 

Sevli identified stroke risk using the RFC 

technique and achieved an accuracy rate of 98.84% 

by applying resampling to solve data problems; the 

study found that age, body mass index, and glucose 

level were significant in risk prediction [15]. 

Revanth et al. (2020) compared SVM, CART, 

RFC, and MLP models for stroke risk prediction and 

reported that SVM demonstrated the best 

performance with an accuracy rate of 98.99% [16]. 

Cheon et al. (2019) applied DO techniques 

using a large patient dataset and achieved an AUC 

value of 83.48% by performing dimensionality 

reduction with PCA, indicating relatively high model 

accuracy [17]. 

Shoily et al. (2019) compared the Naive 

Bayes, J48, k-Nearest Neighbor (KNN), and Random 

Forest algorithms for stroke detection and found that 

Naive Bayes performed worse with an accuracy rate 

of 85.6%, while J48, KNN, and Random Forest 

algorithms produced better results with an accuracy 

rate of 99.8% [18]. 

Pradeepa et al. (2020) applied spectral 

clustering and various ML algorithms to identify 

stroke symptoms using social media data, showing 

that PNN provided the highest performance with an 

accuracy rate of 89.90% [19]. 

Li et al. (2019) used LR, Naive Bayes, 

Bayesian Network, DT, Neural Network, Random 

Forest, and other algorithms to classify stroke risk 

levels, reporting that the boosting model created with 

DT achieved the best performance with a recall rate 

of 99.94%, while Random Forest stood out with a 

precision rate of 97.33% [20]. 

In Table 1, the performance values of the 

study conducted and literature studies have been 

compared. 
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Table 1. Performance Comparisons in the Literature 

Authors 
Year of 

Study 
Dataset Used Methods 

Accuracy 

Rate 

Proposed 

study 
2024 Stroke Prediction Dataset 

LR 

KNN 

DVM 

DT 

%75 

%89 

%81 

%91 

Emon and 

Choudhary 
2020 

Stroke Prediction Dataset 

 

Weighted Voting 

Algorithm 
%97 

Singh et al. 2017 
Cardiovascular Health Study 

(CHS) dataset 

CART algorithm, 

Dimensionality reduction 

with PCA, 

Backpropagation Neural 

Network (BP) 

%97 

Sevli 2021 
Stroke Prediction Dataset 

 

RFC technique, 

resampling 
%98 

Revanth et al. 2020 
Stroke Prediction Dataset 

 

DVM, CART, RFC, MLP 

models 
%98 

Cheon et al. 2019 
China National Stroke 

Screening Data 
PCA %83 

Shoily et al. 2019 
Stroke Prediction Dataset 

 

Naive Bayes, J48, KNN, 

Random Forest 
%85 

Pradeepa et 

al. 
2020 Social Media Content Various ML algorithms %89 

Li et al. 2019 
China National Stroke 

Screening Data 
LR, DT, Naive Bayes %97 

3. Materials and Methods 

 

3.1. Lojistic Regression 

 

LR is a statistical analysis method primarily used 

to establish relationships between two or more 

categorical outcomes [21]. This model is widely 

preferred in cases where the dependent variable is 

binary (e.g., “yes” or “no”) or multi-class. Unlike 

linear regression, LR predicts the probabilities of 

outcomes and uses a logistic function that limits 

these probabilities between 0 and 1 [22]. 

In the LR model, the effect of independent 

variables (input variables) on the dependent 

variable (output variable) is examined. This effect 

is used to predict the likelihood of an event 

occurring (e.g., the probability of a patient 

contracting a particular disease) [23]. The model's 

fundamental assumption is that the probability 

distribution of the dependent variable can be well 

modeled by a logistic function. This function 

expresses the probability of the dependent variable 

as a linear combination of the independent 

variables [24]. 

LR is applied in many fields, including 

medical diagnosis, marketing analytics, social 

sciences, and credit risk assessment. The model 

allows for both understanding the impact of 

independent variables and producing useful results 

in classification problems [25]. 

This model is particularly powerful in 

classification problems and can yield highly 

accurate results when the structure of the data and 

the nature of the problem are suitable [26]. 

 

3.2. K-Nearest Neighbors 

 

The working principle of the KNN algorithm is 

quite simple: when a new data point needs to be 

classified, the distance between this point and the 

other points in the dataset is calculated [27]. These 

distances are usually measured using metrics such 

as Euclidean distance or Manhattan distance. As a 

result of these calculated distances, the nearest K 

neighbors are selected, and the majority class of 

these neighbors is assigned as the predicted class 

for the new data point. The value of K is a 

parameter that determines the number of neighbors 

and directly affects the model's performance [28]. 

The KNN algorithm does not perform any 

complex calculations during model training, which 

classifies it as a “lazy learning” algorithm [29]. 

Although this feature means that KNN can be slow 

for large datasets, it can produce highly effective 

results for small and medium-sized datasets [30]. 

KNN is widely used in fields such as 

medicine, bioinformatics, marketing analytics, and 

recommendation systems. The simplicity and 

interpretability of the algorithm make it an 

attractive choice for data scientists and analysts. 
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However, the performance of the KNN algorithm 

depends on the chosen value of K, the distance 

metric used, and the characteristics of the dataset 

[31]. Since KNN relies on the proximity 

relationships of data points, it is important to 

properly scale the data and carefully select the 

features [32]. 

 

3.3. Support Vector Machines 

 

SVM is a supervised learning method and a 

powerful algorithm used to solve classification and 

regression problems. SVM is particularly known as 

a flexible and robust classification technique that 

yields effective results in high-dimensional 

datasets [33]. 

The fundamental principle of SVM is to 

find a hyperplane (or decision boundary) that best 

separates the data. This hyperplane aims to separate 

data points from different classes with the 

maximum margin. The margin refers to the 

distance between the hyperplane and the nearest 

data points. By finding the hyperplane that 

maximizes this margin, SVM ensures accurate 

classification of the data [33], [34]. 

If the data is linearly separable, SVM 

directly finds this hyperplane. However, if the data 

is not linearly separable, SVM uses kernel 

functions to transform the data into a higher-

dimensional space. This transformation allows the 

data to become linearly separable, enabling SVM 

to perform effective classification even on complex 

datasets. Commonly used kernel functions include 

linear, polynomial, radial basis function (RBF), 

and sigmoid functions [35]. 

One of the advantages of SVM is its ability 

to generalize well on large datasets. Additionally, 

its resistance to overfitting makes SVM a reliable 

model. However, the computational cost of SVM 

can be high, especially for large and complex 

datasets. Moreover, selecting optimal 

hyperparameters (e.g., the kernel function and 

regularization parameter) directly affects the 

model's performance and requires careful tuning 

[36], [37]. 

SVM is widely used in various fields such 

as bioinformatics, image processing, text 

classification, and genetic analysis. The high 

accuracy rates it demonstrates in classification 

tasks make SVM a significant tool in data science 

and ML projects [38]. 

 

3.4. Decision Trees 

 

DT is a popular ML algorithm used to solve both 

classification and regression problems. DTs are 

employed to make decisions based on certain 

features of the data and to visualize these decisions 

in a simple and understandable way. This algorithm 

creates a model that resembles a tree structure; this 

model starts from the root node and branches out 

into branches and leaves [39]. 

DTs classify or predict data points based 

on the independent variables (features) in the 

dataset. Each node represents a feature, and the best 

splitting point for this feature is selected. This split 

is defined as a condition that divides the dataset 

into subgroups. The branching process continues 

until the data is fully separated or further splitting 

is no longer meaningful. Ultimately, the leaf nodes 

represent a specific class or value [40]. 

DTs work by creating clear decision rules 

on the data. For example, in a medical diagnosis 

system, DTs can be used to predict which disease a 

patient may have based on their age, symptoms, 

and test results. The tree evaluates the probabilities 

for each disease based on these factors and makes 

its final decision [41]. 

One of the biggest advantages of DTs is 

that the models they create are explainable and can 

be visualized. This allows for an easy 

understanding and interpretation of the model's 

decision-making process. Additionally, DTs can 

work with both numerical and categorical data and 

have the ability to handle missing data [42]. 

However, DTs also have some 

disadvantages. For example, an overgrown 

decision tree can negatively impact the model's 

performance. Pruning techniques can be applied to 

prevent this situation. Moreover, DTs may not be 

able to model the relationship between variables in 

a complex and non-linear way [43]. 

DTs have a wide range of applications in 

finance, marketing, medicine, biology, and many 

other fields. Furthermore, they form the basis for 

more complex algorithms such as Random Forests 

and Gradient Boosting. These algorithms combine 

multiple decision trees to create more robust and 

generalized models [44], [45]. 

 

3.5. Model Performance Metrics 

 

Various measurement criteria are used to evaluate 

the performance of models used in ML methods. 

Among these criteria, accuracy, precision, 

sensitivity, and F1 score are the most common. It 

is important to calculate these metrics to 
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objectively assess the success of a model. Each of 

these metrics reflects different performance 

characteristics.  

The accuracy metric, commonly used to 

evaluate algorithm performance, represents the 

ratio of correctly classified examples to the total 

predictions made by the model. This metric 

encompasses both true positive and true negative 

predictions and is calculated as shown in formula 

(1) [46], [47]. 

 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝑇𝑁+𝐹𝑁
   ………(1) 

 

Precision refers to the proportion of truly 

positive examples among the instances that the 

model has classified as positive. This metric 

indicates the accuracy of the predictions for the 

positive class and is explained by formula (2) [48], 

[49]. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝑇𝐹
   ………(2) 

 

Sensitivity (or recall) shows how 

accurately the model identifies true positive 

examples. This metric determines how many of the 

positive class examples are correctly classified as 

positive and is calculated as shown in formula (3) 

[50], [51]. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
    ………(3) 

 

The F1 score provides a balanced 

assessment of precision and sensitivity by taking 

their harmonic mean. It is used to evaluate the 

overall performance of the model, particularly in 

cases of class imbalance, and the calculation 

method is shown in formula (4) [52], [53]. 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
  ………(4) 

 

3.6. Dataset 

 

In this study, the “Stroke Prediction Dataset” 

obtained from the Kaggle repository was used. This 

dataset includes features such as age, gender, and 

smoking status of individuals [54]. The dataset 

contains a total of 11 features, consisting of 10 

input features and 1 output feature, aimed at 

classifying and predicting stroke risk. The features 

and their descriptions are listed below: 

Age: The age of the individual, represented 

as numerical data. 

Gender: Specifies the gender of the 

individual, represented as categorical data. 

Hypertension: Indicates whether the 

individual has hypertension; represented as 

numerical data (1 – Hypertension present, 0 – No 

hypertension). 

Work Type: Specifies the occupation of the 

individual, represented as categorical data (e.g., 

Government, Not working, Self-employed). 

Heart Disease: Indicates whether the 

individual has heart disease; represented as 

numerical data (0 – No heart disease, 1 – heart 

disease present). 

Marital Status: Shows the marital status of 

the individual, represented as categorical data (Yes, 

No). 

Residence Area: Specifies the area where 

the individual lives, represented as categorical data 

(Urban, Rural). 

Body Mass Index (BMI): Represents the 

body mass index of the individual, represented as 

numerical data. 

Average Glucose Level: Indicates the 

average glucose level in the individual's blood, 

represented as numerical data. 

Smoking Status: Specifies the smoking 

status of the individual, represented as categorical 

data (Previously smoked, currently smoking, never 

smoked). 

Stroke Status: Indicates whether the 

individual has previously had a stroke; represented 

as numerical data (1 – Had a stroke, 0 – Did not 

have a stroke). 

This dataset has been used in various 

academic research and theses, providing valuable 

information for assessing stroke risk [54]. 

 

4. Findings and Discussion 

 

In the study, ML methods such as LR, KNN, SVM, 

and DT were used to detect the presence of stroke 

risk. To facilitate the readability of the results, 

performance metrics were visualized using the 

“Model Evaluation Matrix” and the “Confusion 

Matrix”. 

In the LR model, a moderate regularization 

with C = 0.6 has been applied, which helps prevent 

overfitting. L1 penalty (Lasso) has been chosen 

using penalty = '11', which simplifies the model by 

reducing some features to zero. Additionally, 

solver = 'liblinear' has been selected, which is a 

suitable and effective solver, especially for small 

datasets. 
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Figure 1. Confusion Matrix of the LR Model 

 

Examining Figure 1, it can be seen that True 

Negatives (TN) (693) are correctly predicted. This 

high number of true negatives indicates that the 

model performs well in predicting negative classes. 

False Positives (FP) (236) are instances where true 

negatives were incorrectly predicted as positive. This 

indicates that the model misclassified some negative 

examples as positive. False Negatives (FN) (9) are 

instances where true positives were incorrectly 

predicted as negative. This suggests that the model 

missed some positive classes by predicting them as 

negative. True Positives (TP) (44) are instances 

where positive classes were correctly predicted. This 

shows that the model is successful in identifying 

positive classes, though there is room for 

improvement. 

 

 

Figure 2. Model Evaluation Matrix of the LR Model 

 

Examining Figure 2, it is observed that 

your model achieves high precision in classifying 

positive classes but may miss some positive 

examples, resulting in a moderate overall accuracy. 

In the KNN model, the 'manhattan' metric 

has been identified as the most suitable option for 

measuring the distance between neighbors. With 

n_neighbors = 3, the best results were achieved by 

considering 3 neighbors. Furthermore, weights = 

'distance' has been used to weight the neighbors 

based on their distances, meaning that closer 

neighbors have a greater impact on the prediction. 

With these hyperparameters, the model has 

achieved optimal performance based on the 

distance of neighbors. 

 

 

Figure 3. Confusion Matrix of the KNN Model 

 

Figure 3 shows that TN (862) correctly 

predicts the true negative classes. This high true 

negative value indicates that the model predicts 

negative classes well. FP (67) shows that some true 

negatives are predicted as positive. This indicates 

that the model makes errors in predicting negative 

classes as positive. FN (45) shows that some true 

positives are predicted as negative. This means the 

model mistakenly predicts positive classes as 

negative, thus missing positive classes. TP (8) 

shows that the model correctly predicts true 

positives. This low true positive value indicates 

that the model is weak in identifying positive 

classes. 
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Figure 4. Model Evaluation Matrix of the KNN Model 

 

Figure 4 shows that the model performs 

well overall, providing high precision and recall for 

positive classes and maintaining a good balance 

between precision and recall. 

In the SVM model, the hyperparameters 

include a penalty parameter C = 10, which allows 

the model to learn a more complex boundary with 

a higher penalty. The 'rbf' kernel function has been 

chosen as it is effective on non-linear data. 

Additionally, the class_weight = 'balanced' setting 

attempts to balance the classes, optimizing the 

model’s performance according to the proportion 

of each class in the dataset. 

 

 

Figure 5. Confusion Matrix of the SVM Model 

 

Figure 5 shows that TN (780) correctly 

predicts the true negative classes. This high true 

negative value indicates that the model predicts 

negative classes well. FP (149) shows that some true 

negatives are predicted as positive. This indicates 

that the model makes errors in predicting negative 

examples as positive. FN (35) shows that some true 

positives are predicted as negative. This means the 

model mistakenly predicts some positive examples 

as negative, thus missing positive classes. TP (18) 

shows that the model correctly predicts true 

positives. This low true positive value indicates that 

the model is weak in identifying positive classes. 

 

 

Figure 6. Model Evaluation Matrix of the SVM Model 

 

Figure 6 shows that the model generally 

performs well, with high precision and strength in 

identifying positive classes. However, with a 

sensitivity of 81%, it suggests that the model might 

miss some positive examples. 

For the KA model, the 'gini' impurity is 

used as the splitting criterion, which aims to 

increase the homogeneity of class distributions 

during splitting. The tree can grow up to a 

maximum depth of 20 levels (max_depth = 20), 

meaning it can have up to 20 branching layers. 

Additionally, at least 1 sample can be present in a 

leaf node (min_samples_leaf = 1). 

 

 

Figure 7. Confusion Matrix of the DT Model 
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Figure 7 shows that TN (888) correctly 

predicts the true negative classes. This high true 

negative value indicates that the model predicts 

negative classes very well. FP (41) shows that some 

true negatives are predicted as positive. This 

indicates that the model mistakenly predicts some 

negative examples as positive. FN (49) shows that 

some true positives are predicted as negative. This 

means the model mistakenly predicts some positive 

examples as negative, thus missing positive classes. 

TP (4) shows that the model correctly predicts true 

positives. This low true positive value indicates that 

the model is quite weak in identifying positive 

classes. 
 

 

Figure 8. Model Evaluation Matrix of the DT Model 

 

Table 2. Comparison of Performance Metrics for Used ML Models 

Model Class Precision Recall F1-Score Accuracy (%) 

LR 
No Risk 0.98 0.74 0.84 

75,23 
Risk Present 0.15 0.83 0.26 

KNN 
No Risk 0.95 0.92 0.92 

88,83 
Risk Present 0.10 0.15 0.15 

SVM 
No Risk 0.95 0.83 0.89 

81,02 
Risk Present 0.10 0.33 0.16 

DT 
No Risk 0.94 0.95 0.95 

91,02 
Risk Present 0.08 0.07 0.08 

 
Figure 8 shows that the model has both high 

overall performance and high success in identifying 

positive classes. The model's results are quite 

satisfactory and can generally be considered reliable. 

Table 2 compares the performance of the ML 

models used in the study for the “Risk Present” and 

“No Risk” classes. The LR model shows high 

precision in recognizing the “No Risk” class. 

However, recall is somewhat lower, indicating that 

some “Risk Present” cases may be missed. The F1-

score and overall accuracy reflect this situation. The 

KNN algorithm demonstrates high performance for 

the “No Risk” class. Both precision and recall are 

quite high, resulting in good overall accuracy for the 

model. However, it shows poor performance in the 

“Risk Present” class, with both precision and recall 

being low, indicating difficulty in distinguishing this 

class. The SVM model exhibits very good 

performance for the “No Risk” class, with high F1-

score and accuracy, though recall is somewhat lower. 

It is noted for having the highest performance in the 

“No Risk” class, with both precision and recall being 

quite high and the F1-score being close to perfection. 

 

5. Conclusion and Suggestions 

 

This study investigated the risk factors associated 

with stroke and assessed their impact on the 

development of the disease. The findings indicate that 

hypertension, diabetes, smoking, and high cholesterol 

levels increase stroke risk, with hypertension being 

the most significant determinant. Additionally, it was 

found that ischemic stroke is more prevalent, whereas 

hemorrhagic stroke is associated with higher 

mortality rates. The critical role of early diagnosis and 

intervention, particularly thrombolytic therapy and 

rehabilitation, in the recovery process of patients was 

emphasized. 

The study developed a method for stroke 

detection and diagnosis using ML models and 

demonstrated that these models contribute to medical 

decision support systems. The model's accuracy was 

reported to be 91%. Future studies aim to enhance 
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success by employing different ML models and 

performance metrics, with more effective feature 

selection and data preprocessing steps. 

It is recommended to explore additional ML 

models and advanced techniques to improve the 

accuracy and reliability of stroke risk prediction. 

Experimenting with ensemble methods and deep 

learning algorithms could provide better insights and 

enhance model performance. 

Future research should focus on identifying 

and incorporating additional relevant features that 

could influence stroke risk. This may involve 

integrating new biomarkers, genetic factors, or 

lifestyle variables to create more comprehensive 

models. 

Emphasizing rigorous data preprocessing and 

cleaning is crucial to ensure the quality and 

consistency of the data used in model training. 

Addressing issues such as missing values, outliers, 

and data imbalance will help improve model 

robustness. 

It is important to validate the models on diverse and 

independent datasets to ensure their generalizability 

and applicability in different populations. Cross-

validation techniques and external validation studies 

should be employed to confirm the model’s 

effectiveness. 

Efforts should be made to integrate these 

predictive models into clinical decision support 

systems to assist healthcare professionals in early 

stroke detection and management. Providing user-

friendly interfaces and decision aids will enhance the 

practical utility of these models. 

Regularly updating the models with new data 

and research findings is essential to maintain their 

relevance and accuracy. Continuous monitoring and 

iterative improvements based on real-world 

performance will contribute to better patient 

outcomes. 

By addressing these recommendations, the 

accuracy and impact of stroke risk prediction models 

can be further improved, leading to more effective 

prevention and management strategies. 
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