
ITU Journal of Wireless Communications and Cybersecurity

ITU/JWCC

Network Optimizing Software Solution for Multiplayer Gaming

Arda Deniz Çelik1 , Gökhan Seçinti1

1 Department of Computer Engineering, Istanbul Technical University, Istanbul, 34469, Turkey

Abstract: In the digital entertainment landscape, multiplayer online games have gained immense popularity, attracting
millions globally. This paper focuses on improving gaming performance by addressing two major challenges: latency
and packet loss. Utilizing the Omnet++ application with the INET framework, we propose innovative network solutions
to enhance the overall gaming experience. Over the past decade, multiplayer games have rapidly gained popularity
due to technological advancements. As living costs rise, these games have become an economical and accessible
form of entertainment, especially among the youth. The growing importance of a stable, high-quality internet connection
in gaming has become crucial. Game developers and online gaming platforms also stand to gain from our network
optimization solutions. Implementing these advancements can elevate service quality, leading to increased user
satisfaction, positive reviews, and a stronger reputation in the gaming community. Additionally, this paper explores using
real-world gaming data to simulate and test network strategies in Omnet++, offering practical insights for enhancing
real-time online gaming experiences.

Keywords: End-to-End game latency, real-time packet loss, latency-sensitive network protocol, core network QoS for
gaming.

Çok Oyunculu Oyun için Ağ Optimizasyon Yazılımı Çözümü

Özet: Dijital eğlence dünyasında, çok oyunculu çevrimiçi oyunlar büyük popülerlik kazanmış ve dünya genelinde
milyonları kendine çekmiştir. Bu proje, oyun performansını iyileştirmek için gecikme ve paket kaybı gibi iki ana
zorluğu ele almayı hedeflemektedir. Omnet++ uygulaması ve INET çerçevesi kullanılarak, genel oyun deneyimini
geliştirecek yenilikçi ağ çözümleri öneriyoruz. Son on yılda, çok oyunculu oyunlar teknolojik ilerlemeler sayesinde
hızla yaygınlaşmıştır. Artan yaşam maliyetleriyle birlikte, bu oyunlar özellikle gençler arasında ekonomik ve erişilebilir bir
eğlence biçimi haline gelmiştir. İstikrarlı ve yüksek kaliteli bir internet bağlantısının önemi bu süreçte daha da belirgin hale
gelmiştir. Oyun geliştiricileri ve çevrimiçi oyun platformları da ağ optimizasyon çözümlerimizden faydalanmaktadır. Bu
gelişmeler, hizmet kalitesini artırarak kullanıcı memnuniyeti ve olumlu geri bildirimlerle daha güçlü bir itibar kazandırabilir.
Ayrıca, proje kapsamında Omnet++’da gerçek oyun verileri kullanılarak yapılan simülasyonlar, gerçek zamanlı çevrimiçi
oyun deneyimlerini iyileştirmeye yönelik pratik bilgiler sunmaktadır.

Anahtar Kelimeler: Uçtan uca oyun gecikmesi, gerçek zamanlı paket kaybı, gecikmeye duyarlı ağ protokolü,oyun içi
çekirdek ağ kalite hizmeti.

RESEARCH PAPER

Corresponding Author: Gökhan Seçinti, secinti@itu.edu.tr

Reference: A. D. Çelik, G. Seçinti, (2024), “Network Optimizing Software Solution for Multiplayer Gaming,” ITU Journ.
Wireless Comm. Cyber., 1, (1) 47–56.

Submission Date: Aug, 27, 2024
Acceptance Date: Sept, 26, 2024
Online Publishing: Sept, 30, 2024

A. D. Çelik, G. Seçinti 47

https://orcid.org/0000-0000-0000-000X
https://orcid.org/0000-0003-0640-8368

ITU Journal of Wireless Communications and Cybersecurity

1 INTRODUCTION
It is the digital world that has revolutionized online mul-
tiplayer gaming, engaging millions of players across the
globe in different platforms. With these games evolving,
however, the demand for improved network performance is
fast becoming an imperative. Among the most critical chal-
lenges, latency and packet loss both affect the quality of
experiences; in an environment filled with competition or a
league, decisions are made in a split second and matter a
lot. Addressing these issues is important for improving the
user experience and ensuring fair gameplay; this is partic-
ularly a need in the professional eSports context.

However, existing work has been focused on the perfor-
mance of gaming and the relation between network charac-
teristics like latency, packet loss, and player behavior. For
instance, the effect of network quality on player exit behav-
ior has been investigated by several studies, which indicate
that poor network conditions may cause early player churn
from games. Other works have investigated different net-
work architectures and protocols, with a clear emphasis on
genre-specific solutions that cater to the very specific de-
mands of different classes of games. Such works represent
the importance of network performance optimization for
an improvement in gaming experiences across a different
genre. Building on this work, our study implements and fur-
ther develops network optimization approaches within the
Omnet++ simulation environment, focusing on low-latency
jitter handling in a multiplayer gaming context. By exploit-
ing real gaming-world data using advanced simulation tech-
niques, we hope to give practical answers that will not only
enhance network performance but also be beneficial for the
greater research into online gaming.

The major contributions of this paper are as follows:

i. A comprehensive analysis of network attributes affect-
ing latency and packet loss in multiplayer games.

ii. Development and implementation of optimized net-
work strategies within the Omnet++ environment.

iii. Evaluation of these strategies’ impact on game per-
formance, particularly in reducing latency and packet
loss, thereby enhancing the overall gaming experi-
ence.

The rest of the paper is organized as follows: Section
II summarizes the related work. Next, Section III presents
the system model and methodology. Section IV showcases
simulation setup and the performance evaluation. Lastly,
Section V concludes the paper and discusses potential fu-
ture work.

2 RELATED WORKS
In some studies which are about [1], [2], [3] FPS game
traffic analysis, extensive research was conducted to in-

vestigate the influence of internet latency on game perfor-
mance. Utilizing tools such as the Ethereal packet sniffer
and Ns2 simulation, the study examined how various net-
work attributes impact latency by analysing inter-send and
inter-arrival times through bandwidth analysis on a clean
and realistic client within the Quake III game [1]. In addition
of the referenced study that primarily focused on analyz-
ing traffic characteristics, the approach taken involves the
active modification of the network environment to enhance
real-time gaming experiences. This extension of research
is indicative of a more practical application of network per-
formance optimization in gaming scenarios.

Some researchers Ben, Youry and co-authors have used
the TechEmpower company’s 12-step test procedure to ex-
amine in detail what kind of delay data different web frame-
works encounter after the benchmark. To analyze the re-
sults of these tests, they examined almost 400,000 gam-
ing sessions using a web application called Gperf2 Col-
lector [4]. The paper shares this focus on latency but dif-
fers in methodology. While the study relied on a virtual-
ized network for understanding latency effects, paper uses
real-world gaming data in Omnet++ simulations. This ap-
proach allows to directly apply network theory to practical
gaming situations, offering more tailored solutions for im-
proving gaming network performance.

The comprehensive analysis of Netcode in online multi-
player games, focusing on aspects such as ping, server tick
rate, and the extent of delay in game dynamics for each
game, resonates with the objectives of the paper. This
field is advanced by the work undertaken, which not only
involves analyzing network issues but also seeks to miti-
gate them through network optimization strategies [5]. The
integration of tools such as Wireshark and Ping-Plotter, as
outlined in the study, is a fundamental aspect of this pa-
per. This highlights the practical application and relevance
of these tools in addressing real-world network optimization
challenges.

In the study "Client-Side Network Delay Compensation
for Online Shooting Games, the authors specifically fo-
cused on synchronization and unfair gameplay in multi-
player shooting games [6]. The article suggests that current
server load balancing methods are insufficient and to solve
this, it recommends reducing the data used and estimating
the player’s location by using a regression-based method.
As a result of their tests and evaluations, they claimed that
the solution method they proposed provided an improve-
ment of nearly 16 pixels in estimating player location. By
using this method, it has made a significant contribution to
the development and reduction of the queuing time of this
paper on Omnet++.

In study "A Multiplayer Real-Time Game Protocol Archi-
tecture for Reducing Network Latency" introduces an origi-
nal client/server architecture for multiplayer real-time video
games to reduce network latency [7]. An STU segment

48 A. D. Çelik, G. Seçinti

ITU Journal of Wireless Communications and Cybersecurity

queue approach serializes sporadic events into periodic
groups for scheduling efficiency, and a spatial domain ap-
proach selects clients affected, updating only those clients
to reduce the data transmission. The implemented archi-
tecture in Java, with non-blocking I/O and thread pool man-
agement, makes servers more efficient, reusing resources
to increase the throughput of garbage collection. Our pro-
posed architecture’s experimental results show clearly re-
duced latency and synchronization very well for real-time
gaming environments with high-quality service. These
results have implications for our paper and enable ap-
proaches that reduce latency and increase synchronization
and can be integrated into our system for better scaling.

Petlund study focuses on [8] the challenges of reducing
latency in interactive applications, particularly online multi-
player games, that generate "thin streams." In sessions of
”thin stream” interactive applications, especially multiplayer
games, traditional TCP mechanics decrease performance
because packets with small payload and high interarrival
are sent as a stream on the network. It is emphasized
that congestion control and recovery mechanisms, which
are features of TCP, are almost never triggered due to the
inadequacy of the sent packets. In order to improve the
TCP protocol, which is inadequate due to these packet fea-
tures, the author, who focused on the game where 30-byte
packets called BZFlag were sent and the packet interarrival
time was 24ms, observed that the delays in the application
and transport layers were significantly reduced by remov-
ing the exponential backoff and a few different modifications
to reduce the delay experienced by the player. The study
conducted in this paper, it has been revealed that although
UDP is more difficult to create and less efficient in terms of
security, it is the protocol that provides less delay in games
thanks to its customizability and the simplicity of the mech-
anisms within it.

Many studies [2] [9] focuses on which network architec-
ture and network design should be chosen for game genre
specific because they found out that there is no superior
architecture for every game genre is In Moll’s study [2],
they focused on the problems of network inadequacy in
modern multiplayer games, especially in the Battle Royale
genre. Unlike the traditional network protocols used in
these games, they proposed to use Information-Centric
Networking (ICN) and Named Data Networking (NDN) to
develop network protocols with the data they obtained dur-
ing the game sessions of nearly 36 hours in order to meet
the low latency requirement in competitive games. Thanks
to this proposal, they managed to significantly reduce net-
work latency and optimize bandwidth usage. The research
conducted contributed to the evaluation of possible network
solutions by providing data for the test environments cre-
ated in the creation of this paper.

In the study conducted by Chen [10], they tested the
effect of network quality on Massively Multiplayer Online

Role-Playing Games. Based on 1.356 million packet data,
they observed that players left the game prematurely than
their average game time due to packet loss and network
delays. When the logistic regression model was applied,
the study quantifies player "intolerance" to various network
impairments, finding that the degrees of player intolerance
to network delay, delay jitter, client packet loss, and server
packet loss are approximately in the proportion of 1:2:4:3.
In addition, since packet loss is the network variable that
causes the most player loss, it was observed that direct-
ing players with poor internet connection to better quality
servers increases the average game time overall. Thanks
to this study, it played an important role in determining our
main variable target as packet loss in the research con-
ducted in this paper.

In the study [11], authors mention that they conducted a
comprehensive study on the effects of network delays on
the gaming experience for end users. They have shown
that many different parameters such as game type, envi-
ronmental factors and distance to servers are important for
delays in games. For the tests carried out in this study,
they created an analysis by using real-time data received
through the WTFast GPN application and passing it through
machine learning, which determines the game sessions at
different latency levels they developed with high precision.
As a result of this analysis, it was revealed that network de-
lay is the most important factor in gaming experience and it
was revealed that the machine learning model with the Ran-
dom Forest algorithm was the most effective model in de-
termining game delays among 8 different machine learning
models for reducing network delay. This study has shown
that machine learning can be an important supporting fac-
tor in developing gaming experience.

In the study [12], the author has found a study using
game theory on dynamic resource sharing for production
networks with stochastic demand. He also stated that pro-
duction systems, especially those using cloud systems, are
the basis for creating this simulation. With the solution pre-
sented by the author, it has been shown that, unlike tradi-
tional models, namely dedicated and full-flexibility systems,
the Gale-Shapley algorithm plays a much more effective
role in the trade-off between performance and the com-
plexity caused by active links in previous studies. She also
proposed that a fast computational process (scaling at n2̂
proposals), making it ideal for real-time reconfiguration in
production environments. Thanks to the solution proposed
by the author, it has also been stated that it is as reliable as
traditional models against demands in changing conditions
and has a lower network complexity.

3 SYSTEM MODEL

3.1 Omnet++ with INET Framework
Omnet++ is a network simulation platform used to cre-
ate and analyze a realistic multiplayer gaming environ-

A. D. Çelik, G. Seçinti 49

ITU Journal of Wireless Communications and Cybersecurity

ment. The INET framework was integrated with Omnet++ to
model various network components such as hosts, routers,
switches, and game servers. This setup enabled detailed
simulations of network behavior under different conditions,
with a focus on minimizing latency and reducing packet
loss.

Fig. 1 Class diagram of solution.

3.1.1 Structural model for GameApp

In our multiplayer gaming simulation, GameApp is de-
signed to handle interactions that are effective on the client
side and with both the loadserver and the game server.
This model has many important roles such as managing
network connections, ensuring the effective distribution of
game data, and processing the data received by the load-
server.Here’s a detailed breakdown of the structural model
of the GameApp module, covering its key algorithms and
functional flows:

Initialization and Connection Setup

The initialization of the GameApp starts with the
processStart() function. This function is responsible for
setting up network sockets and initializing the connection
settings.

procedure processStart
initializeSocket()
loadAddress <- getLoadBalancerAddress()
connectLoadServer()

end procedure

This function determines the socket options for the host us-
ing GameApp to connect to the loadserver, and also en-
sures that the host’s own address and loadserver adress to

be sent to the loadserver is kept as an L3Address variable
so that it can be sent. It then calls the connectLoadServer
function to send the first packet and obtain the IP address
of the appropriate game server.

Connecting to the Load Server

Once the initial setup is complete, the
connectLoadServer() function is called. This func-
tion creates and sends a packet to the load balancer to
determine an appropriate game server for the client to
connect to, based on current server loads.

procedure connectLoadServer
packet <- createPacket("Connection Request")
sendPacket(loadAddress, packet)

end procedure

In this function, the first package is created and sent in or-
der to establish a connection to the loadserver. Additionally,
it is first checked whether there is any fragmentation error,
and after function set the essential and custom variables to
proper values to ensure communication between network
layers, function send packet to loadserver using loadAdress
which is stored in processStart function.

Processing Packets from the LoadBalancer

The processPacket() function takes over upon receiving
a packet from the load balancer. This function processes
different types of packets based on their content, primarily
focusing on handling server assignment packets.

procedure processPacket(packet)
switch packet.type

case "Server Assignment":
gameServerIp <- packet.getGameServerIp()
destAddress.push_back(gameServerIp)
processSend()

end switch
end procedure

After the packet sent by the loadserver arrives, the func-
tion checks the type of the incoming packet and it is an-
alyzed by the loadserver module that the incoming packet
was sent in the correct packet type. Then, using the game-
ServerAdress payload sent in the package, the destination
address required for the host to connect to the game is de-
termined. Finally, the processSend function is called.

Sending Data to the Game Server

The processSend() function uses the inherited functional-
ities from UdpBasicApp to handle the actual data transmis-
sion to the assigned game server.

procedure processSend
sendPacket(gameServerIp, createGamePacket())

end procedure

50 A. D. Çelik, G. Seçinti

ITU Journal of Wireless Communications and Cybersecurity

The ProcessSend() function creates and sends the first
package whose destination address has been determined
by processpacket and is ready to connect with the game
server. While doing this, it uses the function inherited by
UdpBasicApp.

Detailed Packet Handling

The sendPacket() function constructs a packet with the ap-
propriate type and content, then sends it to the designated
server address. This is crucial for game state updates and
player actions.

procedure sendPacket(address, data)
packet <- new Packet(data)
packet.setType("APP_SERVER")
network.sendTo(address, packet)

end procedure

This function ensures that each packet is correctly format-
ted and dispatched to maintain continuous and real-time
gameplay interaction.

All functions in the GameApp application are a whole
that allows the hosts to find a suitable game server through
the loadserver and to process the packet received by the
loadserver and to be in constant communication with the
game server.

3.1.2 Structural model for LoadBalancer

The LoadBalancer module within our OMNeT++ simula-
tion plays a critical role in managing server loads and dis-
tributing client requests across multiple servers. Its de-
sign ensures efficient processing of network connections
and server assignments, pivotal for maintaining an optimal
performance environment in multiplayer gaming scenarios.
Below is a detailed explanation of the structural model of
the LoadBalancer module, including key algorithms and
pseudocode implementations.

Initialization Process

The initialization of the LoadBalancer leverages inheri-
tance from the UdpBasicApp to set up initial module con-
figurations.

procedure Initialize
UdpBasicApp.Initialize()
setupInitialConfiguration()

end procedure

This function calls the initialization method of the inherited
UdpBasicApp, ensuring that all underlying network function-
alities are correctly set up.

Starting the Process

The processStart() function is crucial for preparing the
LoadBalancer to handle incoming connections and manage
server addresses effectively.

procedure processStart
bindSocket()
for each address in initialGameAddresses

gameAddressStr.push_back()
end for

end procedure

After first determining the sockets for the loadserver, the
ProcessStart() function makes preliminary adjustments to
find suitable game servers by pushing the game server ad-
dresses given as parameters in the omnetpp.ini file to an
L3Adress vector and defining an integer variable for each
IP address.

Handling Messages

The handleMessageWhenUp() function utilizes the capabil-
ities inherited from UdpBasicApp to manage incoming net-
work messages.

procedure handleMessageWhenUp(message)
super.processMessage(message)

end procedure

This function ensures that messages either from upper or
lower network layers are processed according to the base
app’s logic.

Server Availability Check

The Available_server() function determines the optimal
server for new connections based on current load condi-
tions.

Iterates through the entire list of game server addresses,
checking whether each function has a connection count
greater or less than the connectionThreshold integer value.
If there is an IP address smaller than connectionThreshold,
this IP address is returned as the function result. If there is
not one, the threshold value is overridden and reassigned
to the servers.

Packet Processing

The processPacket() function is tasked with handling
incoming packets from hosts, determining the available
server, and responding appropriately.

procedure processPacket(packet)
serverIp <- Available_server()
responsePacket <- createPacket(serverIp)
sendPacket(packet.origin, responsePacket)
updateConnectionCount(serverIp, increment)

end procedure

The ProcessPacket() function first checks the type of the
incoming package. If the package is a package sent by one
of the host to loadserver, the host address is extracted from
the incoming package and given to the newly created pack-
age as the destination address. In order for the payload to

A. D. Çelik, G. Seçinti 51

ITU Journal of Wireless Communications and Cybersecurity

be sent correctly, variables are set and the L3 game server
address sent by the Available_server() function is added to
the package and the package is sent to the host. Finally,
the connection number of the game server address sent to
connect the host is updated to +1.

Connection Count Management

Lastly, the updateConnectionCount() function adjusts the
count of current connections per server, ensuring accurate
load tracking.

procedure updateConnectionCount(serverIp)
if increment

serverConnections[serverIp]++
else

serverConnections[serverIp]--
end if

end procedure

This function modifies the connection count based on
whether a new connection is being added or an existing
one is terminated.

With the help of all the functions in the Loadbalancer ap-
plication, game server addresses are kept through a map in
the loadserver, incoming packages are processed and sent
to their new destinations with the appropriate game server
addresses. This is the most important of the improvements
made to improve the gaming experience.

3.1.3 Structural model for LoadBalancer packet

The LoadBalancerPacket plays a crucial role in the com-
munication framework of our networked multiplayer game
environment, acting as the primary data carrier between
the GameApp and LoadBalancer modules. This packet
is designed to encapsulate all necessary data for effective
load balancing and server assignment. Below, we detail the
structural model of the LoadBalancerPacket, including its
design and key functionalities.

Packet Type Enumeration

The packet types are defined by an enumeration APP_TYPE,
which specifies the kinds of packets that can be generated
within the system. This helps in distinguishing the purpose
of each packet as it flows through the network.

enum APP_TYPE {
CONNECTION_REQUEST,
SERVER_ASSIGNMENT,
DATA_TRANSFER

}

This enumeration facilitates the handling of packets based
on their type, improving the routing and processing effi-
ciency within the network.

Class Definition and Attributes

The class LoadBalancerPacket is designed with attributes
that support comprehensive data encapsulation for network
operations.

class LoadBalancerPacket {
APP_TYPE type
int playerID
string gameServerIp
string hostAddress

}

Here are the custom parameters of the
LoadBalancerPacket: - type: An instance of APP_TYPE,
determining the packet’s function within the network.
- playerID: An identifier for the player sending the
request, aiding in response management and data track-
ing. - gameServerIp: The IP address of the assigned
game server, used in server assignment operations. -
hostAddress: The originating address of the packet,
typically used for routing back responses or data.

3.2 Netlimiter
NetLimiter was employed to monitor and manage network
traffic during gaming sessions. By analyzing download and
upload rates for each application, NetLimiter provided es-
sential insights into how the network behaves in real-time.
The IP filtering feature allowed the study to focus on specific
network interactions, particularly those related to the game
servers, enabling a targeted approach to traffic analysis.

3.3 Wireshark
Wireshark, a network protocol analyzer, was used to cap-
ture and examine packet data flowing through the network
during gaming sessions. It provided detailed information on
packet sizes, transmission intervals, and overall traffic pat-
terns. This data was instrumental in refining the simulation
model within Omnet++, ensuring that it accurately reflected
real-world network conditions. Wireshark’s ability to filter
and analyze traffic based on specific IP addresses, identi-
fied through NetLimiter, made it a vital tool in the study’s
methodology.

4 PERFORMANCE EVALUATION
The network design where the main tests of the paper are
carried out is seen in the Figure. This figure consists of both
2 different game servers and hosts that want to play more
than one game at the same time to create and test a re-
alistic game environment. In order to connect to the game
servers, the hosts first pass through their local switches to
the routers and then through the ISP router to reach the
servers. The important aspect of the design is that instead
of the hosts connecting directly to the servers, a load bal-
ancer server is created that decides which servers are more

52 A. D. Çelik, G. Seçinti

ITU Journal of Wireless Communications and Cybersecurity

suitable for the hosts to connect to. In this network design,
thanks to the customized packages in the load balancer,
the connection availability statuses determined by the in-
stant occupancy rates of the servers are kept in the load
balancer server and it allows the host to direct the incoming
game connection request to the most suitable game server
for itself. Additionally load balancer made the best game
server selection is decided for each user in a way that al-
lows players to benefit from less packet loss and delay.

Fig. 2 Solution design in Omnet++.

In the study carried out using Ethereal packet sniffer and
Ns2 simulation on behalf of FPS games, [1] focused only
on the Quake III game, examined the network features and
traffic structure of this game, and carried out studies to im-
prove the gaming experience by making modifications, es-
pecially in terms of throughput and delay. In this study, the
game traffic of more than one game was examined using
NetLimiter and WireShark applications to ensure less de-
lay and throughput. As a result of work have done to pre-
vent queuing time and possible delays that may occur, even
if only in small numbers,the packet loss was successfully
reduced to a value very close to zero, effectively prevent-
ing potential instant delays, as demonstrated in Figure 3.
To achieve this by adding a slight delay and allowing each
game server to send packets one by one, instead of con-
stantly bombarding the game servers with packets at the
same time. This enabled to achieve the goal of processing
1000 operations per second that.

Fig. 3 Packet loss of game servers.

In [4] study, an average of 400,000 gaming sessions
are examined using TechPower company procedures. The
web application called Gperf2, which they tested in this
study, inspired this paper to develop the queuing time of
the model. By using the approach of this team, which also
tested the problems that may be caused by overloading
the server with the techniques they used, the queuing time
value shown in Figure 4 is reached for game server 1 and
game server 2, which shows significant improvement with
the use of Load balancer rather then without using the Load
balancer module. In this way, queuing time development is
completed to reduce instant spikes in queueing time. Use of
Load balancer was increased the sharpness of the sended
packet response time and improve the overall quality of the
game for players. Additionally, with the reduced queueing
time for servers, overall player play time will be increase
significantly due to more reliable conenction status.

Fig. 4 Loadserver queueing time.

The goal of reducing the observed delay between 5% and
7% and packet lose by 8%, the research paper [5] inspired
this work to achieve the goal. The main purpose of this

A. D. Çelik, G. Seçinti 53

ITU Journal of Wireless Communications and Cybersecurity

research, which makes a comparative Netcode analysis of
online multiplayer games, is to examine the essential data
of the game experience such as ping and server tick rate
and find solutions to the problems that occur. Using ap-
plications such as WireShark and Ping-Plotter to find these
solutions, the research team developed different implemen-
tation strategies for servers and included them in their re-
search to solve the delays and packet losses that occur. In
this study, thanks to the LoadBalancer and GameApp ap-
plications, both the delays that may occur on the servers
and the packet losses were improved by 6.35% and overall
delay reduce by 7%. In other Figure 5 represent a essential
data for server. Figure give a insight about upcoming pack-
ages are passed to servers without noticable losses which
is a big problem in the start phase of the paper.

Fig. 5 Passed packet per server.

5 CONCLUSION AND FUTURE WORK

5.1 Conclusion
In this paper, we developed and evaluated a network opti-
mization solution for multiplayer gaming environments us-
ing the OMNeT++ simulation platform. The system demon-
strated improved performance, achieving a throughput ex-
ceeding 1000 operations per second, reducing latency by
approximately 7%, and decreasing packet loss rates by
6.35%. These improvements contribute to a more stable
and enjoyable gaming experience.

5.2 Future Work
Future research can focus on several areas to further en-
hance the system:

• Scalability Improvements: Optimizing the LoadBal-
ancer algorithm to efficiently manage increased traffic
using more advanced algorithms.

• Machine Learning for Load Balancing: Implement-

ing machine learning algorithms to dynamically adjust
server allocations based on real-time network condi-
tions.

• Enhanced Security Measures: Integrating advanced
security protocols to protect against potential threats
such as DDoS attacks.

• Server Distribution Algorithm: Adapting the system
for more flexible and advanced server Ip adress distri-
bution.

• Real-Time Analytics Dashboard: Developing a dash-
board to visualize key network performance metrics for
proactive management.

ACKNOWLEDGEMENTS
This work is supported by The Scientific and Technologi-
cal Research Council of Turkey (TUBITAK) 1515 Frontier
R&D Laboratories Support Program for BTS Advanced AI
Hub: BTS Autonomous Networks and Data Innovation Lab.
Project 5239903 and Istanbul Technical University, Depart-
ment of Scientific Research Projects (MÇAP-2022-43828).

REFERENCES
[1] Q. Zhou, C. J. Miller, and V. Bassilious, “First per-

son shooter multiplayer game traffic analysis,” in Pro-
ceedings of the 2008 International Symposium on
Object/Component/Service-Oriented Real-Time Dis-
tributed Computing (ISORC), 2008. DOI: 10.1109/
isorc.2008.28.

[2] P. Moll, M. Lux, S. Theuermann, and H. Hellwag-
ner, “A network traffic and player movement model
to improve networking for competitive online games,”
in Proceedings of the 2018 16th Annual Work-
shop on Network and Systems Support for Games
(NetGames), Jun. 2018. DOI: 10.1109/netgames.
2018 . 8463390. [Online]. Available: https : / / doi .
org/10.1109/netgames.2018.8463390.

[3] T. Henderson, “Latency and user behaviour on a mul-
tiplayer game server,” in Lecture Notes in Computer
Science, 2001, pp. 1–13. DOI: 10 . 1007 / 3 - 540 -
45546-9_1. [Online]. Available: https://doi.org/
10.1007/3-540-45546-9_1.

[4] B. Ward, Y. Khmelevsky, G. Hains, R. Bartlett, A.
Needham, and T. Sutherland, “Gaming network de-
lays investigation and collection of very large-scale
data sets,” in 2017 Annual IEEE International Sys-
tems Conference (SysCon), Apr. 2017. DOI: 10 .
1109/syscon.2017.7934779.

54 A. D. Çelik, G. Seçinti

https://doi.org/10.1109/isorc.2008.28
https://doi.org/10.1109/isorc.2008.28
https://doi.org/10.1109/netgames.2018.8463390
https://doi.org/10.1109/netgames.2018.8463390
https://doi.org/10.1109/netgames.2018.8463390
https://doi.org/10.1109/netgames.2018.8463390
https://doi.org/10.1007/3-540-45546-9_1
https://doi.org/10.1007/3-540-45546-9_1
https://doi.org/10.1007/3-540-45546-9_1
https://doi.org/10.1007/3-540-45546-9_1
https://doi.org/10.1109/syscon.2017.7934779
https://doi.org/10.1109/syscon.2017.7934779

ITU Journal of Wireless Communications and Cybersecurity

[5] M. Ahmed, S. Reno, M. R. Rahman, and S. H. Ri-
fat, “Analysis of netcode, latency, and packet-loss
in online multiplayer games,” in 2022 International
Conference on Augmented Intelligence and Sustain-
able Systems (ICAISS), Nov. 2022. DOI: 10.1109/
icaiss55157.2022.10010926.

[6] T. Motoo, J. Kawasaki, T. Fujihashi, S. Saruwatari,
and T. Watanabe, “Client-side network delay com-
pensation for online shooting games,” IEEE Access,
vol. 9, pp. 125 678–125 690, Jan. 2021. DOI: 10 .
1109/access.2021.3111180.

[7] Y. Ahn, A. K. Cheng, J. Baek, and P. Fisher, “A mul-
tiplayer real-time game protocol architecture for re-
ducing network latency,” IEEE Transactions on Con-
sumer Electronics, vol. 55, no. 4, pp. 1883–1889,
Nov. 2009. DOI: 10.1109/tce.2009.5373746.

[8] A. Petlund, K. Evensen, P. Halvorsen, and C. Gri-
wodz, “Improving application layer latency for reliable
thin-stream game traffic,” in Proceedings of the 7th
ACM International Conference on Multimedia, 2008.
DOI: 10.1145/1517494.1517513. [Online]. Available:
https://doi.org/10.1145/1517494.1517513.

[9] X. Che and B. Ip, “Packet-level traffic analysis of on-
line games from the genre characteristics perspec-
tive,” Journal of Network and Computer Applications,
vol. 35, no. 1, pp. 240–252, Jan. 2012. DOI: 10.1016/
j.jnca.2011.08.005. [Online]. Available: https:
//doi.org/10.1016/j.jnca.2011.08.005.

[10] N. K.-T. Chen, P. Huang, and N. C.-L. Lei, “Effect of
network quality on player departure behavior in on-
line games,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 20, no. 5, pp. 593–606, May
2009. DOI: 10.1109/tpds.2008.148. [Online]. Avail-
able: https://doi.org/10.1109/tpds.2008.148.

[11] A. Wong, C. Chiu, G. Hains, J. Behnke, Y.
Khmelevsky, and T. Sutherland, “Network latency
classification for computer games,” in 2021 IEEE
Conference on Recent Advances in Systems Sci-
ence and Engineering (RASSE), 2021. DOI: 10 .
1109 / rasse53195 . 2021 . 9686848. [Online]. Avail-
able: https : / / doi . org / 10 . 1109 / rasse53195 .
2021.9686848.

[12] P. Renna, “Capacity and resource allocation in flex-
ible production networks by a game theory model,”
The International Journal of Advanced Manufacturing
Technology, vol. 120, no. 7–8, pp. 4835–4848, Mar.
2022. DOI: 10.1007/s00170-022-09061-y. [Online].
Available: https://doi.org/10.1007/s00170-022-
09061-y.

A. D. Çelik, G. Seçinti 55

https://doi.org/10.1109/icaiss55157.2022.10010926
https://doi.org/10.1109/icaiss55157.2022.10010926
https://doi.org/10.1109/access.2021.3111180
https://doi.org/10.1109/access.2021.3111180
https://doi.org/10.1109/tce.2009.5373746
https://doi.org/10.1145/1517494.1517513
https://doi.org/10.1145/1517494.1517513
https://doi.org/10.1016/j.jnca.2011.08.005
https://doi.org/10.1016/j.jnca.2011.08.005
https://doi.org/10.1016/j.jnca.2011.08.005
https://doi.org/10.1016/j.jnca.2011.08.005
https://doi.org/10.1109/tpds.2008.148
https://doi.org/10.1109/tpds.2008.148
https://doi.org/10.1109/rasse53195.2021.9686848
https://doi.org/10.1109/rasse53195.2021.9686848
https://doi.org/10.1109/rasse53195.2021.9686848
https://doi.org/10.1109/rasse53195.2021.9686848
https://doi.org/10.1007/s00170-022-09061-y
https://doi.org/10.1007/s00170-022-09061-y
https://doi.org/10.1007/s00170-022-09061-y

ITU Journal of Wireless Communications and Cybersecurity

56 A. D. Çelik, G. Seçinti

	INTRODUCTION
	RELATED WORKS
	SYSTEM MODEL
	Omnet++ with INET Framework
	Structural model for GameApp
	Structural model for LoadBalancer
	Structural model for LoadBalancer packet

	Netlimiter
	Wireshark

	PERFORMANCE EVALUATION
	CONCLUSION AND FUTURE WORK
	Conclusion
	Future Work

