
Introduction 
The locus coeruleus (LC) (Figure 1), often referred to as 
the “blue spot” due to its neuromelanin content, is a dis-
tinct structure visible to the naked eye because of its size 
and pigmentation. Initially described by the French 
anatomist Félix Vicq d’Azyr in the late 18th century, the 
LC’s primary composition of monoaminergic neurons 
was not identified until the development of fluorescence 
histochemistry in the 1960s.[1] The LC, designated as A6 
in the classification by Dahlström and Fuxe, is part of the 
noradrenergic cell groups extending rostrocaudally from 
the lateral pons to the caudal ventrolateral medulla, as 
described by these researchers in 1964.[2] As the principal 
source of norepinephrine in the central nervous system, 
the LC projects to numerous brain regions, including the 
cortex, hippocampus, and thalamus, thereby influencing a 
wide array of functions such as attention, learning, auto-
nomic and behavioral stress responses, pain modulation, 
memory, and sleep.[3,4] This review focuses on the LC’s 
anatomy, neuronal morphology and neurochemistry, and 

its significance in neurodegenerative diseases like 
Alzheimer’s and Parkinson’s.  

Morphology and Neurochemistry  
Mature LC neurons are predominantly medium-sized 
cells with fusiform and multipolar morphologies and 
sparse branching. The axons of these neurons, especially 
those extending to the forebrain, exhibit bifurcations 
that allow them to innervate multiple regions along the 
neuroaxis of a single neuron. In humans, LC neurons can 
be classified into four types based on size and dendritic 
branching: large multipolar neurons, large elliptical 
“bipolar” neurons, small multipolar neurons, and small 
ovoid “bipolar” neurons. Large multipolar neurons have 
round or multiangular somata with numerous thinly 
branching dendrites that extend in various directions, 
enabling them to travel long distances and reach differ-
ent levels. Large bipolar neurons, similar in size to large 
multipolar neurons, have dendrites emerging as relative-
ly thicker roots from the soma. Small multipolar neurons 
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possess round and multiangular somata with dendritic 
branches arising from all over, but these branches are 
generally shorter than those of larger neurons. Small 
bipolar neurons have oval and spindle-shaped somata 
with dendrites primarily arising from two poles.[5–7] 

Besides containing norepinephrine, LC neurons 
exhibit additional properties that contribute to their 
diversity. Consistent with their noradrenergic pheno-
type, LC neurons include the enzymes tyrosine hydrox-
ylase and dopamine beta-hydroxylase involved in nore-
pinephrine production, the norepinephrine trans-
porter,[8] the catabolic enzyme monoamine oxidase,[9] and 

the a2-adrenoreceptor, which likely functions as an 
autoreceptor.[10] Furthermore, LC neurons secrete vari-
ous neuropeptides, including neuropeptide Y,[11] 
galanin,[12] cholecystokinin, dynorphin A, angiotensin 
II,[13] and somatostatin.[14] 

Anatomy and Projections 
The locus coeruleus is situated in the dorsal part of the 
rostral pons, located in the lateral floor of the fourth ven-
tricle.[15] In a healthy human brain, this nucleus measures 
about 12 to 17 mm in length and approximately 2.5 mm 
in width.[16] It is estimated that the bilateral LC neurons 
in an adult human brain comprise around 45,000 to 
50,000 cells.[17] 

Understanding the properties of the afferent inputs 
to the locus coeruleus (LC) is crucial for comprehending 
the effects of the noradrenergic system on the brain and 
behavior.[18] The LC is extensively innervated by various 
nuclei, including the insular cortex, central nucleus of 
the amygdala, spinal cord dorsal horn and lamina X, ven-
tral tegmental area (VTA), and nucleus of the solitary 
tract (NST), bed nucleus of the stria terminalis, preoptic 
region, periaqueductal gray, midbrain pontine reticular 
formation including the dorsal raphe nucleus, peduncu-
lopontine tegmental nucleus, and cerebellum. LC also 
receives inputs from area C1 of the ventrolateral medul-
la[19] and is connected to the dorsal raphe nucleus. 
Connections to the ventromedial pericoerulear region 
reported may provide a local circuit interface to LC neu-
rons.[15,19–22] Forebrain afferents include glutamatergic 
inputs from the prefrontal and anterior cingulate cor-
tices[23] as well as the paragigantocellular nucleus, and 
perifascicular area of the prepositus hypoglossal nucle-
us.[21,24] LC neurons receive several afferent inputs and 
express a wide range of neurotransmitter receptors, indi-
cating multiple levels of cellular regulation. Key neu-
ropeptides include corticotropin-releasing factor, orexin, 
endogenous opioids, substance P, melanin-concentrat-
ing hormone, neuropeptide Y, and somatostatin.[23,25] 
These neuropeptides regulate LC activity and nora-
drenaline release, thereby affecting arousal states and 
related behaviors.[25] Social stress activates specific affer-
ents like CRF from the central amygdalar nucleus and 
enkephalin from the paragigantocellular nucleus, 
depending on the individual’s coping strategy, with dis-
tinct afferents being engaged during short-latency (SL) 
and long-latency (LL) defeat responses.[26] The LC also 
receives cholinergic inputs from the basal forebrain, par-
ticularly the medial septum, which modulate long-term 

Figure 1. Locus coeruleus localization in the mid-level human pons. 
4V: 4th ventricle; ctg: central tegmental tract; DR: dorsal raphe nucle-
us; LBP: lateral parabrachial nucleus; LC: locus coeruleus; LDTg: lat-
erodorsal tegmental nucleus; Me5: mesencephalic trigeminal nucleus; 
ml: medial lemniscus; mlf: medial longitudinal fasciculus; MnR: medi-
an raphe nucleus; MPB: medial parabrachial nucleus; PAG: periaque-
ductal gray; Pn: pontine nuclei; scp: superior cerebellar peduncle; tfp: 
transverse fibers of the pons (Unpublished data).
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potentiation (LTP) in the dentate gyrus via noradrenergic 
pathways, emphasizing a functional loop involving cholin-
ergic and noradrenergic interactions.[27] Additionally, the 
LC plays a pivotal role in pain modulation and stress-
related disorders, influencing pain perception and emo-
tional responses through its connections with the spinal 
cord, prefrontal cortex, and amygdala.[27,28] These various 
afferents to the LC underscore its central role in integrat-
ing physiological and emotional signals to regulate 
arousal, stress responses, and cognitive functions. 

Sensory signal-processing regions of the brain receive 
dense innervation from LC.[29] Although LC neurons have 
sparse dendritic branches, their axons exhibit wide bifurca-
tions, enabling stimulation of many cortical areas.[30] The 
efferent innervation from the LC includes the cortex, 
cerebellum, hippocampus, hypothalamus, and spinal 
cord.[31] This innervation is particularly concentrated in 
the thalamus, affecting midline, intralaminar, and 
mediodorsal thalamic nuclei, as well as the lateral posteri-
or complex, periventricular, anteroventral, ventral pos-
terolateral, and reticular nuclei.[32,33] Additionally, the par-
aventricular and supraoptic nuclei of the hypothalamus are 
significant targets for LC innervation.[34] Stimulation of 
LC increases the pupil diameter, indicating LC projec-
tions to the parasympathetic Edinger-Westphal nucle-
us.[22] The LC also projects to the amygdala and medial 
prefrontal cortex (mPFC), influencing learning and mem-
ory functions.[35] Specifically, amygdala-projecting cells are 
recruited during emotional associative learning, while 
mPFC-projecting cells are engaged in unexpected situa-
tions or when behavioral flexibility is required. 
Understanding the anatomical and functional heterogene-
ity of LC neurons is crucial for appreciating their role in 
the neuromodulatory system.  

Involvement in the Pathophysiology of 
Age-related Neurodegenerative Diseases  
The number of neurons in the locus coeruleus (LC) 
decreases by approximately 30–50% during aging.[5,36,37] 
This neuronal loss, particularly in those projecting to the 
forebrain, is linked to functions in arousal, attention, and 
memory. Several neurodegenerative diseases are associ-
ated with age-related LC neuronal loss, including 
Alzheimer’s disease (AD), Down syndrome, Parkinson’s 
disease (PD), dementia with Lewy bodies, progressive 
supranuclear palsy, corticobasal degeneration, and 
dementia pugilistica.[38–41] In AD and PD, there can be up 
to an 80% loss of noradrenergic cells, a reduction greater 
than the loss of cholinergic neurons in the basal nucleus 

in AD and dopaminergic neurons in the substantia nigra 
in PD.[42] Stereological evaluations indicate that in AD, 
neuronal decline follows a rostrocaudal and dorsoventral 
pattern, whereas in PD, the loss is concentrated in the 
more ventral and caudal parts of the LC.[43] Thus, in AD, 
the LC neuronal loss primarily affects forebrain projec-
tions, whereas in PD, the loss impacts spinal cord, brain-
stem, and cerebellar projections. The reduction in LC 
neurons is more closely related to the onset and progres-
sion of AD than the degeneration of cholinergic neurons 
in the basal nucleus.[43–45] Recent studies highlight the 
significance of LC degeneration in the early stages of 
AD, suggesting that therapies targeting the LC-nore-
pinephrine pathway could be promising for prognosis 
and treatment, potentially delaying or preventing AD-
related pathology. 

Conclusion 

The LC, a small nucleus with extensive subcortical and 
cortical projections, is the primary source of nore-
pinephrine innervation in the central nervous system. 
Due to its broad interaction with various brain regions, 
the LC significantly influences attention and memory 
functions in both human and non-human primate brains. 
In the context of aging and neurodegenerative diseases, 
the loss of LC neurons can disrupt the integration of 
sensory, attentional, and cognitive information, leading 
to age-related memory decline and contributing to the 
clinical symptoms of various neurodegenerative condi-
tions. Advances in imaging techniques that can visualize 
the distribution of LC neurons hold promise for future 
research on the effects of aging and neurodegenerative 
diseases.  
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