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MAKALE BİLGİSİ ABSTRACT  

In this study, the Hsieh, Classical F, and Kruskal-Wallis tests were compared in terms of Type 

I error probabilities using samples generated from a two-parameter exponential distribution 

with various parameters and a χ2
(2) distribution. Among the tests examined in the study, the 

Hsieh test was found to have higher Type I error probabilities compared to the Classical F and 

Kruskal-Wallis tests, indicating that it could not maintain the Type I error at the 5.0% level. 

The effect of this finding is more pronounced in small sample sizes and when the assumption 

of homogeneity of variance is not met. In addition, even in heterogeneous variance ratios, that 

Levene's test neglects, the Type I error rate of the Hsieh test reached 13.3%. In conclusion, the 

high probability of Type I error in the Hsieh test, especially in small sample sizes and when 

group variances are not homogeneous, restricts its usage. 
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Hsieh, F ve Kruskal-Wallis Testlerinin Monte Carlo Simülasyon Tekniği Kullanılarak I. 

Tip Hata Olasılıkları Bakımından Değerlendirilmesi 

ARTICLE INFO ÖZET 
Bu çalışmada, iki parametreli üstel dağılımdan farklı parametrelerle ve χ2

(2) 
dağılımından üretilen örnekler kullanılarak Hsieh, F ve Kruskal-Wallis testleri, I.tip 

hata olasılıkları açısından karşılaştırılmıştır. Çalışmada incelenen testler arasında, 
Hsieh testinin I.tip hata olasılıklarının, Klasik F ve Kruskal-Wallis testlerine göre 
daha yüksek olduğu bulunmuş ve bu durum, I.tip hatayı %5 seviyesinde tutamadığını 
göstermektedir. Bu durum özellikle küçük örnek genişliklerinde ve varyansların 
homojenliği varsayımının sağlanmadığı durumlarda daha belirgin hale gelmektedir. 
Ayrıca, Levene testi tarafından göz ardı edilen heterojen varyans oranlarında bile, 
Hsieh testinin I.tip hata oranı %13.3'e ulaşmıştır. Sonuç olarak, Hsieh testindeki 
yüksek I.tip hata olasılığı, özellikle küçük örnek genişliklerinde ve grup 

varyanslarının homojen olmadığı durumlarda kullanımını sınırlamaktadır. 

Alınış tarihi: 27/08/2024 

Kabul tarihi: 13/12/2024 

Anahtar Kelimeler: Varyans analizi, Hsieh 
testi, Kruskal-Wallis testi, I.tip hata 
olasılığı 
DOI: 10.55979/tjse.1539525 

1. Introduction 

The actual mean of robust statistical test is that it preserves 

a Type I error rate at the level of 5.0% and has statistical 

power close to the theoretical power, even when the 

observations in the given dataset may not satisfy to the 

assumptions of the test technique (Lix et al., 1996). 

In this context, parametric tests are considered more 

robust; however, the requirement of satisfying their 

assumptions is emphasized. These assumptions can be 

summarized as follows: 

 Normality of the observations in the dataset 

 Homogeneity of the variances 

 The data should be continuous 

Analysis of Variance or in other words in the literature, the 

F test, is one of the parametric tests used to test the equality 

of more than two group means. Blanca et al. (2017) 

emphasized that the Classical F-test is a powerful test when 
observations deviate from normality to a moderate degree, 

when the assumed distribution of each group's population 

is the same, and when working with balanced and large 

sample sizes. However, in this point, the researchers can be 

misguided by factors such as the degree of skewness in the 

distribution or presence of large sample sizes. In relation to 

that, Cessie et al. (2020) found that Student – t test is robust 

when the sample size of each group is equal and more than 

25. 

In the case of not satisfying the assumptions of the 

Classical F test, it is a reality that the obtained results do 

not reflect the truth. As well known, in the hypothesis set 

at the beginning of the experiment, the null (H0) hypothesis 
supports the observed differences among group means are 

coincidental. The failure to meet the assumptions will 

cause an increase in the Type I error probability, which was 

set at 5% at the beginning of the test. In other words, when 

there is no difference among the group means in truth, the 

probability of a difference will increase, and the null 

hypothesis will be rejected mistakenly. If the data 

distribution is non-normal, applying the Classical F test 

without considering the assumption of normality can lead 

to wrong estimation of the model parameters or a decrease 

in the test power to detect treatment effects (Nwobi & 
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Akanno, 2021). In cases where data are some kinds of 

random sample from population which is distributed as 

beta, gamma, exponential, Weibull., etc., researchers often 

encounter difficulties in making the correct decision 

regarding whether to apply transformations and continue 

with the Classical F test or to directly apply non-parametric 

tests (Hammouri et al., 2020). Another option, if the 

assumptions are not met, is to use parametric alternative 

tests. In the literature, there are different parametric 

alternative tests such as Welch F, Brown – Forsythe, 

Wilcox Hm, James second-order, Alexander – Govern and 
Marascuilo tests (Mendeş, 2002). Author compared these 

parametric alternative tests in various distributions and 

simulation experiments in terms of type I error rate and test 

power by Monte Carlo simulation technique. Even though 

some of these tests are included in widely used package 

programs such as SPSS or Minitab, most of them can be 

conducted with libraries written in the R programming 

language. 

Although transforming the data and then applying the 

classical F test is another option, some researchers who are 

not experts in statistics do not use appropriate 

transformation techniques. Wilcox (2002) reported that 

transformation techniques could be unable to cope with 

extreme values in the dataset and even some powerful 

transformation techniques cannot fit the observations to 

normal distribution. 

Lix et al. (1996) reported that when non-normal 

distribution and heterogeneity of variances are together, 

using trimmed means for the location parameter and 
Winsorized variance for the scale parameter causes the test 

more robust. The use of non-parametric methods, such as 

the Kruskal – Wallis test, is also a frequently used method 

when assumptions are not met. Nonparametric methods do 

not have assumptions about the distribution of the data, but 

they are more sensitive to heterogeneity than parametric 

methods. However, even though non-parametric methods 

act independently of the assumptions of the distribution, 

they are very sensitive to high heterogeneity of variances. 

Hammouri et al. (2020) reported that using the general 

linear model for analysis of variance and regression, which 
does not require the assumption of normal distribution, 

may be an alternative option. On the other hand, Fan & 

Hancock (2012) reported that Robust Means Modelling 

approach is more consistent than classical F test in terms 

of type I error rate of skewed datasets. 

In the literature, there are a lot of simulation studies in 

which alternative tests are evaluated by several researchers. 

These studies assess the type I error rate and test power in 

cases where the distribution shape is skewed, comparing 

group means (Koşkan & Gürbüz, 2009; Arıcı et al., 2011; 

Mendeş & Yiğit, 2013; Çavuş & Yazıcı (2020); Hammouri 

et al.,2020) and it is still being investigated. Mendeş & 

Yiğit (2013), compared classical F and ANOM tests with 

regards to type I error rate and test power in testing equality 

of the group means. The Hsieh test (also M statistic) that is 

fundamental point of this study, is a modified version of 
the likelihood ratio statistic under the H statistic. This test 

statistic developed by Hsieh (1986), a parametric approach 

that allows testing the equality of the location parameters 

of populations demonstrating a two-parameter exponential 

distribution with different scale parameters. A study has 

been found in the literature where the classical F-test, 

which could serve as an alternative to the Hsieh test in the 

context of a two-parameter exponential distribution, was 

evaluated through simulation. 

Çavuş & Yazıcı (2020) compared ANOVA, logT-ANOVA 

(Logarithmic transformed ANOVA), and the Hsieh test for 

testing the equality of the location parameters of three 

groups in terms of type I error rate and test power. They 

considered the two-parameter exponential distribution as a 

skewed distribution. In addition, Çavuş (2021) developed 

a library in R programming language named as doex that 

consists of several heteroscedastic tests. In this library, 

besides the analysis of variance, and several alternatives, 
Hsieh test function takes part also for two parameters 

exponential distribution. 

Beta, Gamma, Weibull, Chi-Square, and Log-normal 

distributions are similar with two parameters exponential 
distribution. Currently, Monte Carlo technique has been 

studied on some distributions (Babacan & Kaya, 2020). As 

well known, the exponential distribution is a special form 

of Gama distribution. Due to this similar relationship, the 

solution to similar problems can also be achieved. There is 

another relationship for Gama distribution that forming 

Chi-Square distribution by ensuring that integers are 

positive (Kim et al., 2011). In studies which related 

agricultural data or theoretical sampling, two parameters 

exponential distribution as important as normal 

distribution (Maurya et al., 2011). As an illustration, in the 
livestock datasets, the milk yields at the lactation shows the 

exponential distribution. 

There are also some approaches proposed in the literature 

for testing the equality of group means in populations 
having a two-parameter exponential distribution. 

Malekzadeh & Jafari (2020) suggested that confidence 

interval – based estimation approaches, parametric 

bootstrap, and methods based on p-values may be used for 

parameter estimation in the case of a two-parameter 

exponential distribution. 

Ghosh & Razmpour (1984) compared several approaches 

to estimate the common location parameters in populations 

fit to the exponential distributions with unequal scale 

parameters, for small sample sizes. Zhuang & Bapat (2022) 

proposed approaches to hypothesis testing of location 

parameters for two populations that demonstrate a two-

parameter exponential distribution, controlling for Type I 

and Type II errors. Pawlitschko (2024) compared several 

robust methods for estimating the location parameter of a 
two-parameter exponential distribution. Krishnamoorthy et 

al. (2020) examined various likelihood ratio tests to 

compare the scale and location parameters in populations 

with a two-parameter exponential distribution and to test 

the homogeneity of distributions in those populations. Li et 

al. (2015) studied on a statistical method, using confidence 

intervals they derived, to test the equality of means in 

populations obtained from a two-parameter exponential 

distribution. Krishna & Goel (2018), used Bayesian 

approaches to estimate location and scale parameters on 
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randomly censored data following a two-parameter 

exponential distribution. They reported that Bayesian 

approaches gave better results than maximum likelihood 

approaches via Monte Carlo simulation technique. Our 

literature research revealed that while the Hsieh test and its 

alternatives have been compared for testing the equality of 

group means in a two-parameter exponential distribution, 

their performance has not been evaluated in another 

distributions. Therefore, it is thought that this study may 

contribute to literature for evaluating various statistical 

tests comparing group means in skewed distributions. 

In the present study, random numbers were generated from 

various two-parameter exponential distributions and a chi-

square distribution with two degrees of freedom. Hsieh, 

Classical F, and Kruskal-Wallis tests were compared in 
terms of Type I error rate for testing the equality of means 

- medians of more than two groups in various simulation 

scenarios. 

 

2. Material and Method  

2.1. Simulation of random numbers 

In the present study, random numbers generated from 
various two parameters exponential distribution and a chi-

square distribution with two degrees of freedom were used, 

as summarized in Table 1. For manipulating parameters of 

the distribution in question, different combinations of 

variances and sample sizes were created. In the 

determination of group variances, the variance ratio of the 

last group has been manipulated with small values (such as 

0.5 and 1.1). The reason for doing this is that in our 

preliminary simulation studies for the Hsieh test, as the 

variance ratio of the last group increases, the Type I error 

value becomes very high, and its comparison can be 

complex. The functions named r2exp and rchisq were used 
to generate random numbers from two parameters 

exponential distribution and a chi-square distribution, 

respectively. These functions are elements of the tolerance 

package (2010) and R Core Team (2023) which are 

developed in R programming language. Furthermore, for 

the Hsieh, Classical F test, and Kruskal-Wallis tests we 

used in the simulation program, we respectively employed 

the HS function derived from the doex package, the 

oneway.test function, and the kruskal.test function. 

 

Table 1. Simulation design 

2.2. Hsieh test 

The Hsieh test (also M statistic) that is fundamental point 

of this study, is a modified version of the likelihood ratio 

statistic under the H statistic. It is a parametric approach 

that allows testing the equality of the location parameters 

of populations demonstrating a two-parameter exponential 

distribution with different scale parameters. When the 

location parameter a is zero, a single-parameter 

exponential distribution is formed with a mean of b. This 

distribution, which consists of positive integers, is a right 

skewed distribution. The Hsieh test statistics with a χ2
(2k-2) 

degree of freedom was presented in Equation (1). 

𝑇𝐻 =  −2 ∑ (𝑟𝑗 − 1) 𝑙𝑛 [
𝑆𝑗

𝑆𝑗+ 𝑊𝑗
]𝑘

𝐽=1                  (1) 

H0: µ1 =  µ2 … =  µ𝑘  

H1: the difference between the means of at least two groups 

is significant 

If 𝑇𝐻  > 𝜒2(2𝑘 − 2), H0 (null hypothesis) will be rejected. 

The probability density function is given in Equation (2) 

for two parameters of exponential distribution in question. 

𝑓(𝑎, 𝑏) =  
1

𝑏
 𝑒𝑥𝑝 (− 

𝑥−𝑎

𝑏
), x > b, a > 0   (2) 

Where: 

a: location parameter (threshold), 

b: scale parameter. 

2.3. F test 

The mathematical model for one-way analysis of variance 

(ANOVA), that is commonly used for comparing means of 

more than two groups with respect to a single factor, can 

be expressed as Equation 3. For reliable results, one must 

be met basic assumptions of the F test which can be 

described as normality of the residuals, homogeneity of the 
variances, additive effects of the factor levels and 

independence of the observations. 

𝑌𝑖𝑗 = µ + 𝛼𝑖 + 𝑒𝑖𝑗     (3) 

Where: 

Yij: the observed value for the jth experimental unit in the 

ith treatment group,  

µ: overall population mean, 

αi: the effect of the ith treatment group,  

eij: random error term. 

i and j: running from 1 to n 

The hypothesis set that enables testing F distribution with 

(k – 1) and (N – k) degrees of freedom can be described as 

follows: 

H0: µ1 =  µ2 … =  µ𝑘  

H1: the difference between the means of at least two groups 

is significant 

(k: treatment groups in the experiment, N: number of total 

observations, µ𝑘: population mean). 

Distributions: 

r2exp(n,scale,location) 

rchisq(n, df) 

r2exp(n,2,1) 

r2exp(n,4,1) 

r2exp(n,6,1) 

r2exp(n,2,1.5) 

r2exp(n,4,1.5) 

r2exp(n,6,1.5) 

rchisq(n, 2) 

Sample Size (n) 10,35,50 4,12,20,25 

Variance Ratios  1.0, 1.05, 1.1 

Number of Groups (k) 3, 4, and 5 

Number of simulations 20 000 
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If the calculated F =  
Mean Square Between Treatments

Mean Square Error
 value, 

obtained after ANOVA, is greater than the critical F-table 

value with (k – 1) and (N – k) degrees of freedom, the null 

hypothesis (H0) will be rejected. 

2.4. Kruskal-Wallis 

The Kruskal-Wallis (KW) test, which is one of the 

distribution-free tests, is frequently used to determine 

whether the differences among the medians of two or more 

groups are due to chance or not. Hypothesis set in the KW 

test where H statistic is used: 

H0: 𝑀1 =  𝑀2 … =  𝑀𝑘 

H1: the difference between the medians of at least two 

groups is significant 

Where: 

𝑀𝑘 is the median of the population 

The H statistic can be calculated as Equation (4): 

𝐻 = (
12

𝑁(𝑁+1)
∑

𝑅𝑖

𝑛𝑖

𝑘
𝑖=1 ) − 3(𝑁 + 1)                            (4) 

Where: 

N: sum of sample size for all samples, 

k: number of samples, 

𝑅𝑖: sum of ranks in the ith sample, 

𝑛𝑖: size of the ith sample 

The probability of asserting that there is a difference 

among group means when the true means are equal is 

called the type I error rate. It means that it is a probability 

of rejecting the true null hypothesis (H0). In this study, the 

predetermined type I error rate was fixed at %5.0 level. The 
simulation combinations which are tabulated in Table 1, 

were iterated 20 000 times. The rejected H0 hypotheses 

were stored after 20 000 simulations, and the type I error 

rate (α) was calculated by dividing the number of rejected 

H0 hypotheses by the total number of simulations. The 

conservative criterion proposed by Bradley (1978) with the 

range of 4.5 < α < 5.5 was considered when comparing tests 

in terms of type I error rate at a significance level of 5%. 

3. Results and Discussion  

The type I error rates calculated after simulation 

experiments conducted in various two parameters 

exponential distributions were shown in Table 3. In the 

case where the scale and location parameters were 2 and 1 

respectively, and the sample sizes were 35 and 50, the type 

I error rates calculated after all three tests were within the 

Bradley’s criteria. The HS test marginally deviated from 

Bradley criteria in the case of scale and location parameters 

were 4 and 1, respectively. Conversely, F and KW tests 

were in Bradley’s criteria at all sample sizes. When the 
scale and location parameters were set to 6 and 1 

respectively, the F and KW tests remained within the 

Bradley criteria under all experiments. However, the HS 

test could only fall within Bradley’s criteria when there 

was a large sample sizes, especially when each group 

contains 50 observations. In addition, the HS test was only 

met Bradley’s criteria when sample size was 50 in each 

group and distribution combinations where the location 

parameter was 1.5 and scale parameters were 2, 4, and 6. 

In addition, the number of groups was extended to four and 

five across all scenarios to examine whether this had a 

significant effect on the Type I error rate. The simulation 

results, based on random numbers derived from a two-

parameter exponential distribution, showed that the Type I 

error rates for the F and KW tests were within or close to 

the Bradley criteria. For the HS test, the Type I error rates 

tended to meet the bounds of the Bradley criteria as the 

sample size increased. This pattern was observed in all 

combinations of location and scale parameters. 

For small sample sizes (n=10), having four groups 

controlled the Type I error rates within the Bradley criteria 

only for the F and KW tests. In contrast, the HS test failed 
to control the Type I error rates within the criteria for any 

combination. When the number of groups increased to five, 

the Type I error rates for the HS and F tests approached the 

Bradley criteria only as the sample size increased. 

However, the KW test consistently exhibited Type I error 

rates close to 5% across all combinations of scale, location 

parameters, and sample sizes. 

The variance ratios that can be neglected by the Levene test 

were considered to compare HS, F, and KW tests under the 

χ2
(2) distribution in the sense of Type I error rate. Therefore, 

the variance ratio of the last group was manipulated by 

multiplying random numbers with 1.05 and 1.1 constants. 

The Levene test statistics (F-values) and p – values were 

presented in Table 2. The Levene test results were not 

statistically significant in all combinations of sample sizes 
and variance ratios. This means that in cases where the 

variance ratios among groups can be considered small, 

even in the presence of heterogeneity, the Levene test has 

accepted the null hypothesis (H0) and decided that the 

variances were homogeneous. 

 

 

 

 

 

 

Table 2. F and p values of the Levene test 
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The type I error rates of the HS test compared to the F and 
KW tests in cases of small heterogeneity, that can even be 

neglected by the Levene test, were tabulated in Table 4. 

Even in cases where the variances were homogeneous, the 

F and KW tests were often close to or within the Bradley’s 
criteria when the sample size was 12 or greater in each 

group. However, the HS test only approached Bradley’s 

criteria (5.8%) when the sample size was 25 in each group. 

When the homogeneity of the variances was manipulated 

as 1:1:1.05 the type I error rate of the HS test reached 8% 

with sample size of 25 in each group. Contrary to this 

result, the KW test was found to be more conservative than 

other tests in the same sample size. When the variance 

ratios manipulated as 1:1:1.1, the type I error rates 

calculated after HS test simulations were bigger as the 

sample size increased. Conversely, the F and KW tests 

generally stayed within Bradley’s criteria. 

As the number of groups increased, the Type I error rates 

of the HS test also increased in scenarios with 

homogeneous variances. Although Type I error rates 

decreased as the sample size increased, the HS test failed 
to meet the Bradley criteria. In contrast, the F and KW tests 

produced similar results, with Type I error rates calculated 

within the acceptable bounds. When there were 

insignificant or small deviations in homogeneity, the Type 

I error rates of the HS test increased significantly, 

particularly as the sample size increased. Moreover, the 

Type I error rates for the F and KW tests remained within 

or very close to the Bradley criteria, as expected. 

Even though there are several studies in the literature that 

compare the performance of the HS test in two-parameter 

exponential distributions, the lack of simulation studies on 

its performance in other theoretical distribution is a 

limitation of our study. However, this study can be 

evaluated with some literature. In the case of a two-

parameter exponential distribution with scale and location 

parameters of 2 and 1 respectively, the HS test was only 

within Bradley’s criteria for large sample sizes. This result 
shows similarity to the study performed by Çavuş & Yazıcı 

(2020). They compared HS, LT-ANOVA and F tests in 

terms of type I error rate in two parameters exponential 

distribution that considered as skewed distribution. Çavuş 

and Yazıcı (2020) reported that HS test could not control 

type I error rate in small sample sizes. In addition, authors 

stated that both the F and KW tests tend to maintain type I 

error rate as the sample size increases. Furthermore, Lantz 

(2013) emphasized that the type I error rate of the Welch 

test were deviated from 5.0% compared with the F and KW 

tests in exponential distribution. The author’s specific 
focus on unbalanced sample sizes leads to this situation. In 

a previous study that evaluated Type I error rates in group 

comparisons using Monte Carlo simulation, the authors 

reported that the F-test yielded acceptable Type I error 

rates in terms of Bradley's criteria when variances were 

heterogeneous (Mendeş and Yiğit, 2013). These findings 

are consistent with our results, as expected. 

 

Table 3. Type I error rates (%) of the tests with different parameters of two parameters exponential distribution. 

Parameters 

r2exp(n,scale,location) 

HS F KW 

k=3 k=4 k=5 k=3 k=4 k=5 k=3 k=4 k=5 

r2exp(10,2,1) 7.52 7.64 7.91 4.19 5.44 6.09 4.54 4.365 4.37 

r2exp(35,2,1) 5.32 5.69 6.13 5.17 5.92 6.14 4.98 5.02 5.00 

r2exp(50,2,1) 5.42 5.65 5.60 4.94 5.47 6.00 4.84 4.695 4.90 

r2exp(10,4,1) 7.41 7.89 8.41 4.50 5.25 6.47 4.52 4.605 4.43 

r2exp(35,4,1) 5.55 5.84 5.93 5.19 5.64 6.45 4.80 4.93 5.13 

r2exp(50,4,1) 5.68 5.39 5.65 5.35 5.42 6.00 5.04 4.73 4.82 

r2exp(10,6,1) 7.82 7.45 8.54 4.57 5.17 6.39 4.69 4.36 4.49 

r2exp(35,6,1) 5.55 5.84 5.92 4.90 5.59 5.98 4.83 4.73 4.81 

r2exp(50,6,1) 5.48 5.60 5.96 5.13 5.66 5.85 4.92 5.15 4.94 

r2exp(10,2,1.5) 7.72 8.04 8.35 4.86 5.59 6.33 4.59 4.52 4.40 

r2exp(35,2,1.5) 5.63 5.715 5.94 5.49 5.76 5.93 4.94 4.84 4.89 

r2exp(50,2,1.5) 5.52 5.27 5.43 5.06 5.45 5.87 4.78 4.88 4.82 

r2exp(10,4,1.5) 7.28 7.75 8.32 4.55 5.38 6.28 4.38 4.54 4.44 

r2exp(35,4,1.5) 6.03 5.93 5.92 5.31 5.69 6.34 4.88 4.75 4.83 

r2exp(50,4,1.5) 5.48 5.69 5.71 5.35 5.65 5.81 5.02 4.91 5.00 

r2exp(10,6,1.5) 7.12 8.03 7.96 4.33 5.41 6.38 4.17 4.44 4.47 

r2exp(35,6,1.5) 5.56 6.01 5.38 5.35 5.80 6.22 5.10 4.81 4.88 

r2exp(50,6,1.5) 5.45 5.53 5.45 5.32 5.67 6.01 5.10 4.88 5.00 

 

Parameters 

rchisq(n,df) 

Variance 

Ratios 
F - value p-value 

rchisq(4,2) 1:1:1.05 0.96 0.42 

rchisq(12,2) 1:1:1.05 0.31 0.73 

rchisq(20,2) 1:1:1.05 1.94 0.15 

rchisq(25,2) 1:1:1.05 1.57 0.21 

rchisq(4,2) 1:1:1.1 0.92 0.43 

rchisq(12,2) 1:1:1.1 0.37 0.70 

rchisq(20,2) 1:1:1.1 2.12 0.13 

rchisq(25,2) 1:1:1.1 1.72 0.19 
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Table 4. Type I error rates (%) of the tests by different variance ratios under χ2
(2) distribution.

Parameters Variance Ratios 
HS F KW 

k=3 k=4 k=5 k=3 k=4 k=5 k=3 k=4 k=5 

rchisq(4,2) 1:1:1 13.2 15.1 17.1 4.1 4.2 4.4 3.9 3.4 3.1 

rchisq(12,2) 1:1:1 7.0 7.5 7.6 4.4 4.3 4.5 4.7 4.6 4.6 

rchisq(20,2) 1:1:1 6.3 6.3 6.5 4.6 4.7 4.6 4.7 4.8 4.8 

rchisq(25,2) 1:1:1 5.8 6.3 6.2 4.7 4.4 4.8 4.9 4.5 4.8 

rchisq(4,2) 1:1:1.05 12.8 15.2 17.0 4.2 4.0 4.3 4.2 3.1 3.3 

rchisq(12,2) 1:1:1.05 7.7 8.2 8.8 4.3 4.2 4.3 4.9 4.2 4.3 

rchisq(20,2) 1:1:1.05 7.5 8.2 9.1 4.4 4.7 4.6 4.6 4.7 4.6 

rchisq(25,2) 1:1:1.05 8.1 8.9 10.0 4.7 4.7 4.6 5.0 4.7 4.7 

rchisq(4,2) 1:1:1.1 13.3 15.7 17.8 4.0 4.2 4.6 4.4 3.4 3.3 

rchisq(12,2) 1:1:1.1 8.6 10.6 11.7 4.7 4.5 4.6 5.0 4.8 3.3 

 

4. Conclusion 

At the beginning of the study, the heterogeneity of group 

variances was manipulated to a greater level. However, in 

these cases, the HS test's sensitivity to type I error rates was 

significantly affected, leading to a reduction in the 

magnitude of variance heterogeneity. One of the 

significant results of this study was that even in cases of 

small heterogeneity that the Levene test could neglect, the 

HS test exhibited higher type I error rates compared to the 

F and KW tests. This suggests that the HS test is highly 

sensitive to the disruption of variance homogeneity, even 

at low levels. In the present study, several groups were 

examined in all combinations and concluded that an 
increase in the number of groups negatively affected the 

HS test in terms of Type I error rates. 
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