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Abstract
COVID-19 was initiated in 2020 and caused an immediate threat to global countries in terms of both
economic and health influences. In this present work, we extend the Susceptible-Infected-Recovered
(SIR) model by considering two new variables, gross domestic product or GDP (G) and unemployment
(U), to study the impact of this epidemic on the Indian economy during the 2020–2023 period. Since
our extended SIR model includes two novel compartments, which are GDP and unemployment rate,
we can now explore in more detail the sophisticated relationship between health and economic matters.
The framework allows us to investigate the following consequences: how changes in the infection
rate affect the economy and how changes in GDP and unemployment translate into the spread of this
contagion. These visualizations are based on real-time quarterly data and provide full knowledge of the
interaction between health and economic dynamics during the COVID-19 crisis in India. Government
initiatives and regulations are also reviewed for their efficiency to contain the virus while taming the
economic cost. Real-world results are contrasted with the care to find the strengths and weaknesses of
the policies that come out with the underlying assumptions in the model. This paper, in other words,
deploys an in-depth analysis of the convoluted links between economics, policy, and public health in
the face of a pandemic with a geographic focus in India.
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1 Introduction

The economic blow caused by the pandemic was not limited to formal sectors but equally aggra-
vated the informal economy, which employs the majority of the Indian workforce. The lockdown
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measures, though helpful in reducing the spread of the virus, led to a significant loss of income
for many informal workers, pushing them towards poverty [1]. The pandemic also highlighted
the importance of digitization, as those who could access digital platforms were able to continue
working, while others faced severe livelihood challenges [2]. In response, the Indian government
implemented various measures, including direct cash transfers, food security initiatives, and credit
guarantees, to support the economy. However, the effectiveness of these measures in mitigating
the economic downturn remains a subject of ongoing analysis [3].
Epidemiological and economic models have been studied for the multifaceted impacts of pan-
demics [4–7]. For example, Chakraborty and Maity (2020) [8] investigated the economic im-
plications of lockdowns and highlighted that health and economic variables must be modeled
simultaneously in order to formulate effective policy interventions [9]. Mishra et al. (2021) [10]
pointed out the importance of nonlinear dynamics in such models by applying advanced mathe-
matical methods to explore the long-term interplay between public health crises and economic
stability [11]. Moreover, a recent study by Singh et al. (2023) [12] offered empirical evidence
regarding the effectiveness of government measures in reducing economic shocks during pan-
demics, especially in informal economies [13]. The role of numerical methods such as RK-4 in
solving complex epidemiological-economic models has also been emphasized, as it allows for the
precise simulation of the nonlinear interdependencies. Based on these fundamentals, the current
research contributes to the field by formulating a new SIRUG model, integrating unemployment
and GDP dynamics in an epidemiological context, utilizing RK-4 and least-square methods to
predict and analyze economic consequences of pandemics more holistically.
In this study, we use the Runge-Kutta 4th order method (RK-4) [14] to solve our equations. This
method helps us get more accurate results than basic calculation methods because it looks at
multiple points when solving each step. RK-4 is especially good at handling sudden changes, like
when a pandemic quickly impacts jobs and the economy, and the algorithm of the considered
method directly as compared to the complexity of the algorithm of other methods [15]. By using
this method, we can better predict both immediate and long-term changes in employment and
economic growth.
The key objective of this research is to develop a mathematically sophisticated model that combines
the SIR model with unemployment and GDP components, considering Okun’s Law to analyze
the relationship between GDP and unemployment [16]. The RK-4 method will be applied to
simulate and predict the dynamic behaviors of unemployment and GDP, capturing both short-
term fluctuations and long-term consequences [17]. This ambitious undertaking aims to unravel
the complex linkages among health, labor markets, and economic performance during a time of
unprecedented shocks.
The year-on-year unemployment rate in urban India surged from 8.8% in April to June 2019 to
20.8% in April to June 2020, highlighting the heavy toll on the labor force due to the pandemic [18].
This metric underscores the urgency of understanding and addressing the economic repercussions
of public health crises.
The choice of the RK-4 method is based on its efficiency in solving differential equations and its
suitability for capturing the nonlinear interactions inherent in economic and epidemiological mod-
els [19]. The classical SIR model is modified to include parameters characterizing unemployment
and GDP, enhancing the model’s ability to capture the complexity of real-world economic systems,
especially during crises.
This research fills a striking gap in the literature by integrating health-related and economic
variables within a common framework. While previous studies have often focused on health or
economic aspects alone, this work combines them into an integrated model. Furthermore, the
study extends the scope by incorporating the RK-4 method to predict the potential impact of
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future pandemics and adds a least square method to provide a forward-looking dimension to our
understanding [20].
This study is crucial in providing actionable insights for policymakers and researchers to make
informed decisions amid dynamic economic conditions influenced by public health crises. By
filling this gap in the literature, the research contributes to mathematical modeling, epidemiology,
and economic forecasting, laying the foundation for future studies to build on this integrated
framework [21].
Our SIRUG model presents a unified framework to explore the relationship between disease
spread and economic changes during public health crises. By combining traditional disease
modeling with economic indicators like unemployment and GDP through Okun’s Law and
employing the RK-4 method to analyze their interactions, this research provides valuable insights
into both immediate and future economic impacts of pandemics. The addition of least square
analysis enhances our ability to make accurate predictions, making this work particularly valuable
for policymakers and researchers. This study establishes a foundation for future research in this
field, offering new ways to understand and address the economic challenges that arise during
public health emergencies.

2 Basic results

The following results played a crucial role in the comprehensive analysis and validation of our
model, significantly contributing to its efficacy and reliability.

Theorem 1 [22] The autonomous system x ′(t) = Ax(t), x(0) = x0 is asymptotically stable iff
|arg(λ(A))| > π

2 . Stable if and only if either it is asymptotically stable, or those critical eigenvalues
which satisfy |arg(λ(A))| = π

2 have geometric multiplicity one. Here, arg(λ(A)) denotes the argument of
the eigenvalues of the square matrix A.

Theorem 2 [23] Let f (t) be a continuous function on [0, ∞) and satisfies

d f
dt

≤ −Φ f (t) + γ1, f (t0) = ft0 ,

where Φ, γ1 ∈ R and Φ ̸= 0, then

f (t) ≤
(

ft0 −
γ1

Φ

)
e−Φ(t−t0) +

γ1

Φ
.

Definition 1 The function f : E → Rn is said to admit the Lipschitz condition on the open subset E of Rn

if there is a positive constant K such that

| f (x)− f (y)| ≤ K|x − y|, ∀x, y ∈ E.

3 Model construction

In this section, we introduce the model that we consider for the present study. The following
statement contains a simplified explanation of the SIRUG model. The explanation has been
primarily based on assuming there would be no future uncertainties.

Key components of the model

i. Susceptible (S): This group represents individuals who are not infected but are susceptible
to the disease. Over time, some of them may become infected if they come into contact with
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infectious individuals.
ii. Infected (I): This group includes individuals who are currently infected and capable of
spreading the disease to susceptible individuals. The number of infected individuals typically
increases initially.

iii. Recovered (R): The "Recovered" category represents individuals who have recovered from
the disease and are no longer infectious. These individuals may have developed immunity to
the disease, depending on the disease in question.

iv. Unemployed Population (U): This represents the number of individuals who are currently
unemployed and seeking employment.
v. Gross Domestic Product (G): It represents the total value of goods and services produced
within a country, serving as a measure of its economic performance.

The SIR model

SIR [24] is a system of ordinary differential equations showing the dynamics of infectious spread.
The following equations outline how, over time, the number of people in each category varies:

dS
dt

= −βSI,

dI
dt

= βSI − γI,

dR
dt

= γI.

(1)

Uses and practicality in real life:
The SIR model has several important uses and practical applications in real life:

(i) Epidemic modeling: SIR is one of the most used models for studying and predicting the
dynamics of infectious diseases. It is often used in the simulation of different scenarios by
adjusting various parameters like transmission rate and recovery rate. It can assess how
interventions like vaccination or social distancing affect the outcome.

(ii) Public health planning [25]: Health authorities and policymakers use the SIR model to
aid in making decisions concerning disease control strategies, planning resource allocation
during an outbreak, and healthcare system readiness. These models aid in the calculation of
projections of cases that may occur and identify the critical times in an outbreak and health
system needs.

(iii) Parameter estimation: Through the SIR model, parameters for the disease can be estimated,
including, but not limited to, the basic reproduction number, R0, which can be described
as the average number of secondary infections generated by one infectious individual in an
entirely susceptible population. The calibration of these parameters is essential for the design
of suitable public health policies.

(iv) Vaccination campaigns [26]: The SIR model is utilized in the layout and analysis of vaccina-
tion policies. They calculate ideal vaccine coverage levels to achieve the idea of herd immunity,
which refers to the idea of a high enough percentage of the population becoming immune to
prevent large-scale outbreaks.

(v) Early warning systems [27]: Continuous monitoring of the data and the SIR model allows
for the development of early warning systems that might help limit the spread of the disease
while it is still at its beginning stages.

Thus, SIR models are very helpful in understanding infectious disease transmission dynamics



238 | Mathematical Modelling and Numerical Simulation with Applications, 2025, Vol. 5, No. 1, 234–256

and are an important tool for epidemiologists, public health experts, and policymakers. These
models help Inform decisions that can eventually save lives and reduce the impact of epidemics
on society.

The SIRUG model

The traditional SIR model categorizes all people into three classes: Susceptible, Infected, and
Recovered. This model has been very useful in understanding the basic trends by which infec-
tious diseases spread through a population. It mostly overlooks the bidirectional and nuanced
interaction between health and economic stability. Motivated by this important gap in our un-
derstanding, we introduce a new holistic modified SIR model. Added to this adaptation are two
more compartments, such as the Unemployed and GDP, which will allow for a critical look into
the multi-dimensional reality of disease spread and further-reaching implications in society.
This is a modified version of the SIR model, which accounted for an epidemic process and was used
to describe and predict the dynamics of infectious diseases within a population. This modified
model adds extra compartments defined to include the economic factors influencing the dynamics
of the epidemic as follows: 

dS
dt

= −β1SI + αS + ωG,

dI
dt

= β2SI − γ1 I + η I,

dR
dt

= γ2 I − δR,

dU
dt

= λS − µU,

dG
dt

= ϕG − κUG.

(2)

Explanation of each compartment:
In this adapted SIR model, various factors are taken into consideration that might have an influence
on the dynamics of the epidemic and the economy. Following is a detailed explanation of the
modifications and what each compartment stands for:

I. Susceptible dynamics ( dS
dt ):

i) (-β1SI): This term is the rate at which the susceptible S entered the infected I state. It thus
depends upon the infection rate, β1 and on the product of the number of people susceptible,
S, and infectious, I.

ii) (αS): This term is the birth rate, and it provides the number of people that are added to the
susceptible population at any given time. It, therefore, increases the susceptible population.

iii) (ωG): This term is how the Gross Domestic Product, GDP, affects the susceptible popula-
tion. This shows the way in which the economic characteristics influence the birth rate and,
consequently, cause an increase or a decline in the susceptible population.

II. Infected dynamics ( dI
dt ):

i) (β2SI): The expression gives the rate of conversion of Susceptible, S, into Infectious, I,
due to COVID-19. In that, it is affected by the conversion rate, β2, with the product of the
number of Susceptible, S and the Infectious, I.

ii) (-γ1I): This term reflects the rate at which the number of infections is reduced. It accounts
for factors like recovery or medical interventions that reduce the number of infectious
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individuals.
iii) (ηI): This term denotes the disease-induced death rate among the infected population. It

represents the mortality associated with the disease.

III. Recovered dynamics ( dR
dt ):

i) (γ2I): This term signifies the rate at which individuals move from the infectious (I) to the
recovered (R) compartment. It represents recovery from the disease.

ii) (-δR): This term denotes the natural death rate among the recovered population. It reflects
the mortality rate of individuals who have recovered from the disease.

IV. Unemployed dynamics ( dU
dt ):

i) (λS): This term represents the increase in unemployment due to the pandemic. It reflects
how the susceptible population contributes to the rise in unemployment.

ii) (-µU): This term represents the re-employment rate, indicating the rate at which individu-
als move from unemployment to employment. It reflects the recovery of the job market.

V. GDP dynamics ( dG
dt ):

i) (ϕG): This term represents the GDP growth rate. It indicates the natural growth or
expansion of the economy.

ii) (-κUG): This term represents the GDP decay rate due to unemployment. It reflects the
negative impact of unemployment on GDP, capturing how economic downturns affect the
overall economic output.

4 Parameter estimation

Parameter estimation is one of the most important elements in mathematical modeling and data
analysis and, therefore, in our attempt to appreciate the intricate inner workings of complex
systems, whether in physics, biology, economics, engineering, or generally in scientific and
engineering fields. The main aim of the parameter estimation process is to provide an exact
numerical value for parameters underlying a given mathematical model and bring clarity to many
of the otherwise elusive behaviors manifested by real-world systems.
Accurate parameter estimation plays a crucial role as a bridge between theoretical concepts
and tangible empirical reality. This essential bridge guides scientific investigations grounded in
evidence-based, data-driven approaches, providing researchers with a roadmap to navigate the
complexities of complex systems.
Using the least square method, we got the best-fitted parameter values, which are presented in
Table 1.

5 Stability of equilibrium points

The equilibrium points of system (2) for the parameter values as in Table 1 are

i. E1 = (1.67 × 109, 40, 155556, 9.61538, 0),
ii. E2 = (1.48417 × 109, 0, 0, 8.5625,−296.833),

iii. E3 = (0, 0, 0, 0, 0).

Theorem 3 System (2) is stable at E1, but unstable at E2 and E3.

Proof Following are the eigenvalues of system (2) at the three equilibrium points:

i. The Eigenvalues corresponding to equilibrium point E1 can be stated as follows:

λ1,1 = −1.3, λ1,2 = −0.1688462, λ1,3 = −0.009, λ1,4 = 0.001i, λ1,5 = −0.001i.
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ii. The Eigenvalues corresponding to equilibrium point E2 can be stated as follows:

λ2,1 = −1.3, λ2,2 = −0.1095, λ2,3 = −0.009, λ2,4 = −0.0011705, λ2,5 = 0.00117044.

iii. The Eigenvalues corresponding to equilibrium point E3 can be stated as follows:

λ3,1 = 1.37, λ3,2 = −1.3, λ3,3 = −1, λ3,4 = −0.009, λ3,5 = 1 × 10−6.

Table 1. Value of parameters associated with system (2)

Parameter Description Value

β1 Infection rate 2.5 × 10−8

β2 Conversion rate of Susceptible people into infected by COVID-19 6 × 10−10

α Birth Rate 1 × 10−6

ω Influence of GDP on susceptible population 5

γ1 Rate at which number of infections are reduced 3

γ2 Rate at which people move from I to R 35

η Disease induced death rate 2

δ Natural death rate 0.009

λ Unemployment rate 7.5 × 10−9

µ Re-employment rate 1.3

ϕ GDP growth rate 1.37

κ GDP decay rate due to unemployment 0.16

Table 2. Comparison of argument with π
2

Eigenvalue Argument Value Comparison with π/2
λ1,1 π π > π

2
λ1,2 π π > π

2
λ1,3 π π > π

2
λ1,4

π
2

π
2 = π

2
λ1,5

π
2

π
2 = π

2

λ2,1 π π > π
2

λ2,2 π π > π
2

λ2,3 π π > π
2

λ2,4 π π > π
2

λ2,5 0 0 < π
2

λ3,1 0 0 < π
2

λ3,2 π π > π
2

λ3,3 π π > π
2
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Table 2. Comparison of argument with π
2 - continued

Eigenvalue Argument Value Comparison with π/2
λ3,4 π π > π

2
λ3,5 0 0 < π

2

The arguments of the above eigenvalues are presented in Table 2. As it can be seen from those
values,
• The equilibrium point E1 is stable.
• The equilibrium point E2 is unstable as λ2,5 <

π
2 .

• The equilibrium point E3 exhibits instability, since λ3,1, λ3,5 <
π
2 .

6 Existence and uniqueness of solutions

Theorem 4 The kernels F1, F2, F3, F4, F5 admit the Lipschitz condition and contraction when

0 < K1, K2, K3, K4, K5 ≤ 1,

where K1 = β1ϵ2 + α, K2 = β2ϵ1 − γ1 + η, K3 = δ, K4 = µ, and K5 = ϕ + κϵ4.

Proof We assume that ||S|| ≤ λ1, ||I|| ≤ λ2, ||R|| ≤ λ3, ||U|| ≤ λ4, ||G|| ≤ λ5 and

dS
dt

= F1(t, S, I, R, U, G), (3)

dI
dt

= F2(t, S, I, R, U, G), (4)

dR
dt

= F3(t, S, I, R, U, G), (5)

dU
dt

= F4(t, S, I, R, U, G), (6)

dG
dt

= F5(t, S, I, R, U, G). (7)

For Eq. (3), we show

∥F1(t, S, I, R, U, G)− F1(t, S∗, I, R, U, G)∥ ≤ K1∥S − S∗∥,

where K1 ∈ [0, 1). Now,

∥−β1SI + αS + ωG + β1S∗ I − αS∗ − ωG∥ = ∥− β1 I(S − S∗) + α(S − S∗)∥
≤ ∥β1 I(S − S∗)∥+ ∥α(S − S∗)∥
≤ |β1|∥I∥∥S − S∗∥+ |α|∥S − S∗∥
≤ β1ϵ2∥S − S∗∥+ α∥S − S∗∥
≤ (β1ϵ2 + α)∥S − S∗∥.

Therefore K1 = (β1ϵ2 + α). For Eq. (4), we need to provide

∥F2(t, S, I, R, U, G)− F2(t, S, I∗, R, U, G)∥ ≤ K2∥I − I∗∥,
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where K2 ∈ [0, 1). Now,

||F2(t, S, I, R, U, G)− F2(t, S, I∗, R, U, G)∥ = ∥β2SI − γ1 I + η I − β2SI∗ + γ1 I∗ − η I∗∥
= ∥β2S(I − I∗)− γ1(I − I∗) + η(I − I∗)∥
≤ |β2|∥S∥∥I − I∗∥− |γ1|∥I − I∗∥+ |η|∥I − I∗∥
≤ (|β2|∥S∥− |γ1|+ |η|)∥I − I∗∥
≤ (β2ϵ1 − γ1 + η)∥I − I∗∥.

Therefore K2 = (β2ϵ1 − γ1 + η). For Eq. (5), we need to show

∥F3(t, S, I, R, U, G)− F3(t, S, I, R∗, U, G)∥ ≤ K3∥R − R∗∥,

where K3 ∈ [0, 1). Then

||F3(t, S, I, R, U, G)− F3(t, S, I, R∗, U, G)|| = ||γ2 I − δR − γ2 I + δR∗||

= ||− δ(R − R∗)|| ≤ |δ|||R − R∗||

≤ δ||R − R∗||.

Therefore K3 = δ. For Eq. (6), we need to obtain

∥F4(t, S, I, R, U, G)− F4(t, S, I, R, U∗, G)∥ ≤ K4∥U − U∗∥,

where K4 ∈ [0, 1). Now, we have

||F4(t, S, I, R, U, G)− F4(t, S, I, R, U∗, G)|| = ||αG − µU − αS + µU∗||

= ||− µ(U − U∗)|| ≤ |µ|||U − U∗||

≤ µ||U − U∗||.

Therefore K4 = µ. For Eq. (7), we need to show

∥F5(t, S, I, R, U, G)− F5(t, S, I, R, U, G∗)∥ ≤ K5∥G − G∗∥,

where K5 ∈ [0, 1). Then

||ϕG − κUG − ϕG∗ + κUG∗|| ≤ ||ϕ(G − G∗)− κU(G − G∗)||

≤ |ϕ|||G − G∗||+ κϵ4||G − G∗||

≤ (ϕ + κϵ4)||G − G∗||.

Therefore K5 = (ϕ + κϵ4).
Here, K1, K2, K3, K4, K5 are the Lipschitz constants for the functions F1, F2, F3, F4 and F5, respec-
tively.
Now that we have proved the existence of Lipschitz constants K1, K2, K3, K4, K5, the existence of a
unique solution to system (2) is also ensured following the methodology shown in [28].

7 Boundedness

Theorem 5 The proposed S-I-R-U-G model Eq. (2) is bounded by Theorem 2.
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Proof Let X(t) = S(t) + I(t) + R(t) + U(t) + G(t).
On differentiating X(t), we have

dX
dt

+ ΦX =
d(S + I + R + U + G)

dt
+ Φ(S + I + R + U + G).

Simplifying, we have

dX
dt

+ ΦX = −β1SI + αS + ωG + β2SI − γ1 I + η I + γ2 I − δR

+ λS − µU + ϕG − κUG + ΦS + ΦI + ΦR + ΦU + ΦG.

Removing the negative terms, we get

dX
dt

+ ΦX ≤ αS + ωG + β2SI + η I + γ2 I + λS + ϕG + ΦS + ΦI + ΦR + ΦU + ΦG.

Now, the solution of system (2) exists uniquely in

{(S, I, R, U, G) : max(|S|, |I|, |R|, |U|, |G|) ≤ M},

where M is a positive constant. Therefore, we can write

dX
dt

+ ΦX ≤ (α + ω + β2 M + η + γ2 + λ + ϕ)M + 5ΦM = γ1.

Using Theorem 1, we get

X(t) ≤
(

Xt0 −
γ1

Φ

)
e−Φ(t−t0) +

γ1

Φ
.

Therefore, system (2) is bounded.

8 Numerical method

The Runge-Kutta 4th order (RK4) method occupies a pivotal position in the arsenal of numerical
techniques applied to SIR (Susceptible-Infectious-Recovered) modeling within epidemiology.
Renowned for its adept balance between accuracy and computational efficiency, RK4 is widely
embraced for its reliability and ease of implementation. Its enduring popularity stems from its
ability to deliver precise solutions while remaining relatively straightforward to employ, robust in
the face of diverse scenarios, and stable across a range of conditions. As a consequence, RK4 has
emerged as a cornerstone in epidemiological simulations, serving as a linchpin for researchers
seeking to unravel the complexities of disease dynamics.
At its core, RK4 functions by breaking down the differential equations governing infectious
disease transmission into discrete steps, allowing for the meticulous exploration of various
epidemiological scenarios. By leveraging RK4, researchers can simulate and analyze the impact
of different interventions, ranging from vaccination campaigns to social distancing measures,
thereby informing evidence-based public health strategies and policy decisions.
In practical terms, RK4 enables epidemiologists to simulate disease outbreaks with a high degree
of fidelity, providing invaluable insights into the progression and containment of infectious
diseases. Its versatility extends beyond simple SIR models, as RK4 can be adapted to explore
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more complex dynamics, such as spatial spread, heterogeneous populations, and the interplay
of multiple infectious agents. Moreover, RK4’s computational efficiency makes it well-suited
for real-time epidemic forecasting and scenario planning, empowering public health officials to
anticipate and respond effectively to emerging threats.
To solve system (2) using the classical Runge-Kutta method of 4th order, we define the system as

f1(S, I, R, U, G) = −β1SI + αS + ωG,

f2(S, I, R, U, G) = β2SI − γ1 I + η I,

f3(S, I, R, U, G) = γ2 I − δR,

f4(S, I, R, U, G) = λS − µU,

f5(S, I, R, U, G) = ϕG − κUG.

(8)

Using the RK4 method, we compute the intermediate values as follows

k(i)1 = h fi(Sn, In, Rn, Un, Gn),

k(i)2 = h fi

(
Sn +

k(1)1
2

, In +
k(2)1

2
, Rn +

k(3)1
2

, Un +
k(4)1

2
, Gn +

k(5)1
2

)
,

k(i)3 = h fi

(
Sn +

k(1)2
2

, In +
k(2)2

2
, Rn +

k(3)2
2

, Un +
k(4)2

2
, Gn +

k(5)2
2

)
,

k(i)4 = h fi

(
Sn + k(1)3 , In + k(2)3 , Rn + k(3)3 , Un + k(4)3 , Gn + k(5)3

)
.

(9)

The values at the next time step are computed as

Sn+1 = Sn +
1
6

(
k(1)1 + 2k(1)2 + 2k(1)3 + k(1)4

)
,

In+1 = In +
1
6

(
k(2)1 + 2k(2)2 + 2k(2)3 + k(2)4

)
,

Rn+1 = Rn +
1
6

(
k(3)1 + 2k(3)2 + 2k(3)3 + k(3)4

)
,

Un+1 = Un +
1
6

(
k(4)1 + 2k(4)2 + 2k(4)3 + k(4)4

)
,

Gn+1 = Gn +
1
6

(
k(5)1 + 2k(5)2 + 2k(5)3 + k(5)4

)
.

(10)

To generate the simulation results presented in this study, the RK4 method was implemented
using Python. Python’s rich ecosystem of libraries, including NumPy and Matplotlib, was
utilized to ensure precision in numerical computations and clarity in visualizing the results.
The implementation in Python further underscores the accessibility and reproducibility of the
simulation process, enabling researchers to replicate and extend the findings with ease.

Model simulations

The following are the graphs obtained using the Runge-Kutta 4th-order method. The red points
showcase the real data value points, and the blue line showcases our model.

Inferences on the different compartments based on the numerical simulations for system (2):
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Figure 1. Subplot showing numerical results for (a) Susceptible, (b) Infection, (c) Recovered, (d) Unemployment
and (e) GDP at parameters given in Table 1

Susceptible population: In Figure 1a, the susceptible population (S(t)) exhibits a decreasing trend
over time, indicating potential exposure and infection in the population. The red data points,
representing observed values, align closely with the simulated results, underscoring the accuracy
of the model.

Infected population: In Figure 1b, the infected population (I(t)) displays fluctuations over time,
possibly reflecting the impact of interventions or variations in disease spread. The close alignment
of the data points with the model’s predictions suggests that the model effectively captures ob-
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served infection trends.

Recovered population: In Figure 1c, the recovered population (R(t)) demonstrates a consistent
increase over time, illustrating the cumulative number of individuals who have successfully
overcome the infection. The model’s trajectory closely follows the provided data points, affirming
its reliability in simulating recovery dynamics.

Unemployed population: In Figure 1d, the unemployed population (U(t)) experiences fluctua-
tions, possibly influenced by economic factors or external events. The observed data points exhibit
variations, and the model successfully captures the general trend, indicating its ability to simulate
the dynamics of unemployment in response to changing conditions.

GDP: In Figure 1e, GDP, denoted as (G(t)), displays a consistent increase over time, suggesting
economic growth. The observed data points align well with the model’s predictions, indicating
that the simulated economic dynamics accurately represent the growth trends in GDP.

9 Results and discussion

The following sections demonstrate the influence of various parameters like ϕ and κ on GDP and
of λ and µ on the unemployment rate.

Influence of ϕ and κ on GDP
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Figure 2. (a) GDP with decreased and increased ϕ value, (b) GDP with decreased and increased κ value at
parameters given in Table 1

Influence of ϕ (gross domestic product growth rate) on GDP dynamics:
The parameter ϕ plays a key role in shaping the economy’s path. It represents the natural rate
at which the Gross Domestic Product grows. In economic terms, ϕ shows how much room an
economy has to grow and come up with new ideas. Looking at Figure 2a, we can see that when ϕ

drops to 1.3, the GDP growth curve moves to the right. This shift means the economy is growing
more. When growth slows down like this, it often leads to other changes. Companies might not
want to invest as much money. Workers might not produce as much. And the country might
fall behind in developing new tech and building new infrastructure. On the other hand, when
ϕ goes up (1.4), it pushes the GDP growth curve to the left, showing faster economic growth. A
higher intrinsic growth rate points to a more energetic and ever-changing economy. This means
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that a setting that supports new ideas, business creation, and good economic conditions can help
overcome the problems caused by disease outbreaks and job losses, leading to a quicker bounce
back.
Influence of κ (GDP decay rate due to unemployment) on GDP dynamics:
The κ parameter captures how unemployment hurts GDP, showing the cost to the economy when
people can’t work. Looking at Figure 2b, we see that a lower κ (0.15) pushes the GDP growth
curve to the left, which is good news. This move hints that steps to soften the unemployment’s
blow can speed up economic growth. A smaller κ points to a tougher job market, less economic
decay, and more room for GDP to grow. On the flip side, a higher κ (0.17) pushes the GDP growth
curve to the right, meaning unemployment hits economic growth harder. A faster GDP decay rate
due to joblessness suggests a job market that’s slower to change and respond, which could slow
down the whole process of getting the economy back on track.
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Figure 3. (a) Unemployment with decreased and increased λ value, (b) Unemployment with decreased and
increased µ value at parameters given in Table 1

Influence of unemployment rate (λ) on unemployment dynamics:
The unemployment rate, symbolized by λ, plays a key role in shaping how unemployment changes
over time. Looking at Figure 3a, we see that when λ goes down (7 × 10−9), the unemployment
curve moves to the right. This shift shows that a lower jobless rate causes unemployment to grow
more as time passes. We can link this to things like fewer people quitting their jobs or less job
loss in the economy. On the other hand, when λ goes up (8 × 10−9), it pushes the unemployment
curve to the left. This means unemployment grows faster as time passes. This might happen
because more people quit their jobs or because jobs disappear quicker in the economy. When
unemployment rates go up, it makes the job market tougher. This can put more stress on the
economy.

Influence of re-employment rate (µ) on unemployment dynamics:
The re-employment rate, symbolized by µ, plays a key role in the dynamics of unemployment,
showing how well the labor market supports job transitions. As seen in Figure 3b, when µ de-
creases, the unemployment curve shifts to the left. This shift indicates that a lower re-employment
rate causes unemployment to rise more quickly over time. This could happen due to a lack of job
opportunities or slower job creation in the economy.

In contrast, when µ increases, the unemployment curve moves to the right, indicating a slower rise
in unemployment over time. This could be because of more job opportunities or faster job creation
in the economy. A higher re-employment rate reflects a more effective labor market, which can
help reduce unemployment and promote economic stability.
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Influence of infection rate (β1) on gross domestic product

The influence of infection rates, denoted by β1, on GDP is important. Figure 4 demonstrates how
different infection rates affect GDP growth. Increased speeds will reduce the life of the pandemic,
which will mean faster accelerated rates that will foster economic recovery, whereas decelerated
rates would only lengthen the downturn. This underlines the delicate balance between public
health and economic stability, emphasizing the need for effective strategies to manage infection
rates while promoting sustainable growth.
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Figure 4. Influence of infection rate on GDP

Accelerated infection rate and economic recovery
An increased infection rate implies a rapid spread of the disease, leading to a quicker rise in the
number of infected individuals within a shorter timeframe. A shorter duration of the pandemic
may prompt an earlier commencement of the economic recovery phase. The accelerated comple-
tion of the pandemic might lead to a more immediate resurgence in economic activities, potentially
resulting in a swifter rebound in GDP.

Decelerated infection rate and prolonged economic downturn
A slower infection rate extends the timeline of the pandemic, resulting in a more prolonged period
of disease transmission. A longer pandemic timeline might lead to a more prolonged economic
downturn.

Economic implications of infection rates on diverse sectors

Healthcare outlays stimulating economic sectors
Elevated infection rates increase healthcare spending, leading to a surge in resource allocation
toward healthcare infrastructure, medical supplies, and research. This intensifies during health
crises. Heightened healthcare expenditure catalyzes economic activity within specific sectors,
fostering favorable growth in GDP. Amid the pandemic, India’s public health spending increased
from 1.5 percent to 1.8 percent of the GDP [29]. The PM Ayushman Bharat Health Infrastructure
Mission scheme intends to enhance infrastructure, funded by the central government [29].

Labor market fluctuations in response to infection rates
Rapid escalations can initially lead to a transient reduction in the labor force. The reintegration of
workers into the workforce can contribute to a resurgence in economic productivity.
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Innovative resilience and industrial adaptation
Heightened infection rates often spur an incentive for innovation and adaptability within indus-
tries. This incentive leads to pivots in production to accommodate the manufacturing of essential
goods or services requisite during crises, raising the need for the emergence of novel business
models or technological advancements. This adaptive shift can give rise to growth in specific
sectors, exerting a positive influence on aggregate GDP.

Dynamic consumer behavioral shifts
Varied infection rates may cause shifts in consumer behavior patterns during pandemics. These
shifts lead to alterations in expenditure distributions, with some sectors witnessing a downturn
while others experience increased demand. The surge in demand for essential commodities or the
accelerated adoption of online services can invigorate specific sectors, thereby bolstering overall
GDP growth. There has been a surge of over 100 percent in the demand for essential commodities
like rice, wheat, and pulses [30]. Additionally, other food categories such as confectioneries,
sweets, organic processed food, and spices have also experienced a notable increase of 15-20
percent [30].

Governmental fiscal interventions and stimuli
Governmental responses to pandemics often include fiscal policies and stimuli aimed at buttressing
businesses and individuals impacted by the crisis. Such interventions, spanning financial aid,
tax concessions, or infrastructure investment, are designed to stabilize the economy and wield a
positive influence on GDP growth trajectories. India’s government introduced a COVID-19 social
aid package worth INR 1.7 lakh crore (equivalent to 25 billion US dollars) through the Pradhan
Mantri Garib Kalyan Yojana (PM-GKY) [31] to offer prompt assistance to those in need.

Research and development investments for long-term economic impacts
Escalating infection rates frequently prompt heightened investments in research and development
endeavors, particularly toward vaccines, treatments, or preventive measures. The resultant scien-
tific breakthroughs engendered by such investments manifest long-term positive repercussions
across various industries, nurturing innovation and consequent economic growth.

Prospective revival of tourism and hospitality sectors
Subsequent to periods of elevated infection rates and constrained travel, pent-up demand often
surfaces for travel and related hospitality services upon the amelioration of the situation. This
prospective resurgence in the tourism and hospitality sectors holds the potential to significantly
contribute to the resurgence of GDP growth. The recovery of the tourism sector will hinge on
enhancing trust in travel and reducing the perceived risks associated with it [32]. The impact of
COVID-19 influences consumers’ perceptions of tourism products and services [33].

Okun’s law

Okun’s law originates from the study between unemployment and economic growth by Okun
(1962) [34] on the United States economy, where he observed that there was an inverse relationship
between the two variables. Okun (1962) observed that a percentage increase in economic growth
would result in a 0.3 percent decline in unemployment.
The SIRUG model incorporating Okun’s Law provides a comprehensive framework for under-
standing the complex interplay between epidemiological dynamics and economic factors during
the COVID-19 pandemic. It facilitates informed decision-making and policy formulation [35] to
mitigate the health and economic impacts of the crisis.
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The graph Figure 5 plots the unemployment rate on the y-axis and GDP on the x-axis. The data
points show a negative correlation between the two variables, consistent with Okun’s Law. In
other words, as the unemployment rate increases, GDP decreases, and vice versa. However,
the data points also deviate from a straight line, indicating that the relationship between the
unemployment rate and GDP is not perfectly linear. The data points in the graph represent the
percent change in value with the previous value as the base. A negative value indicates a negative
percent change, while a positive value indicates a positive percent change.

Observations

Outliers, such as the sharp decline in GDP accompanied by a high unemployment rate in 2020
Q2, can be understood within the framework of Okun’s Law. Such an event could be associated
with an economic downturn or recession, where a significant drop in GDP leads to an increase in
unemployment. This could be due to factors like reduced consumer spending, investment, and
overall economic activity due to the surge of the pandemic.
The period of economic recovery observed in 2021 and 2022, where GDP increases and unem-
ployment decreases, aligns well with Okun’s Law. As the economy begins to recover, increased
economic output (reflected in rising GDP) typically leads to job creation and a decline in unem-
ployment rates. This can be attributed to factors like increased consumer confidence, government
stimulus measures, and business investments.
The increase in unemployment and decrease in GDP observed in 2023 Q4 is again consistent with
Okun’s Law but in the reverse direction. Such a scenario could signal another economic downturn
or slowdown, where a decrease in GDP leads to layoffs and rising unemployment rates. Factors
contributing to this could include external shocks, changes in government policies, or shifts in
global economic conditions.
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Figure 5. Change in GDP with change in unemployment - demonstration of Okun’s Law

Long-term economic implications and policy recommendations

The analysis of the SIRUG model, incorporating epidemiological and economic dynamics, reveals
several crucial implications for long-term economic planning and policy formulation. The model’s
findings demonstrate significant relationships between health metrics, economic indicators, and
social outcomes, providing valuable insights for policy development.



Thakuria et al. | 251

Labor market dynamics and economic growth
The examination of unemployment (λ) and re-employment (µ) rates reveals crucial patterns
in labor market behavior. The model demonstrates that decreased re-employment rates shift
unemployment curves leftward, indicating accelerated unemployment growth. When the natural
growth rate (ϕ) increases to 1.4, the economy exhibits faster growth patterns, highlighting the
importance of supporting innovation and entrepreneurship. Additionally, lower GDP decay rates
(κ = 0.15) correlate with enhanced economic resilience, suggesting that robust unemployment
protection mechanisms significantly contribute to economic stability.

Healthcare infrastructure and sectoral adaptations
The study establishes a clear correlation between infection rates (β1) and economic performance.
Analysis reveals that while accelerated infection rates may shorten pandemic duration, they
can trigger severe economic shocks. This finding is supported by India’s strategic increase in
health spending from 1.5% to 1.8% of GDP [29]. The model further indicates substantial shifts
in consumer behavior during crisis periods, with essential commodities experiencing demand
surges exceeding 100% [36]. These patterns emphasize the necessity for sector-specific adaptation
strategies and modernized healthcare infrastructure.

Economic stabilization and future preparedness
The relationship between unemployment and GDP, as demonstrated through the model’s ap-
plication of Okun’s Law, provides crucial insights for economic stabilization mechanisms. The
implementation of support programs, exemplified by India’s PM-GKY scheme providing INR
1.7 lakh crore in aid [37], demonstrates the effectiveness of timely governmental intervention. The
study indicates that anticipatory policy frameworks, encompassing both immediate response
capabilities and long-term resilience mechanisms, are essential for future crisis management.

Research investment and policy integration
The model’s findings emphasize the critical role of research and development in crisis resilience.
Analysis suggests that integrated approaches combining healthcare research, technological ad-
vancement, and economic adaptation yield optimal outcomes. This necessitates sustained invest-
ment in research infrastructure and the development of flexible policy frameworks capable of
responding to evolving challenges. The study demonstrates that successful economic recovery
requires coordinated efforts across healthcare, employment, and fiscal policy domains.

The findings support a comprehensive approach to policy development, integrating health infras-
tructure investment, labor market flexibility, and research advancement. These elements, working
in concert, provide the foundation for robust economic recovery and long-term resilience against
future crises. The model’s insights suggest that policy effectiveness depends on the ability to
implement coordinated responses across multiple sectors while maintaining flexibility for rapid
adaptation to changing circumstances..

10 Future directions

The SIRUG model opens up several exciting avenues for future research in understanding how
diseases affect economies. Future studies could enhance the model by exploring the complex
ways that health crises and economic factors influence each other, going beyond the current
straightforward relationships. An important area for development would be incorporating the
effects of different government policies, such as economic support packages and healthcare
initiatives, to better predict their impact on recovery. Additionally, future research could break
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down the analysis by different economic sectors, as studying how various industries respond
uniquely to health crises could provide more targeted policy recommendations.

The model’s framework could be further enriched by exploring regional variations and demo-
graphic factors, as health crises often affect communities differently. This could lead to more
tailored intervention strategies based on local conditions and population characteristics. Further-
more, incorporating international factors such as global supply chains and trade relationships
would make the model more comprehensive and applicable to our interconnected world economy.
These enhancements would build upon the current SIRUG model’s foundation, making it an even
more powerful tool for understanding and responding to future health and economic challenges..

11 Conclusion

The paper provides an overall analysis of the complex relationship between health variables
and economic variables during the COVID-19 pandemic period in India from 2020 to 2023.
In a bid to understand the impact of the pandemic on public health and the economy, this
research modified the classic SIR model by adding the components of Gross Domestic Product
and rate of unemployment. Anchoring on SIRUG, we have combined Okun’s Law aspect with
epidemiological dynamics and relevant economic factors in our model. Our results suggest, as
expected, that on average, unemployment is negatively correlated with GDP. In keeping with
Okun’s Law, changes in one variable do seem to influence another. We also showed deviations
from a perfect linear relationship, which further proves the multifaceted nature of this relationship
of variables.
The trends that came out were the steep fall of GDP followed by a surge in unemployment in
2020 Q2, commensurate with the economic downturns attributed to the pandemic. Similarly, the
economic recoveries during 2021 and 2022, accompanied by rising GDP and decreased unem-
ployment, are not only in conformity with Okun’s Law but also represent the strong bounce-back
ability of the economy after crisis periods. On the other hand, challenges have been found in
the research, like increasing reduction in GDP observed in 2023 Q4, indicating the likelihood of
economic slowdowns or recessions.
These findings highlight how aggressive policy measures at both ends can dampen the adverse
impacts of health shocks on the economy and vice versa. This paper opens the pathway to
future and deep research into this complex interaction of epidemics and economic variables for
India in several possible ways. First, the SIRUG model could be fine-tuned to enhance policy
decisions during pandemics, its parameters can be calibrated with India-specific data, effectuating
an equilibrium between GDP growth rate, unemployment level, and disease diffusion. This
model could also be extended to incorporate behavior changes in order to speed up the program
impact on the transmission and recovery rates, respectively. This will help fight any negative
repercussions arising from educating the population on proper health measures that aim at
reducing morbidity and mortality in general. Thirdly, incorporating variables like viral mutation
patterns and healthcare delivery capacity will future-proof it for other pandemics while capturing
regional differences across India. Fourthly, in the pursuit of long-term resilience, strategies such as
health sector development or supporting a diversity of industries are necessary to sustain them
over time. Further, it will be able to assess government programs for the control of unemployment
and various other health issues that they confront today. Lastly, sensitivity analyses, real-time
forecasting, and the use of present values data would enhance the model’s accuracy and relevance.
In summary, the effort put into this research creates an in-depth insight into the interactive
dynamics at play during pandemics and becomes very resourceful to policymakers and researchers.
We establish a platform for an informed decision– by combining health and economic variables in
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a unified model, making provision for policy formulation that will help to address the challenges
that may be triggered by future health and economic crises.
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