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Abstract 

In this paper, we delve into the exploration of ideal convergence within the framework of triple sequences 

on L -fuzzy normed spaces. Our primary focus is to establish a comprehensive characterization of ideal 

convergence for these triple sequences, particularly in relation to their convergence in the classical sense. 

Through rigorous analysis, we demonstrate that the notion of ideal convergence, as developed in this 

context, exhibits a weaker form of convergence compared to the traditional convergence criteria applied to 

triple sequences in L - fuzzy normed spaces. This weaker form of convergence, while more generalized, 

retains significant applicability and provides a broader understanding of the behavior of sequences within 

these structured spaces. The results presented herein offer new insights into the subtleties of sequence 

convergence in fuzzy normed spaces, paving the way for further advancements in this area of mathematical 

analysis. 
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1. Introduction 

 

In the context of the strong quantum gravity regime, 

space-time points are determined through a fuzzy 

framework, where the inherent uncertainty in the fabric 

of space-time leads to the representation of these points 

as a sequence of fuzzy numbers. This intrinsic fuzziness, 

which arises naturally from the quantum gravitational 

effects, under- mines the applicability of the conventional 

position space representation used in quantum mechanics. 

The standard formalism, grounded in precise point-like 

localization, becomes insufficient to accurately describe 

physical phenomena at such scales. Consequently, the 

need arises for a more generalized mathematical structure 

capable of accommodating the ambiguities inherent in the 

quantum gravitational domain. This necessitates the 

development and employment of alternative 

representational frameworks that extend beyond classical 

mechanics and quantum mechanics, ensuring a more 

accurate portrayal of the fundamental nature of space-

time at the Planck scale. Such advancements are critical 

for understanding the intricate interplay between 

quantum mechanics and gravitational forces in extreme 

regimes. 

 

A significant body of research has been devoted to the 

study of statistical convergence, particularly in 

connection with summability theory, with numerous 

aspects of this relationship thoroughly examined and 

characterized [22, 25, 26, 29, 31–37]. These investigations 

hold a prominent position within the broader field of 

mathematical analysis, serving as a foundational tool in 

understanding the behavior of sequences and series 

through alternative convergence criteria. The concept of 

statistical convergence has not only expanded the 

classical notions of con- vergence but has also provided 

powerful insights into the interplay between summability 

methods and asymptotic analysis. As a result, this area of 

study remains a focal point of ongoing research, attracting 

substantial interest from mathematicians who seek to 

further explore its applications and implications in both 

pure and applied mathematics. The continued relevance 

of these studies underscores their critical role in 

advancing the theoretical framework of convergence and 

summability within modern analysis. 

 

The concept of fuzzy sets was first introduced to the 

mathematical community by Zadeh [38], marking a 

pivotal development in the study of imprecise data and 

uncertainty. This was subsequently followed by the 

introduction of intuitionistic fuzzy sets by Atanassov [3], 

alongside the development of L-fuzzy sets by Goguen 

[9]. These foundational works laid the groundwork for 

extensive research in the subsequent years, as scholars 

explored various generalizations and applications of these 

fuzzy structures. 
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In particular, L-fuzzy normed spaces [4, 28], as natural 

generalizations of classical normed spaces, fuzzy normed 

spaces, and intuitionistic fuzzy metric [1, 2] and normed 

spaces [13, 17, 18, 20, 23], have garnered significant 

attention. These spaces are based on specific logical and 

algebraic structures, thereby extending the classical 

theory of normed spaces and enriching the mathematical 

understanding of L-fuzzy metric spaces [10–12]. The 

incorporation of such generalized structures allows for a 

more nuanced treatment of uncertainty and imprecision, 

which is particularly valuable in various applications of 

mathematical analysis. 

 

Moreover, extensive work has been devoted to the study of 

ideal convergence [5–8, 14–16, 19, 21, 24, 30] within these 

normed spaces, particularly in relation to L-fuzzy normed 

spaces. Ideal convergence, as a generalization of 

classical notions of convergence, offers a broader 

framework that captures a wider range of convergence 

behaviors. This has made it a topic of significant interest 

in the field, leading to valuable contributions by 

mathematicians in recent years. 

 

The primary objective of the present paper is to introduce 

and rigorously investigate the concept of ideal 

convergence for triple sequences within the setting of L -

fuzzy normed spaces. By exploring this generalized 

notion of convergence, we aim to establish new results 

that not only extend the existing theory but also provide 

deeper insights into the structure and behavior of triple 

sequences in L -fuzzy normed spaces. This study 

contributes to the ongoing development of ideal 

convergence theory and its applications in fuzzy normed 

spaces.  

 

2. Preliminaries 

 

In this section, we give some preliminaries on ℒ − fuzzy 

normed spaces. n t  

Definition 2.1. Let T : [0, 1] × [0, 1] → [0, 1] be a 

function satisfying the conditions 

1. 𝑇(𝑥, 𝑦) = 𝑇(𝑦, 𝑥) 

2. 𝑇(𝑇(𝑥, 𝑦), 𝑧) = 𝑇(𝑥, 𝑇(𝑦, 𝑧)) 

3. 𝑇(𝑥, 1) = 𝑇(1, 𝑥) = 𝑥 

4. If 𝑥 ≤ 𝑦, 𝑧 ≤ 𝑡, then 𝑇(𝑥, 𝑧) ≤ 𝑇(𝑦, 𝑡) 

Then, T is called a triangular norm (or shortly t−norm). 

 

Example 2.2. The functions 𝑇1, 𝑇2, 𝑇3 given with, 

1. 𝑇1(𝑥, 𝑦) = 𝑚𝑖𝑛{𝑥, 𝑦}, 
2. 𝑇2(𝑥, 𝑦) = 𝑥𝑦, 
3. 𝑇3(𝑥, 𝑦) = 𝑚𝑎𝑥{𝑥 + 𝑦 − 1,0} 

are well-known examples of 𝑡 norms. 

Definition 2.3. Given a complete lattice ℒ = (𝐿, ⪯) and 

a set 𝑋 which will be called the universe. A function 

𝐴: 𝑋 → 𝐿 

is called an 𝐿 −fuzzy set, or an 𝐿 −set for short, on 𝑋. 

The family of all 𝐿 −subsets on a set 𝑋 is denoted by 𝐿𝑋. 

Intersection and union of two 𝐿 −sets on 𝑋 is given by 

(𝐴 ∩ 𝐵)(𝑥): = 𝐴(𝑥) ∧ 𝐵(𝑥) 

and 

(𝐴 ∪ 𝐵)(𝑥): = 𝐴(𝑥) ∨ 𝐵(𝑥) 

for all 𝑥 ∈ 𝑋. Similarly union of two 𝐿 −sets and 

intersection and union of a family {𝐴𝑖: 𝑖 ∈ 𝐼} of 𝐿 −sets 

is given by 

(⋂

𝑖∈𝐼

𝐴𝑖) (𝑥): = ∧
𝑖∈𝐼

𝐴𝑖(𝑥) 

and 

(⋃

𝑖∈𝐼

𝐴𝑖) (𝑥): = ∨
𝑖∈𝐼

𝐴𝑖(𝑥) 

respectively. 

 

We denote the smallest and the greatest elements of the 

complete lattice 𝐿 by 0𝐿 and 1𝐿. We also use the symbols 

⪰, ≺ and ≻ given a lattice (𝐿, ⪯), in the obvious 

meanings. 

 

Definition 2.4 A triangular norm (𝑡 −norm) on a 

complete lattice ℒ = (𝐿, ⪯) is a function 𝒯: 𝐿 × 𝐿 → 𝐿 

satisfying the following conditions for all 𝑥, 𝑦, 𝑧, 𝑡 ∈ 𝐿:   

1. 𝒯(𝑥, 𝑦) = 𝒯(𝑦, 𝑥) 

2. 𝒯(𝒯(𝑥, 𝑦), 𝑧) = 𝒯(𝑥, 𝒯(𝑦, 𝑧)) 

3. 𝒯(𝑥, 1𝐿) = 𝒯(1𝐿 , 𝑥) = 𝑥 

4. if 𝑥 ⪯ 𝑦 and 𝑧 ⪯ 𝑡, then 𝒯(𝑥, 𝑧) ⪯ 𝒯(𝑦, 𝑡). 

 

A 𝑡 −norm 𝒯 on a complete lattice ℒ = (𝐿, ⪯) is called 

continuous, if for every pair of sequences (𝑥𝑛) and (𝑦𝑛) 

on 𝐿 such that (𝑥𝑛) → 𝑥 ∈ 𝐿 and (𝑦𝑛) → 𝑦 ∈ 𝐿, one have 

the property that the sequence 𝒯(𝑥𝑛 , 𝑦𝑛) → 𝒯(𝑥, 𝑦) with 

respect to the order topology on 𝐿. 

 

Definition 2.5 A mapping 𝒩: 𝐿 → 𝐿 is called 

a negator on ℒ = (𝐿, ⪯) if,  

𝑁1) 𝒩(0𝐿) = 1𝐿 

𝑁2) 𝒩(1𝐿) = 0𝐿  

𝑁3) 𝑥 ⪯ 𝑦 implies 𝒩(𝑦) ⪯ 𝒩(𝑥) for all 𝑥, 𝑦 ∈ 𝐿. 

In addition, if 

𝑁4) 𝒩(𝒩(𝑥)) = 𝑥 for all 𝑥 ∈ 𝐿, 

then the negator 𝒩 is said to be involutive. 

 

On the lattice ([0,1], ≤) the function 𝒩𝑠: [0,1] → [0,1] 
defined as 𝒩𝑠(𝑥) = 1 − 𝑥 is an example of an involutive 

negator, called standart negator on [0,1], which is used in 

the theory of fuzzy sets. On the other hand, given the 

lattice ([0,1]2, ⪯) with the order 
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(𝜇1, 𝜈1) ⪯ (𝜇2, 𝜈2) ⇐ 𝜇1 ≤ 𝜇2  𝑎𝑛𝑑 𝜈1 ≥ 𝜈2 

 

for all (𝜇𝑖 , 𝜈𝑖) ∈ [0,1]2, 𝑖 = 1,2. Then, the mapping 

𝒩1: [0,1]2 → [0,1]2, is an involutive negator used in the 

theory of intuitionistic fuzzy sets in the sense of 

Atanassov[4]. A possible candidate for a non-involutive 

negator on ([0,1]2, ⪯) would be given by  

  

𝒩2(𝜇, 𝜈) = (
1 − 𝜇 + 𝜈

2
,
1 + 𝜇 − 𝜈

2
). 

 

Remark 2.6 In general, for any given continuous 𝑡 −norm 

𝒯 and a negator 𝒩, it is not always possible to find for each 

given 𝜀 ∈ 𝐿 − {0𝐿 , 1𝐿}, an element 𝑟 ∈ 𝐿 − {0𝐿 , 1𝐿} such 

that 𝒯(𝒩(𝑟), 𝒩(𝑟)) ≻ 𝒩(𝜀). In this study, a continuous 

𝑡 −norm and an involutive negator 𝒩 such that for each 

𝜀 ∈ 𝐿 − {0𝐿 , 1𝐿}, there exists an 𝑟 ∈ 𝐿 − {0𝐿 , 1𝐿} 

satisfying 𝒯(𝒩(𝑟), 𝒩(𝑟)) ≻ 𝒩(𝜀), is supposed to be 

given and fixed.  

 

Definition 2.7 Let 𝑉 be a real vector space, ℒ = (𝐿, ⪯) be 

a complete lattice, 𝒯 be a continuous 𝑡 −norm on ℒ and 𝜌 

be an ℒ −set on 𝑉 × (0, ∞) satisfying the following:  

 

1.  𝜌(𝑥, 𝑡) > 0𝐿 for all 𝑥 ∈ 𝑉, 𝑡 > 0  

2.  𝜌(𝑥, 𝑡) = 1𝐿  for all 𝑡 > 0, if and only if 𝑥 = 𝜃  

3.  𝜌(𝛼𝑥, 𝑡) = 𝜌(𝑥,
𝑡

|𝛼|
) for all 𝑥 ∈ 𝑉, 𝑡 > 0 and 𝛼 ∈ ℝ − {0}  

4. 𝒯(𝜌(𝑥, 𝑠), 𝜌(𝑦, 𝑡)) ⪯ 𝜌(𝑥 + 𝑦, 𝑠 + 𝑡) for all 𝑥, 𝑦 ∈ 𝑉 

and 𝑠, 𝑡 > 0  

5.  lim
𝑡→∞

𝜌(𝑥, 𝑡) = 1𝐿  and lim
𝑡→0

𝜌(𝑥, 𝑡) = 0𝐿 for all 𝑥 ∈ 𝑉\{𝜃}  

6.  The mappings 𝑓𝑥: (0, ∞) → 𝐿 given by 𝑓(𝑡) = 𝜌(𝑥, 𝑡) 

are continuous. 

 

In this case, the triple (𝑉, 𝜌, 𝒯) is called a ℒ −fuzzy normed 

space or ℒ −normed space, for short.  

 

Definition 2.8 A sequence (𝑥𝑛) in a ℒ −fuzzy normed 

space (𝑉, 𝜌, 𝒯) is said to be convergent to 𝑥 ∈ 𝑉, if for each 

𝜀 ∈ 𝐿 − {0𝐿} and 𝑡 > 0, there exists 𝑛0 ∈ ℕ such that, for 

all 𝑛 > 𝑛0  

𝜌(𝑥𝑛 − 𝑥, 𝑡) ≻ 𝒩(𝜀). 
 

Definition 2.9 A sequence (𝑥𝑛) in a ℒ −fuzzy normed 

space (𝑉, 𝜌, 𝒯) is said to be a Cauchy sequence, if for each 

𝜀 ∈ 𝐿 − {0𝐿} and 𝑡 > 0 there exists 𝑛0 ∈ ℕ such that  

 

𝜌(𝑥𝑛 − 𝑥𝑚, 𝑡) ≻ 𝒩(𝜀) 

 

for all 𝑚, 𝑛 > 𝑛0. 

 

 

Definition 2.10 Let (𝑉, 𝜌, 𝒯) be a ℒ −fuzzy normed space. 

Then, a sequence 𝑥 = (𝑥𝑘) is statistically convergent to 𝑙 ∈
𝑉 with respect to 𝜌 fuzzy norm, provided that, for each 𝜀 ∈
𝐿 − {0𝐿} and 𝑡 > 0,  

  

𝛿{𝑘 ∈ ℕ: 𝜌(𝑥𝑘 − 𝑙, 𝑡) ⊁ 𝒩(𝜀)} = 0 

 

or equivalently  

 

lim
𝑚

1

𝑚
{𝑗 ≤ 𝑚: 𝜌(𝑥𝑘 − 𝑙, 𝑡) ⊁ 𝒩(𝜀)} = 0. 

 

In this scenario, we will write 𝑠𝑡ℒ − lim𝑥 = 𝑙.  
  

Definition 2.11 Let (𝑉, 𝜌, 𝒯) be a ℒ −fuzzy normed 

space. Then, a sequence 𝑥 = (𝑥𝑘) is said to be 

statistically Cauchy with respect to fuzzy norm 𝜌, 

provided that  

 

𝛿{𝑘 ∈ ℕ: 𝜌(𝑥𝑘 − 𝑥𝑚, 𝑡) ⊁ 𝒩(𝜀)} = 0 

 

for each 𝜖 ∈ 𝐿 − {0𝐿}, 𝑚 ∈ ℕ and 𝑡 > 0.  

 

Definition 2.12 Let (𝑉, 𝜌, 𝒯) be a ℒ −fuzzy normed 

space. Then, a sequence 𝑥 = (𝑥𝑘) is said to be 

statistically bounded with respect to fuzzy norm 𝜌, 

provided that there exists 𝑟 ∈ 𝐿 − {0𝐿 , 1𝐿} and 𝑡 > 0 

such that  

 

𝛿{𝑘 ∈ ℕ: 𝜌(𝑥𝑘 , 𝑡) ⊁ 𝒩(𝑟)} = 0 

 

for each positive integer 𝑘.  

 

For any given 𝜀 > 0, if there exists an integer 𝑁 such 

that |𝑥𝑗𝑘 − 𝑙| < 𝜀 whenever 𝑗, 𝑘 > 𝑁, a double 

sequence 𝑥 = (𝑥𝑗𝑘) is said to be Pringsheim’s 

convergent or shortly 𝑃 − convergent. This will be 

written as  

 

lim
𝑗,𝑘→∞

𝑥𝑗𝑘 = 𝑙 

 

with j and k tending to infinity independently of one 

another. 

 

Let 𝐾 ⊂ ℕ × ℕ be a two-dimensional set of positive 

integers, and let 𝐾(𝑚, 𝑛) be the numbers of (𝑗, 𝑘) in 𝐾 

such that 𝑗 ≤ 𝑚 and 𝑘 ≤ 𝑛. Then, we can define the 

two-dimensional analogue of natural density as 

follows: The lower asymptotic density of the set 𝐾 ⊂
ℕ × ℕ is defined as  

 

𝛿2(𝐾) = liminf
𝑚,𝑛

𝐾(𝑚, 𝑛)

𝑚𝑛
 

 

and if the sequence (
𝐾(𝑚,𝑛)

𝑚𝑛
) has a limit in the sense of 

Pringsheim, we say it has a double natural density, and 

it is defined as  

 

lim
𝑚,𝑛

𝐾(𝑚, 𝑛)

𝑚𝑛
= 𝛿2(𝐾). 

 

In the following, statistical convergence of double 

sequences in ℒ −fuzzy normed space is given. 
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Definition 2.13 Let (𝑉, 𝜌, 𝒯) be a ℒ −fuzzy normed 

space. Then, a double sequence 𝑥 = (𝑥𝑗𝑘) is 

statistically convergent to 𝑙 ∈ 𝑉 with respect to 𝜌 

provided that, for each 𝜀 ∈ 𝐿 − {0𝐿} and 𝑡 > 0,  

 

𝛿2{(𝑗, 𝑘) ∈ ℕ × ℕ: 𝜌(𝑥𝑗𝑘 − 𝑙, 𝑡) ⊁ 𝒩(𝜀)} = 0 

 

or equivalently  

 

lim
𝑚,𝑛

1

𝑚𝑛
{𝑗 ≤ 𝑚, 𝑘 ≤ 𝑛: 𝜌(𝑥𝑗𝑘 − 𝑙, 𝑡) ⊁ 𝒩(𝜀)} = 0. 

 

In this case, we write 𝑠𝑡2ℒ − lim𝑥 = 𝑙.  
 

Definition 2.14 [41] If 𝑋 is a non-empty set then a family 

ℐ of subsets of 𝑋 is called an ideal in 𝑋 if and only if  

1. ∅ ∈ ℐ,  

2. 𝐴, 𝐵 ∈ 𝐼 implies 𝐴 ∪ 𝐵 ∈ ℐ,  

3. For each 𝐴 ∈ 𝐼 and 𝐵 ⊂ 𝐴 we have 𝐵 ∈ ℐ,  

 where 𝑃(𝑋) is the power set of 𝑋. ℐ is called nontrivial 

ideal if 𝑋 ∉ ℐ.  

 

Definition 2.15 [41] Let 𝑋 be a non-empty set. A non-

empty family of sets 𝐹 ⊂ 𝑃(𝑋) is called a filter on 𝑋 if 

and only if  

 1. ∅ ∉ ℐ,  

 2. 𝐴, 𝐵 ∈ 𝐹 implies 𝐴 ∩ 𝐵 ∈ 𝐹,  

 3. For each 𝐴 ∈ 𝐹 and 𝐴 ⊂ 𝐵 we have 𝐵 ∈ 𝐹.  

  

Definition 2.16 [41] A nontrivial ideal ℐ in 𝑋 is called an 

admissible ideal if it is different from 𝑃(ℕ) and it 

contains all singletions, i.e., {𝑥} ∈ ℐ for each 𝑥 ∈ 𝑋. 

Let ℐ ⊂ 𝑃(𝑋) be a nontrivial ideal. Then, a class 𝐹(𝐼) =
{𝑀 ⊂ 𝑋: 𝑀 = 𝑋\𝐴, for some 𝐴 ∈ ℐ} is a filter on 𝑋, 

called the filter associated with the ideal ℐ.  

 

Definition 2.17 [41] An admissible ideal ℐ is said to 

satisfy the condition (𝐴𝑃) if for every sequence (𝐴𝑛)𝑛∈ℕ 

of pairwise disjoint sets from ℐ there are sets 𝐵𝑛 ⊂ ℕ, 𝑛 ∈
ℕ, such that the symmetric difference 𝐴𝑛 △ 𝐵𝑛 is a finite 

set for every 𝑛 and ⋂𝑛∈𝐵𝑛
∈ ℐ.  

 

Definition 2.18 [41] Let ℐ ⊂ 2ℕ be a nontrivial ideal in 

ℕ. Then, a sequence 𝑥 = (𝑥𝑘) is said to be ℐ − 

convergent to 𝐿 if, for every 𝜖 > 0, the set  

 

{𝑘 ∈ ℕ: |𝑥𝑘 − 𝐿| ≥ 𝜖} ∈ 𝐼. 
In this case, we write ℐ − 𝑙𝑖𝑚𝑥 = 𝐿.  

 

3 Ideal Convergence for Triple Sequences on 𝓛 − 

Fuzzy Normed Space 

 

In this section, we will look into ideal convergence on 

ℒ −fuzzy normed spaces. Throughout the paper we take 

ℐ3 as a nontrivial ideal in ℕ × ℕ × ℕ.  

 

 

Definition 3.1 Let (𝑉, 𝜌, 𝒯) be a ℒ −fuzzy normed 

space and ℐ3 be a nontrivial ideal in ℕ. Then a sequence 

𝑥 = (𝑥𝑚𝑛𝑘) is ℐ3 convergent to ℓ ∈ 𝑉 with respect to 𝜌 

fuzzy norm, provided that, for each 𝜀 ∈ 𝐿 − {0𝐿} and 

𝑡 > 0,  

 
{(𝑚, 𝑛, 𝑘) ∈ ℕ × ℕ × ℕ: 𝜌(𝑥𝑚𝑛𝑘 − ℓ, 𝑡) ⊁ 𝒩(𝜀)} ∈ ℐ3. 

 

In this scenario, we will write ℐ3
ℒ − lim𝑥 = ℓ.  

 

Lemma 3.2 Let (𝑉, 𝜌, 𝒯) be a ℒ −fuzzy normed space. 

Then, the following statements are equivalent, for 

every 𝜀 ∈ 𝐿 − {0𝐿} and 𝑡 > 0:  

 1.  ℐ3
ℒ − lim𝑥 = ℓ.  

 2. {(𝑚, 𝑛, 𝑘) ∈ ℕ × ℕ × ℕ: 𝜌(𝑥𝑚𝑛𝑘 − 𝑙, 𝑡) ⊁ 𝒩(𝜀)} ∈ ℐ3. 

 3. {(𝑚, 𝑛, 𝑘) ∈ ℕ × ℕ × ℕ: 𝜌(𝑥𝑚𝑛𝑘 − 𝑙, 𝑡) ≻ 𝒩(𝜀)} ∈ 𝐹(ℐ3).  

 4.  ℐ3
 ℒ − lim𝜌(𝑥𝑚𝑛𝑘 − ℓ, 𝑡) = 1𝐿.  

  

Proof. The equivalences between (𝑎), (𝑏) and (𝑐) 

follow directly from the definitions.  (𝑎) ⇐ (𝑑): Note 

that ℐ3
ℒ − lim𝑥 = ℓ means that, for all 𝜀 ∈ 𝐿 − {0𝐿} and 

𝑡 > 0 we have  

 
{(𝑚, 𝑛, 𝑘) ∈ ℕ × ℕ × ℕ: 𝜌(𝑥𝑚𝑛𝑘 − ℓ, 𝑡) ⊁ 𝒩(𝜀)} ∈ ℐ3. 

 

On the other hand, a local base for the open 

neighborhoods of 1𝐿 ∈ 𝐿 with respect to the order 

topology on the lattice ℒ = (𝐿, ≤), are the sets  

 

(𝑎, 1𝐿] = {𝑥 ∈ 𝐿: 𝑎 < 𝑥 ≤ 1𝐿} 

 

for each 𝑎 ∈ 𝐿 − {1𝐿}. ℐ3
 ℒ − lim𝜌(𝑥𝑚𝑛𝑘 − ℓ, 𝑡) = 1𝐿 if 

and only if, for any given 𝑎 ∈ 𝐿 − {1𝐿},  

 

{(𝑚, 𝑛, 𝑘) ∈ ℕ × ℕ ×: 𝜌(𝑥𝑚𝑛𝑘 − ℓ, 𝑡) ∉ (𝑎, 1𝐿]} ∈ ℐ3 

 

or equivalently  

 

{(𝑚, 𝑛, 𝑘) ∈ ℕ × ℕ ×: 𝜌(𝑥𝑚𝑛𝑘 − ℓ, 𝑡) ∉ 𝑎}) ∈ ℐ3. 
 

Note that, the two statements  {(𝑚, 𝑛, 𝑘) ∈ ℕ × ℕ ×
ℕ: 𝜌(𝑥𝑚𝑛𝑘 − ℓ, 𝑡) ⊁ 𝒩(𝜀)} ∈ ℐ3 for all 𝜀 ∈ 𝐿 − {0𝐿} 

and {(𝑚, 𝑛, 𝑘) ∈ ℕ × ℕ × ℕ: 𝜌(𝑥𝑚𝑛𝑘 − ℓ, 𝑡) ∉ 𝑎}) ∈ ℐ3 

are equivalent since for each 𝜀 ∈ 𝐿 − {0𝐿} we can 

choose 𝑎 ∈ 𝐿 − {1𝐿} as 𝑎 = 𝒩(𝜀) and conversely for 

each 𝑎 ∈ 𝐿 − {1𝐿} we can choose 𝜀 ∈ 𝐿 − {0𝐿} as 𝜀 =
𝒩(𝑎), so that 𝑎 = 𝒩(𝒩(𝑎)) = 𝒩(𝜀). This proves 

that (𝑎) is equivalent to (𝑑).  

 

Theorem 3.3 Let (𝑉, 𝜌, 𝒯) be a ℒ −fuzzy normed 

space. If lim𝑥 = ℓ for a triple sequence 𝑥 = (𝑥𝑚𝑛𝑘) 

then ℐ3
ℒ − lim𝑥 = ℓ.  

 

Proof. Suppose that lim𝑥 = ℓ. Then, for every 𝜀 ∈ 𝐿 −
{0𝐿} and 𝑡 > 0, there exists a positive integer 𝑁 such 

that  

𝜌(𝑥𝑚𝑛𝑘 − 𝑙, 𝑡) ≻ 𝒩(𝜀) 

for all 𝑘 ≥ 𝑁. 
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Consider the set 𝐴: = {(𝑚, 𝑛, 𝑘) ∈ ℕ × ℕ ×: 𝜌(𝑥𝑚𝑛𝑘 −
𝑙, 𝑡) ⊁ 𝒩(𝜀)}. Then, since the all singletions belong to the 

admissible ideal ℐ3. We also have 𝐴 ∈ ℐ3, since it is a 

subset of a finite union of sets in ℐ3 and accordingly ℐ3
ℒ −

𝑙𝑖𝑚𝑥 = ℓ.  
 

As seen in the following example, the converse of the 

theorem is not true in general. 

 

Example 3.4 Let ℒ = [0, ∞] be the lattice of nonnegative 

extended real numbers with the usual order. Also given the 

triangular norm 𝒯(𝛼, 𝛽) = 𝑚𝑖𝑛{𝛼, 𝛽} and the negator 

ℕ(𝛼) = 𝛼−1. Then, the triple (ℝ, 𝜌, 𝒯) is an ℒ − fuzzy 

normed space, where 𝜌 is given by 𝜌(𝑥, 𝑡) =
𝑡

|𝑥|
 for all 𝑥 ∈

ℝ and 𝑡 > 0. Note that, by the rules of arithmetics in 

extended real line, 0 is allowed in the denominator and 

lim𝑛→0
𝑡

𝑛
= ∞ for all 𝑡 > 0. 

Consider the admissible ideal ℐ3 consisting of the small 

subsets of the set of positive integers, that is  

 

ℐ3 = {𝐴 ⊂ ℕ: ∑

𝑘∈𝐴

1

𝑘
< ∞} 

 

and the sequence 𝑥 = (𝑥𝑚𝑛𝑘), given by 𝑥𝑚𝑛𝑘 =
𝜅(log2

𝑚𝑛𝑘), where 𝜅 stands for the Dirichlet function. Thus, 

(𝑥𝑚𝑛𝑘) is 1, for powers of 2 and 0, for other values of 

(𝑚, 𝑛, 𝑘). Then, 𝑥 does not converge in the classical sense, 

since it gets both the values 0 and 1, for arbitrary large 

values of (𝑚, 𝑛, 𝑘). 

 

However, it ℐ3 − converges to 0, since 

∑∞
𝑚=0 ∑∞

𝑛=0 ∑∞
𝑘=0

1

((2𝑚)𝑛)𝑘 = 1 < ∞, suggesting that 

 

 (𝑚, 𝑛, 𝑘) ∈ ℕ × ℕ × ℕ: 𝜌(𝑥𝑚𝑛𝑘 − 0, 𝑡) ⊁ 𝒩(𝜀) 

= {(𝑚, 𝑛, 𝑘) ∈ ℕ × ℕ × ℕ: 𝜌(𝑥𝑚𝑛𝑘 , 𝑡) ⊁ 𝜀−1} 

      = {(𝑚, 𝑛, 𝑘) ∈ ℕ × ℕ × ℕ:
𝑡

|𝑥𝑚𝑛𝑘|
≤

1

𝜀
} 

      = {(𝑚, 𝑛, 𝑘) ∈ ℕ × ℕ × ℕ: 𝜀𝑡 ≤ |𝑥𝑚𝑛𝑘|} 

      ⊆ {(𝑚, 𝑛, 𝑘) ∈ ℕ × ℕ × ℕ: 𝑥𝑚𝑛𝑘 ≠ 0} 

      = {1,2,4,8,16, . . . } ∈ ℐ3 

 

 for all 𝜀 ∈ (0, ∞] and 𝑡 > 0. Hence ℐ3
ℒ − 𝑙𝑖𝑚𝑥 = 0.  

 

Theorem 3.5 Let (𝑉, 𝜌, 𝒯) be a ℒ −fuzzy normed space. If 

a sequence 𝑥 = (𝑥𝑚𝑛𝑘) is ℐ3 convergent with respect to the 

ℒ −fuzzy norm 𝜌, then ℐ3
ℒ −limit is unique.  

 

Proof. Suppose that ℐ3
ℒ − lim𝑥 = ℓ1 and ℐ3

ℒ − lim𝑥 = ℓ2. 

For any given 𝜀 ∈ 𝐿 − {0𝐿} and 𝑡 > 0, 𝑟 ∈ 𝐿 − {0𝐿} such 

that  

 

𝒯(𝒩(𝑟), 𝒩(𝑟)) ≻ 𝒩(𝜀). 
 

Define the following sets  

 
𝐾0 = {(𝑚, 𝑛, 𝑘) ∈ ℕ × ℕ × ℕ: 𝜌(ℓ1 − ℓ2, 𝑡) ⊁ 𝒩(𝜀)}, 

 

𝐾1 = {(𝑚, 𝑛, 𝑘) ∈ ℕ × ℕ × ℕ: 𝜌(𝑥𝑚𝑛𝑘 − ℓ1, 𝑡) ⊁ 𝒩(𝑟)} 

 

and  

 
𝐾2 = {(𝑚, 𝑛, 𝑘) ∈ ℕ × ℕ × ℕ: 𝜌(𝑥𝑚𝑛𝑘 − ℓ2, 𝑡) ⊁ 𝒩(𝑟)} 

 

for any 𝑡 > 0. Then 𝐾1, 𝐾2 ∈ 𝐼3. Since for elements of 

the set ℕ/(𝐾1 ∪ 𝐾2), we have  

𝜌(ℓ1 − ℓ2, 𝑡) ⪰ 𝒯 (𝜌 (𝑥𝑚𝑛𝑘 − ℓ1,
𝑡

2
) , 𝜌 (𝑥𝑚𝑛𝑘 − 𝑙2,

𝑡

2
)) 

 

≻ 𝒯(𝒩(𝑟), 𝒩(𝑟)) 

 

≻ 𝒩(𝜀), 
 

so that ℕ/(𝐾1 ∪ 𝐾2) ⊂ ℕ/𝐾0, or equivalently 𝐾0 ⊂
𝐾1 ∪ 𝐾2. Since the expression 𝜌(ℓ1 − ℓ2, 𝑟) ⊁ 𝒩(𝜀) 

independent of (𝑚, 𝑛, 𝑘) ∈ ℕ × ℕ × ℕ either 𝐾0 = ∅ 

or 𝐾0 = ℕ, but 𝐾0 ∈ 𝐼3 enforces 𝐾0 = ∅. Hence 𝜌(ℓ1 −
ℓ2, 𝑡) ≻ 𝒩(𝜀) for all 𝜀 ∈ 𝐿/{0𝐿}. Thus 𝜌(ℓ1 − ℓ2, 𝑡) =
1𝐿 which proves that ℓ1 = ℓ2.  

 

Theorem 3.6 Let (𝑉, 𝜌, 𝒯) be a ℒ −fuzzy normed 

space and ℐ3 be an admissible ideal. Then,  

 

1. If ℐ3
ℒ − lim𝑥𝑚𝑛𝑘 = ℓ1 and ℐ3

ℒ − lim𝑦𝑚𝑛𝑘 = ℓ2  

then ℐ3
ℒ − lim(𝑥𝑚𝑛𝑘 + 𝑦𝑚𝑛𝑘) = (ℓ1 + ℓ2)  

 

2.  If ℐ3
ℒ − lim𝑥𝑚𝑛𝑘 = ℓ then ℐ3

ℒ − lim𝛼𝑥𝑚𝑛𝑘 = 𝛼ℓ.  

  

Proof.  

1.  Let ℐ3
ℒ − lim𝑥𝑚𝑛𝑘 = ℓ1 and ℐ3

ℒ − lim𝑦𝑚𝑛𝑘 = ℓ2. 

For any given 𝜀 ∈ 𝐿 − {0𝐿} and 𝑡 > 0, we can 

choose 𝑟 > 0 such that 𝒯(𝒩(𝑟), 𝒩(𝑟)) ≻ 𝒩(𝜀). 
Define the sets,  

 

𝐾1 = {(𝑚, 𝑛, 𝑘) ∈ ℕ × ℕ × ℕ: 𝜌(𝑥𝑚𝑛𝑘 − ℓ1, 𝑡)
⊁ 𝒩(𝑟)} 

and  

 

𝐾2 = {(𝑚, 𝑛, 𝑘) ∈ ℕ × ℕ × ℕ: 𝜌(𝑦𝑚𝑛𝑘 − ℓ2, 𝑡)
⊁ 𝒩(𝑟)} 

for any 𝑡 > 0. Since ℐ3
ℒ − lim𝑥𝑚𝑛𝑘 = ℓ1 and ℐ3

ℒ −
lim𝑦𝑚𝑛𝑘 = ℓ2, we get 𝐾1, 𝐾2 ∈ ℐ3. If we define the set  

 

𝐾 = {(𝑚, 𝑛, 𝑘) ∈ ℕ × ℕ × ℕ: 𝜌((𝑥𝑚𝑛𝑘 + 𝑦𝑚𝑛𝑘) − (ℓ1

+ ℓ2), 𝑡) ⊁ 𝒩(𝜀)} 

 

then we have to show that 𝐾 ∈ ℐ3. Since 𝐾1, 𝐾2 ∈ ℐ3, 

from the definition of filter, we know that 𝐾1
𝑐 , 𝐾2

𝑐 ∈
𝐹(ℐ3). Therefore,  

 
𝜌((𝑥𝑚𝑛𝑘 + 𝑦𝑚𝑛𝑘) − (ℓ1 + ℓ2), 𝑡)

⪰ 𝒯(𝜌(𝑥𝑚𝑛𝑘 − ℓ1,
𝑡

2
), 𝜌(𝑦𝑚𝑛𝑘 − ℓ2,

𝑡

2
)) 

≻ 𝒯(𝒩(𝑟), 𝒩(𝑟)) 

≻ 𝒩(𝜀). 

 

This shows that,  
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𝐾𝑐 ⊂ {(𝑚, 𝑛, 𝑘) ∈ ℕ × ℕ × ℕ: 𝜌((𝑥𝑚𝑛𝑘 + 𝑦𝑚𝑛𝑘)
− (ℓ1 + ℓ2), 𝑡) ≻ 𝒩(𝜀)}. 

 

Thus, 𝐾𝑐 ∈ 𝐹(ℐ3). In other words 𝐾 ∈ ℐ3. As a 

result of this, ℐ3
ℒ − lim(𝑥𝑚𝑛𝑘 + 𝑦𝑚𝑛𝑘) = (ℓ1 + ℓ2). 

 

 2. It is obvious for 𝛼 = 0. Now let 𝛼 ≠ 0. Then for 𝜀 ∈
𝐿 − {0𝐿} and 𝑡 > 0,  

 

𝐴 = {(𝑚, 𝑛, 𝑘) ∈ ℕ × ℕ × ℕ: 𝜌(𝑥𝑚𝑛𝑘 − ℓ, 𝑡)
≻ 𝒩(𝜀)} ∈ 𝐹(ℐ3). 

 

It is sufficient to prove that, for each 𝜀 ∈ 𝐿 − {0𝐿} and 

𝑡 > 0, it can be written  

 

𝐴 ⊂ {(𝑚, 𝑛, 𝑘) ∈ ℕ × ℕ × ℕ: 𝜌(𝛼𝑥𝑚𝑛𝑘 − 𝛼𝑙, |𝛼|𝑡)
≻ 𝒩(𝜀)}. 

 

Since also |𝛼|𝑡 > 0. Then we have,  

 

𝜌(𝛼𝑥𝑚𝑛𝑘 − 𝛼ℓ, |𝛼|𝑡) = 𝜌(𝑥𝑚𝑛𝑘 − ℓ,
|𝛼|𝑡

|𝛼|
)

= 𝜌(𝑥𝑚𝑛𝑘 − ℓ, 𝑡) ≻ 𝒩(𝜀). 
 

Therefore, we have  

 

𝐴 = {(𝑚, 𝑛, 𝑘) ∈ ℕ × ℕ × ℕ: 𝜌(𝛼𝑥𝑚𝑛𝑘 − 𝛼𝑙, |𝛼|𝑡)
≻ 𝒩(𝜀)}, 

 

and 𝐴𝑐 ∈ ℐ3. Obviously 𝐼3
ℒ − lim𝛼𝑥𝑚𝑛𝑘 = 𝛼ℓ.  

 

4  𝑰𝟑
∗ − Convergence for Triple Sequences on 𝓛 − 

Fuzzy Normed Space 

 

In this section, we give the notion of the ℐ3
∗ − 

convergence on ℒ − fuzzy normed space. 

Definition 4.1 Let (𝑉, 𝜌, 𝒯) be a ℒ −fuzzy normed space. 

A sequence of 𝑥 = (𝑥𝑚𝑛𝑘) of elements in 𝑋 is said to be 

ℐ3
∗ − convergent to ℓ ∈ 𝑋 with respect to the ℒ − fuzzy 

norm if there exist a subset 𝐾 =
{(𝑚𝑝, 𝑛𝑝, 𝑘𝑝): 𝑚1, 𝑚2, . . . , 𝑛1 < 𝑛2 <. . . , 𝑘1, 𝑘2, . . . } of 

ℕ × ℕ × ℕ such that 𝐾 ∈ 𝐹(ℐ3)  (𝑖. 𝑒. ℕ × ℕ × ℕ/𝐾 ∈
ℐ3) and ℒ − lim𝑝𝑥𝑚𝑝𝑛𝑝𝑘𝑝

= ℓ. 

In this case we write ℐ3
∗,ℒ − lim𝑥 = ℓ, and ℓ is called the 

ℐ3
∗ − limit of the sequence 𝑥 = (𝑥𝑚𝑛𝑘) with respect to 

ℒ − fuzzy norm.  

 

Theorem 4.2 Let (𝑉, 𝜌, 𝒯) be a ℒ −fuzzy normed space 

and ℐ3 be an admissible ideal. If ℐ3
∗,ℒ − lim𝑥 = ℓ, then 

ℐ3
ℒ − lim𝑥 = ℓ.  

 

Proof. Let ℐ3
∗,ℒ − lim𝑥 = ℓ. Then 𝐾 =

{(𝑚𝑝, 𝑛𝑝, 𝑘𝑝): 𝑚1, 𝑚2, . . . , 𝑛1 < 𝑛2 <. . . , 𝑘1, 𝑘2, . . . } ∈

𝐹(ℐ3)(𝑖. 𝑒. ℕ × ℕ × ℕ/𝐾 = 𝐻 ∈ ℐ3) such that ℒ −
lim𝑝𝑥𝑚𝑝𝑛𝑝𝑘𝑝

= ℓ. Then for each 𝜀 ∈ 𝐿 − {0𝐿} and 𝑡 > 0 

there exists a positive integer 𝑛0 such that  

 

𝜌(𝑥𝑚𝑝𝑛𝑝𝑘𝑝
− ℓ, 𝑡) > 𝒩(𝜀) 

 

for all 𝑝 > 𝑛0. Since the ideal is admissible and from the 

definition of the convergence, we have  

 {(𝑚𝑝, 𝑛𝑝, 𝑘𝑝) ∈ 𝐾: 𝜌(𝑥𝑚𝑝𝑛𝑝𝑘𝑝
− ℓ, 𝑡) ⊁ 𝒩(𝜀)} ∈ ℐ3 

and  

{(𝑚, 𝑛, 𝑘) ∈ ℕ × ℕ ×: 𝜌(𝑥𝑚𝑛𝑘 − ℓ, 𝑡) ⊁ 𝒩(𝜀)}
⊂ ∪ {𝑚1, . . . , 𝑚𝑝0−1, 𝑛1, . . . , 𝑛𝑝0−1, 𝑘1

<. . . < 𝑘𝑝0−1} ∈ ℐ3 

for all 𝜀 ∈ 𝐿 − {0𝐿} and 𝑡 > 0. Therefore, ℐ3
ℒ − lim𝑥 =

ℓ.  

 

Remark 4.3 From the above example we have seen that 

ℐ3
∗ − convergence implies ℐ3 − convergence but not 

conversely. Now the question arises under what 

condition the converse may hold. For this we define the 

condition (AP) and see that under this condition the 

converse holds.  

 

Definition 4.4 An admissible ideal ℐ3 ⊂ 𝑃(𝕏) is said to 

satisfy the condition (AP) if for every sequence(𝐴𝑛)𝑛 ∈
ℕ of pairwise disjoint sets from ℐ3 there are sets 𝐵𝑛 ⊂ ℕ, 

𝑛 ∈ ℕ, such that the symmetric difference 𝐴𝑛 △ 𝐵𝑛 is a 

finite set for every 𝑛 and ⋃𝑛∈ℕ 𝐵𝑛 ∈ ℐ3.  

 

It is worth noting that both the ideal consisting of finite 

subsets of ℕ with zero asymptotic density satisfy the 

condition (AP). However the ideal ℐ𝑝 given in Example 

4.4. does not have this property. To see this, define the 

sets  

 

𝐴𝑛: = {𝑝𝑛
𝑘: 𝑘 ∈ ℕ} 

 

here 𝑝𝑛 denotes the 𝑛 − 𝑡ℎ prime number. Clearly for all 

𝑛 ∈ ℕ, 𝑃𝑟𝑖𝑚𝑒(𝐴𝑛) = {𝑝𝑛} is finite so that 𝐴𝑛 ∈ 𝐼𝑝. 

Moreover this sets are pairwise disjoint. If 𝐴𝑛 △ 𝐵𝑛 is 

finite, then there at most finite number of elements of 𝐴𝑛, 

which are not in 𝐵𝑛. Since 𝐴𝑛 is an infinite set, this means 

that 𝐵𝑛 has elements of the form 𝑝𝑛
𝑘. Then 𝑝𝑛 ∈

𝑃𝑟𝑖𝑚𝑒(𝐵𝑛). Then for the set 𝐵: = ⋃𝑛∈ℕ 𝐵𝑛, we have 

𝑃𝑟𝑖𝑚𝑒(𝐵) = ℙ, which is an infinite set. So in this 

situation it is not possible to form a sequence (𝐵𝑛)𝑛∈ℕ of 

such sets with 𝐵 ∈ ℐ𝑝. 

 

Proposition 4.5 Let (𝑉, 𝜌, 𝒯) be a ℒ −fuzzy normed 

space and the ideal ℐ3 satisfy the condition (AP). If 𝑥 =
(𝑥𝑚𝑛𝑘) is a sequence in 𝑋 such that ℐ3

ℒ − lim𝑥 = ℓ, then 

ℐ3
∗,ℒ − lim𝑥 = ℓ.  

 

Proposition 4.6 Let (𝑉, 𝜌, 𝒯) be a ℒ −fuzzy normed 

space. Then the following conditions are equivalent:  

1.  ℐ3
∗,ℒ − lim𝑥 = ℓ.  

2. There exist two sequences 𝑦 = (𝑦𝑚𝑛𝑘) and 𝑧 =
(𝑧𝑚𝑛𝑘) in 𝑋 such that 𝑥 = 𝑦 + 𝑧, ℒ − 𝑙𝑖𝑚𝑦 = ℓ and the 

set {(𝑚, 𝑛, 𝑘): 𝑧𝑚𝑛𝑘 ≠ 𝜃} ∈ ℐ3, where 𝜃 denotes the zero 

element of 𝑋. 
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5 Conclusion 

 

In this manuscript, we explore certain fundamental 

characteristics of the ideal convergence of sequences 

within the framework of ℒ-fuzzy normed spaces. This 

structure offers a versatile and expansive generalization of 

several classical spaces, including normed spaces, fuzzy 

normed spaces, and intuitionistic fuzzy (IF) normed 

spaces. The ℒ-fuzzy normed spaces provide a more flexible 

platform for analyzing convergence behaviors, particularly 

in the presence of uncertainty and imprecision, thereby 

extending the applicability of convergence theory to a 

broader class of spaces. 
 

Moreover, several novel theoretical ideas have been 

developed and systematically outlined in this context. 

These innovations are further illustrated through examples 

that highlight the intricate connections between the various 

forms of ideal convergence. The results obtained in this 

study are made possible by leveraging both the lattice 

structure inherent in ℒ-fuzzy normed spaces and the 

underlying normed space framework. By synthesizing 

these elements, we introduce a more generalized 

interpretation of the norm, which enables us to extend the 

concept to a larger family of topological spaces within 

vector space theory. 
 

The flexibility and richness of this generalized norm 

structure, coupled with the lattice-theoretic approach, 

facilitate a deeper understanding of the convergence 

properties of sequences in ℒ-fuzzy normed spaces. These 

results not only advance the current theory of ideal 

convergence but also open up new avenues for research 

within the broader context of functional analysis and 

topology. 
 

The results of this study highlight that ideal convergence 

for triple sequences in ℒ − fuzzy normed spaces can yield 

a more nuanced understanding of sequence convergence, 

particularly in environments where uncertainty and 

imprecision are inherent. These findings have far-reaching 

applications, especially in disciplines such as information 

theory, where data structures and processing often involve 

fuzzy or uncertain elements, as well as in artificial 

intelligence, where algorithmic learning benefits from a 

robust handling of ambiguous data patterns. Moreover, 

these principles are highly relevant in fields like quantum 

computing and physics, where multi-dimensional 

convergence within imprecise spaces can aid in modeling 

and predicting phenomena within non-deterministic 

frameworks. In economic modeling and financial analysis, 

where projections and assessments often rely on fuzzy data 

inputs, the application of triple sequence ideal convergence 

could improve predictive analytics and risk assessment 

models. Overall, this study establishes a valuable 

foundation for future research and interdisciplinary 

applications, illustrating the utility of ℒ −fuzzy normed 

spaces in accommodating more sophisticated forms of 

convergence essential for modern mathematical and 

applied sciences. 
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