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Abstract
The present paper studies parametric inference for the inverse Nakagami-m distribu-
tion under a unified progressive hybrid censored sample. Maximum likelihood estimates
of the unknown parameters are obtained using the Newton-Raphson method and the
expectation-maximization algorithm. Approximate confidence intervals for the parame-
ters are constructed via the variance-covariance matrix. Furthermore, Bayes estimates
are investigated under the squared error and LINEX loss functions using gamma prior
distributions for the unknown parameters. The Markov chain Monte Carlo approxima-
tion approach is employed to obtain the Bayes estimates and derive the highest posterior
density credible intervals. The issue of hyperparameter selection is also discussed. In
addition to Bayes estimates, maximum a posteriori estimates of the unknown parameters
are computed using the Newton-Raphson method. The efficacy of the proposed approach
is assessed through a Monte Carlo simulation study. The convergence of the MCMC sam-
ple is evaluated using various diagnostic plots. Three optimality criteria are presented to
select the most suitable progressive scheme from different sampling plans. Two real-world
applications that involve the fracture toughness of silicon nitride (Si3N4) and the active
repair times (in hours) for an airborne communication transceiver are used to illustrate
the practical utility of the proposed methodology.
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1. Introduction
The Nakagami-m distribution introduced by Nakagami [22] is a probability distribution

commonly used in wireless communication to model the fading characteristics of wireless
channels. It is characterized by the shape parameter ν and the scale parameter η. The
Nakagami-m distribution is versatile, as it can represent a wide range of fading scenarios,
from Rayleigh fading (when ν = 1) to Rician fading (when ν > 1). It finds applications
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in various wireless communication systems, such as cellular networks, satellite communi-
cation, and underwater acoustic communication, where understanding and mitigating the
effects of fading on signal transmission are crucial. By accurately modeling the fading phe-
nomenon, the Nakagami-m distribution aids in designing robust communication systems,
optimizing resource allocation, and enhancing overall system performance in challenging
wireless environments.

The inverse distribution has improved understanding of the standard distribution and
added flexibility for fitting data in various scientific and engineering domains, including
reliability theory, finance and medical industries, and other areas.

In this article, we considered the inverse Nakagami-m distribution proposed by Louzada
[10]. Let X be a non-negative random variable following the inverse Nakagami-m (INK)
distribution with the cumulative distribution function (cdf) given by

F (x|ν, η) = 1
Γ(ν)Γ

(
ν,

ν

ηx2

)
;x > 0, ν > 1

2 , η > 0, (1.1)

where ν and η are the shape and scale parameters respectively. Henceforth, the INK
distribution is represented as INK(ν, η). The probability distribution function (pdf) of the
INK distribution is given by

f(x|ν, η) = 2
Γ(ν)

(
ν

η

)ν
x−2ν−1exp

(
− ν

ηx2

)
;x > 0, ν > 1

2 , η > 0. (1.2)

Proposition 1.1. For the random varibale X with the INK distribution, the rth moment
is given by

µr = E[Xr] = 1
Γ(ν)

(
ν

η

) r
2

Γ
(
ν − r

2

)
, for µ > r

2 . (1.3)

Proof. We have

µr =
∫ ∞

0
xr

2
Γ(ν)
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ν
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)ν
x−2ν−1exp

(
− ν

ηx2

)
dx

= 2
Γ(ν)

(
ν

η
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0
x2
(
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)
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(
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ηx2

)
dx. (1.4)

Let x2 = t and dx = dt
2
√
t
, then

µr = 1
Γ(ν)

(
ν

η

)ν ∫ ∞

0
t(
r
2 −ν−1)exp

(
− ν

ηt

)
dt. (1.5)

Again let ν
ηt = u and dt = −du

u2 ·
(
ν
η

)
, then we have

µr = 1
Γ(ν)
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) r
2
∫ ∞

0
uν− r

2 −1exp(−u)du

= 1
Γ(ν)

(
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)
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2 . (1.6)

�

From the Equation (1.6) the mean and variance of Equation (1.2) are, respectively,
given by

E[X] = 1
Γ(ν)

(
ν

η

) 1
2

Γ
(
ν − 1

2

)
, for ν > 1

2 , (1.7)



1130 M. Irfan, A. K. Sharma

Figure 1. Hazard rate function of INK distribution.

and

Var[X] = ν

η

 1
µ− 1 −

{
Γ(µ− 1

2)
Γ(µ)

}2 , µ > 1. (1.8)

The reliability and hazard rate function (hrf) of the INK distribution at time t are
obtained as follows:

R(t) = 1
Γ(ν)γ

(
ν,

ν

ηt2

)
; t > 0 (1.9)

and

H(t) = 2
(
ν

η

)ν
t−2ν−1exp

(
− ν

ηt2

)
γ

(
ν,

ν

ηt2

)−1
, (1.10)

where Γ(·, ·) and γ(·, ·) represent the incomplete upper and lower gamma functions,
respectively [21].

Louzada [10] analyzed the nature of the hrf in Equation (1.10) and investigated that
the hazard rate function of the INK distribution is unimodal for all ν > 0 and η > 0.
Figure 1 depicts the pictorial representation of the INK distribution. From Figure 1, it is
observed that the INK failure process indicates an increase in its hazard in the early stage
of the process, and after reaching its mode, quickly decreases as time increases. This type
of statistical model is used in diverse fields, such as product reliability, medical prognosis,
cybersecurity, environmental studies, insurance risk assessment, industrial process control,
and consumer behavior analysis. For example, in product reliability, this model helps
assess early failures in electronics, where defects cause high initial hazards that drop as
defective units are identified and resolved. Similarly, in the medical prognosis, it can
predict postoperative complications, with the highest risk immediately after surgery that
decreases as patients recover. Cybersecurity identifies peak vulnerability periods following
new software releases, which decrease as patches are implemented. Environmental studies
use it to understand the survival rates of reintroduced species, which face high initial
mortality that reduces over time. Insurance companies apply it to assess new policyholders’
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risk, and industries use it to monitor machinery breakdowns, which are frequent during
initial setup but decline as processes stabilize. Finally, consumer behavior analysis helps us
to understand the customer churn of new subscribers, which is high initially, but decreases
as they engage more with the service. As a result, this model can be applied when we
quickly witness high-intensity failure and some failure that occurs very far from the mode.

Several two-parameter lifetime distributions with flexible hrfs have been proposed re-
cently, expanding the range of available models for reliability studies. Notable examples in-
clude the new two-parameter lifetime distribution introduced by Hashem pour [12], which
exhibits various shapes of the hazard rate, and the mixture of exponential and Weibull dis-
tributions proposed by Mohammad [20], which balances the simplicity of the exponential
model with the flexibility of the Weibull distribution. Furthermore, the weighted G family
of probability distributions developed by Shaheed [31] provides an adaptable framework
for data modeling over time and has shown strong performance in reliability applications.
Although these flexible distributions offer alternative modeling approaches, our study fo-
cuses on the INK distribution because of its superior performance in real-world failure
data modeling. Specifically, we demonstrate its effectiveness in the context of unified
progressive hybrid censored data, highlighting its ability to capture failure characteristics
accurately.

In reliability theory, censored data is a strategic asset that allows researchers to gain
valuable insights into system reliability and survival characteristics while optimizing time
and cost. By strategically truncating data collection at predefined points, such as the
completion of a study period or after a certain number of events, censored data enables
efficient analysis without compromising the validity of results. This approach acceler-
ates the research process and minimizes resource expenditure, making it a cornerstone of
cost-effective reliability studies. Through censored data analysis, researchers can extract
meaningful conclusions regarding failure patterns, maintenance strategies, and system per-
formance, empowering decision makers with actionable insights while maximizing time and
cost efficiency in reliability analysis.

Numerous censoring schemes exist in the literature. For example, Epstein [5] investi-
gated the hybrid censoring scheme (HCS), a combination of type-I and type-II censoring
schemes. One can consult Balakrishnan and Aggarwala [26] for in-depth discussions on
type-I and type-II censoring schemes. Child et al. [1] suggested the type-II HCS and
Chandrasekar et al. [4] proposed the generalized type-I and type-II censoring scheme
(GT-IHCS & GT-IIHCS). These censoring schemes were introduced to avoid the disad-
vantages of the type-I and type-II HCS. However, these two censoring schemes have some
drawbacks, too. In the case of GT-IIHCS, the experimenter may not have the mth failure
due to the pre-fix time. However, with the GT-IIHCS, it is possible to obtain an effective
sample size that is zero or very small. To address these drawbacks, Balakrishnan et al.
[27] suggested the unified hybrid censoring systems of type I and type II (UHCS). Within
this scheme, two thresholds T1 and T2 such that 0 < T1 < T2 are predefined, together
with two numbers, k and m, where k < m ≤ n. Similarly to HCS, UHCS has a drawback.
The UHCS lacks the adaptability to remove experimental units before the experiment is
ended. Gorny and Cramer [13] proposed a unified progressive hybrid censoring scheme
(UPHCS) to prevent such situations.

The procedures involved in UPHCS can be described as follows: Consider that there are
n items in the experiment. Assume that they are independently and identically distributed
with pdf f(x) and cdf F (x). Before starting the experiments, we give two integers k
and m, where k < m ≤ n and a progressive censoring scheme R1, R2, ..., Rm, where
Rm = n − m −

∑m−1
i=1 Ri and Ri ≥ 0. In the course of the experiment, if the ith failure,

whose lifetime is represented by Xi:m:n, then Ri items are withdrawn from the live items in
the experiment. As the experiment continues, Ri might have a different value. However,
there are two thresholds T1 and T2 (T1, T2 ∈ (0,∞)) with T1 < T2, which are pre-specified
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and fixed. When the test reaches T1, it indicates that it needs to be accelerated. The
experiment is allowed to proceed. The second threshold, T2, denotes the longest time
that the experiment will allow. The experiment must end at T2 regardless of whether the
failure samples reach the target number m. Four cases were used in the experiment; the
specifics are listed below:

Figure 2. Schematic representation of UPHC sample.

• Case I: X1:m:n, ..., Xm:m:n, if Xm:m:n < T1;
• Case II: X1:m:n, ..., Xk:m:n, ..., Xd1:m:n, if Xk:m:n < T1 < Xm:m:n;
• Case III: X1:m:n, ..., Xk:m:n, if T1 < Xk:m:n < T2;
• Case IV: X1:m:n, ..., Xd2:m:n, if T2 < Xm:m:n,

where d1 and d2 represents the number of failure items before the threshold time T1
and T2. The schematic representation of the UPHC scheme is shown in Figure 2.

The primary benefit of the UPHC scheme is that it guarantees that the test duration will
not exceed T2, thus resolving the issue where GHCS cannot guarantee the test duration.
Furthermore, we can set T2 to a very large value, which means that the experiment can
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continue without limitations if we are more concerned with the adequate sample size than
with the test time.

The UPHC schemes are especially useful in real-life applications where time, cost, or
resource constraints must be balanced with the need for informative data. For exam-
ple, in reliability testing of complex electronic systems, it is often necessary to remove
some surviving units at various stages (progressive censoring) to minimize operational
costs. Moreover, regulatory bodies can impose a maximum allowed test duration to en-
sure safety and compliance. The dual-threshold mechanism of UPHC (with T1 and T2)
allows for such flexibility. Similar situations arise in biomedical studies, accelerated life
testing, and industrial product validation, where such censoring strategies help manage
logistical and ethical constraints while ensuring sufficient data is collected for inference.
(See, Balakrishnan et al. [27] and Gorny and Cramer [13]).

To the best of our knowledge, Kim and Lee [15] were the first to address the estimation
problems for the Weibull distribution under a UPHC sample. Lone et al. [32] explored
parameter estimation and the optimal design for the gamma-mixed Rayleigh model under
the UPHC sample. Dutta and Kayal [34] conducted statistical inference for the Burr-
III distribution using UPHC data. However, recent studies have not investigated the
inferential aspects of the INK lifetime model under the newly introduced UPHC sample.
It is noted that the INK distribution fits various real-world datasets better than the Burr-
III, inverse Weibull, inverse Gompertz, and inverse Rayleigh distributions. For example,
the INK distribution fits the failure time of mechanical devices in an aircraft, the failure
time of an agricultural machine [10] and the fracture toughness of silicon nitrate [34].
Recently, Wang et al. [17] discussed the parameter estimation of the INK distribution
under a progressive type-II censored sample.

To our knowledge, no research has been done on estimating the parameters of the INK
distribution in the presence of data derived from the UPHC sample. Therefore, to address
this void, our study aims to employ frequentist and Bayesian approaches to obtain both
points and interval estimates of the unknown model parameters of the INK distribution
under the UPHC sample. In the frequentist approach, the maximum likelihood estimates
(MLE) are computed using the Newton-Raphson method and the expectation maximiza-
tion (EM) algorithm. Approximate confidence intervals (ACIs) for unknown parameters
are obtained via a variance-covariance matrix. The MCMC approximation techniques,
such as the Metropolis-Hastings (M-H) algorithm, have been adopted in the Bayesian
approach. Further, the highest posterior density credible interval is created. In addi-
tion to Bayes estimates, maximum a posteriori (MAP) estimates are investigated using
Newton-Rapson methods. To show the effectiveness of the proposed estimates, a simu-
lation study is performed using mean square error (MSE), absolute bias (AB), average
confidence length (ACL), and coverage probabilities (CPs). Moreover, several optimality
criteria have been proposed to investigate the optimal censoring scheme. A real-life data
set is also analyzed to demonstrate the practical applicability of the suggested method in
a real-world scenario. The highlights of the findings of this study are given as follows:
Firstly, two classical estimation techniques such as likelihood as well as expectation max-
imization have been employed to estimate the parameters of the INK distribution under
UPHC sample. In addition, approximate confidence intervals for the parameters of the
INK distribution under the UPHC sample are also obtained. Secondly, Bayes estimates
for the parameters have been derived using maximum a posteriori and MCMC techniques
under SELF and LLF along with HPD credible intervals. Finally, we have obtained the
optimal progressive censoring plan using three different optimality criteria.

The rest of this paper is structured as follows: Section 2 obtains the estimate of the
points and intervals of the unknown model parameters based on the UPHC sample using
MLEs using the Newton Rapson method and the EM algorithm. Section 3 presents the
derivation of Bayesian estimation along with the HPD credible intervals. Section 4 obtains
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the MAP estimates of the unknown parameters. Section 5 is dedicated to executing a
Monte Carlo simulation study. Section 6 discusses various optimality criteria for choosing
an optimal progressive censoring plan. Section 7 delves into the analysis of a real-life data
set to confirm the practical applicability of the proposed techniques. The convergence
of the MCMC sample was also tested using different diagnostic plots. Finally, the paper
concludes in Section 8.

2. Inference
In this section, the MLE of the unknown parameters of the INK distribution is ob-

tained by the Newton-Rapson method and the EM algorithm. In addition, the ACI of the
unknown parameters is derived.

2.1. Maximum likelihood estimation
This section focused on the estimation of unknown parameters of the INK distribution

using MLE procedures based on the UPHC sample. Assume that X1:m:n, ..., XD:m:n are
UPHC sample from the INK distribution. Throughout the paper, denote data = x1, ..., xD,
where xi = xi:m:n, i = 1, ..., D. The likelihood function based on the compact form can be
written as follows:

L(ν, η|X) ∝
( 2

Γ(ν)

)D (ν
η

)νD D∏
i=1

x−2ν−1
i e

− ν

ηx2
i

[
1

Γ(ν)γ
(
ν,

ν

ηx2
i

)]Ri [ 1
Γ(ν)γ

(
ν,

ν

ηT 2

)]R∗

,

(2.1)
where

D =


m, case I
d1, case II
k, case III
d2, case IV

, T =


xm, case I
T1, case II
xk, case III
T2, case IV

,

Here, T is the time at which the experiment stopped and R∗ = n−D−
∑D
i=1Ri, Thus,

the log-likelihood function up to a proportionality constant can be expressed as follows:

l(ν, η|data) =D log
( 2

Γ(ν)

)
+ νD log

(
ν

η

)
− (2ν + 1)

D∑
i=1

log (xi) − ν

η

D∑
i=1

1
x2
i

+
D∑
i=1

Ri log

γ
(
ν, ν

ηx2
i

)
Γ(ν)

+R∗ log

γ
(
ν, ν

ηT 2

)
Γ(ν)

 . (2.2)

The likelihood function provided in Equation (2.2) can be maximized to obtain the
MLEs of ν and η. Taking the partial derivative of l(ν, η) given in equation (2.2) with
respect to ν and η, the likelihood equations can be stated as follows:
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∂l

∂ν
= −D

Γ(ν)′

Γ(ν) +D log
(
ν

η

)
+ ηD − 2

D∑
i=1

log(xi) − 1
η

D∑
i=1

1
x2
i

+
D∑
i=1

Ri

γν

(
ν, ν

ηx2
i

)′

γ

(
ν, ν

ηx2
i

)

−
D∑
i=1

Ri
Γ(ν)′

Γ(ν) +R∗
γν
(
ν, ν

ηT 2

)′

γ
(
ν, ν

ηT 2

) −R∗ Γ(ν)′

Γ(ν) , (2.3)

and

∂l

∂η
= −Dν

η
+ ν

η2

D∑
i=1

1
x2
i

+
D∑
i=1

Ri

γη

(
ν, ν

ηx2
i

)′

γ(ν, ν
ηx2
i
) +R∗

γη
(
ν, ν

ηT 2

)′

γ(ν, ν
ηT 2 ) , (2.4)

where Γ(ν)′ is the digamma function, γν(·, ·)′ and γη(·, ·)′ represents the derivative of
the lower incomplete gamma function with respect to ν and η respectively. It is noted
that (2.3) and (2.4) cannot be solved directly. Using a non-linear optimization technique,
the non-linear system of equations provided by (2.3) and (2.4) must be numerically solved
to obtain the MLE of ν and η, respectively, denoted as ν̂ and η̂. Notable is the fact that
the MLEs of the parameters were calculated using the R software’s ‘nleqslv’ package.

Researchers have paid considerable attention to studying the existence and unique prop-
erties of MLEs in terms of statistical inference. However, it is not always possible to derive
the existence and uniqueness property of MLE of the parameters because of the compli-
cated expression of the second order of the log-likelihood function. To overcome this
problem graphically, a contour plot of the log-likelihood function becomes useful. In our
case, studying the second-order partial derivative of the log-likelihood function with re-
spect to ν and η is difficult. Therefore, the contour plot of the MLE for the parameters ν
and η are presented in Figure 3. This plot suggests that MLEs may exist uniquely.

2.2. Expectation-Maximization algorithm
The EM method is a robust iterative algorithm used for estimating parameters in sta-

tistical models, mainly when dealing with incomplete or latent data. It alternates between
an Expectation (E) step, where it computes the expected value of missing data given the
observed data and current parameter estimates, and a Maximization (M) step, where it
updates the parameters to maximize the likelihood of the observed data, incorporating the
expected values obtained from the E-step. EM is widely applied in various fields due to its
ability to handle missing data and its effectiveness in parameter estimation tasks such as
clustering, density estimation, and hidden Markov models. In this section, we consider the
problems of estimating the INK parameters as a problem of incomplete data [3]. Assume
that X = (X1, ..., XD) is an observed sample, (Z = Z1, ..., ZD) is an unobserved sample,
where Zr = (Zr1, ..., ZrRr), r = 1, 2, ..., D is a vector 1×Rr Z ′ = (Z ′

1, ..., Z
′
R∗) as a censored

sample. The complete data set can be modeled as Y = (X,Z,Z ′) and the corresponding
log-likelihood function can be expressed as
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lc(θ) = n log
( 2

Γ(ν)

)
+ νn log

(
ν

η

)
− (2ν + 1)

D∑
i=1

log(xi) − ν

η

D∑
i=1

1
x2
i

− (2ν + 1)
D∑
i=1

Rj∑
j=1

log (Zij) − ν

η

D∑
i=1

Ri∑
j=1

(
1
Z2
ij

)
− (2ν + 1)

R∗∑
i=1

log(ZTj ) − ν

η

R∗∑
i=1

(
1
Z2
Tj

)
.

Using the algorithm’s E-step, it can be seen that

lc =n log
( 2

Γ(ν)

)
+ νn log

(
ν

η

)
− (2ν + 1)

D∑
i=1

log(xi) − ν

η

D∑
i=1

(
1
x2
i

)

− (2ν + 1)
D∑
i=1

Ri∑
j=1

E(log(Zij)|Zij > xi) − ν

η

D∑
i=1

Rj∑
j=1

E

(
1
Z2
ij

|Zij > xi

)

− (2ν + 1)
R∗∑
j=1

E(log(ZTj )|ZTj > T ) − ν

η

R∗∑
j=1

E

(
1
Z2
Tj

|ZTj > T

)
, (2.5)

where

E(log(Zij)|Zij > xi) =
∫ ∞

xi

f(t; ν, η)
1 − F (xi; ν, η) log(t)dt

= 1
1 − F (xi; ν, η)

2
Γ(ν)

(
ν

η

)ν ∫ ∞

xi

t−(2ν+1)exp

(
− ν

ηt2

)
log(t)dt

= A(xi; ν, η),

E

(
1
Z2
ij

|Zij > xi

)
= 2

Γ(ν)

(
ν

η

)ν 1
1 − F (xi; ν, η)

∫ ∞

xi

t−(2ν+1)exp

(
− ν

ηt2

)
· 1
t2
dt

= B(xi; ν, η),

and

E
(
log(ZTj )|ZTj > T

)
= 2

Γ(ν)

(
ν

η

)ν 1
1 − F (T ; ν, η)

∫ ∞

T
t−(2ν+1)exp

(
− ν

ηt2

)
· log(t)dt

= C(T ; ν, η),

E

(
1
Z2
Tj

|ZTj > T

)
= 2

Γ(ν)

(
ν

η

)ν 1
1 − F (T ; ν, η)

∫ ∞

T
t−(2ν+1)exp

(
− ν

ηt2

)
· 1
t2
dt

= D(T ; ν, η).

Thus, the log-likelihood can be expressed as

lc =n log
( 2

Γ(ν)

)
+ νn log

(
ν

η

)
− (2ν + 1)

D∑
i=1

log(xi) − ν

η

D∑
i=1

1
x2
i

− (2ν + 1)
D∑
i=1

RiA(xi; ν, η) − ν

η

D∑
i=1

RiB(xi; ν, η)

− (2ν + 1)R∗C(T ; ν, η) − ν

η
R∗D(T ; ν, η). (2.6)
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The log-likelihood function provided in Equation (2.6) will now be maximized in M-
step with respect to ν and η. We must solve the following equation to obtain the updated
(k + 1)th iteration of η for the provided kth iteration.

η̂ =

∑D
i=1

1
x2
i

+
∑D
i=1RiB(xi; ν(k), η(k)) +R∗D(T ; ν(k), η(k))

n
. (2.7)

The corresponding updated ν can be calculated as follows using the revised estimations
of η.

n
Γ(ν)′

Γ(ν) − n(log(ν) + 1) + n log(η̂) + 2
D∑
i=1

log(xi) + 1
η̂

D∑
i=1

1
x2
i

+ 2
D∑
i=1

RiA(xi; ν(k), η(k))

+ 1
η̂

D∑
i=1

RiB(xi; ν(k), η(k)) + 2R∗C(T ; ν(k), η(k)) + 1
η̂
R∗D(T ; ν(k), η(k)) = 0. (2.8)

This iterative process of E-step and M-step will be repeated until the desired accuracy
is attained in order to produce the estimations of ν and η.

2.3. Approximate confidence intervals
This section deals with constructing frequentist confidence intervals (CIs) of the un-

known parameters of the INK distribution. The 100(1 − ψ)% ACIs of ν and η under
MLE are derived using the asymptotic variance and covariance matrix (V-C) for the cor-
responding MLEs. Approximate CIs using the Fisher information matrix (FIM) involve
computing the inverse of the FIM and using it to construct CIs for the parameters. The
inverse of the FIM approximates the covariance matrix of the parameter estimates, as-
suming the likelihood function is well behaved and the MLE is approximately normally
distributed.

By differentiating Equations (2.3) and (2.4) partially with respect to ν and η, the
observed FIM evaluated at their MLEs is defined as follows:

Iij(θ) = E

[
−∂2l(θ|x)

∂θ2

]
, i, j = 1, 2; θ = (ν̂, τ̂).

Obtaining the exact solution for the expectation in the above equation is cumbersome.
Thus, the approximate variance and covariance matrix, I−1(θ̂), for the MLEs θ̂, is given
by

I−1(ν̂, η̂) ∼=
[

− ∂2l
∂ν2 − ∂2l

∂ν∂η

− ∂2l
∂η∂ν − ∂2l

∂η2

]−1

=
[
var(ν̂) cov(ν̂, η̂)
cov(ν̂, η̂) var(η̂)

]
, (2.9)

where

∂2l

∂ν2 = −D
Γ(ν)′′Γ(ν) − (Γ(ν)′)2

(Γ(ν))2 + D

ν
+

D∑
i=1

Ri

γν

(
ν, ν

ηx2
i

)′′
γ

(
ν, ν

ηx2
i

)
−
[
γν

(
ν, ν

ηx2
i

)′]2

[
γ(ν, ν

ηx2
i
)
]2

+R∗
γν
(
ν, ν

ηT 2

)′′
γ
(
ν, ν

ηT 2

)
−
[
γν
(
ν, ν

ηT 2

)′
]2

[
γ(ν, ν

ηT 2 )
]2 , (2.10)
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∂2l

∂η2 =Dν

η2 − 2ν
η3

D∑
i=1

1
x2
i

+
D∑
i=1

Ri

γη

(
ν, ν

ηx2
i

)′′
γ

(
ν, ν

ηx2
i

)
−
[
γη

(
ν, ν

ηx2
i

)′]2

[
γ(ν, ν

ηx2
i
)
]2

+R∗
γη
(
ν, ν

ηT 2

)′′
γ
(
ν, ν

ηT 2

)
−
[
γη
(
ν, ν

ηT 2

)′
]2

[
γ(ν, ν

ηT 2 )
]2 , (2.11)

and

∂2l

∂ν∂η
= ∂2l

∂η∂ν
= − D

η
+ 1
η

D∑
i=1

1
x2
i

+
D∑
i=1

Ri

γνη

(
ν, ν

ηx2
i

)′′
γ

(
ν, ν

ηx2
i

)
−
[
γη

(
ν, ν

ηx2
i

)′]2

[
γ(ν, ν

ηx2
i
)
]2

+R∗
γνη

(
ν, ν

ηT 2

)′′
γ
(
ν, ν

ηT 2

)
−
[
γη
(
ν, ν

ηT 2

)′
]2

[
γ(ν, ν

ηT 2 )
]2 . (2.12)

Thus, the 100(1−ψ)% ACIs for the unknown model parameters are obtained respectively
as

ν̂ ± zψ
2

√
var(ν̂) and η̂ ± zψ

2

√
var(η̂),

respectively, where zψ
2

denote the upper ψ
2
th percentile of the standard normal distribution.

3. Bayesian Inference
This section focuses on deriving the Bayes estimates (BEs) of unknown parameters

ν and η for the INK distribution based on the UPHC sample. In Bayesian estimation,
loss functions are employed to quantify the discrepancy between true parameter values
and their estimates. Two types of loss function occur mainly in nature: symmetric and
asymmetric. Symmetric loss functions, such as the squared error loss function (SELF),
treat overestimation and underestimation symmetrically, penalizing deviations equally in
either direction. These are frequently used when the cost of overestimating is thought
to be equally as high as that of underestimating. On the other hand, asymmetric loss
functions, such as the LINEX loss function (LLF), represent scenarios in which the effects
of estimation errors are uneven by assigning different penalties to overestimation and
underestimation. Here, two types of loss function are considered: SELF and LLF. These
two loss functions are defined as follows:

LSELF (ζ, ζ̂) = (ζ − ζ̂)2, (3.1)

LLLF (ζ, ζ̂) = eh(ζ−ζ̂) − h(ζ − ζ̂) − 1;h 6= 0, (3.2)
where ζ̂ is estimated value of ζ. To derive the Bayes estimator, it is necessary to have
prior distributions for the unknown model parameters. The prior distribution serves as
a crucial element by encoding existing knowledge or beliefs about the parameters before
observing new data. In this context, we examine the utilization of independent gamma
prior distributions for the unknown parameters ν and η, characterized by hyperparameters
(a1, b1) and (a2, b2), correspondingly. The joint prior PDF of ν and η can be obtained as
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π(ν, η) ∝ νa1−1exp(−b1ν)ηa2−1exp(−b2η); ν, η > 0, ai, bi > 0 for i = 1, 2. (3.3)

3.1. Posterior analysis
Combining the likelihood function in Equation (2.2) and the joint prior distribution

(3.3), the posterior density function of (ν, η) up to normalizing constant is given by

π∗(ν, η|x) = K−1
1

( 2
Γ(ν)

)D
ννD+a1−1η−νD+a2−1

D∏
i=1

x
−(2ν+1)
i e

− ν
η

∑D

i=1 x
−2
i e−b1ν−b2η

D∏
i=1

γ
(
ν, ν

ηx2
i

)
Γ(ν)


Ri γ

(
ν, ν

ηT 2

)
Γ(ν)

R
∗

, (3.4)

where

K1 =
∫ ∞

0

∫ ∞

0

( 2
Γ(ν)

)D
ννD+a1−1η−νD+a2−1

D∏
i=1

x
−(2ν+1)
i e

− ν
η

∑D

i=1 x
−2
i e−b1ν−b2η

D∏
i=1

γ
(
ν, ν

ηx2
i

)
Γ(ν)


Ri γ

(
ν, ν

ηT 2

)
Γ(ν)

R
∗

dνdη.

Assume v(ν, η) denotes the function of ν and η. The BEs of function v(ν, η) under
SELF and LLF are given respectively by

v̂SELF (ν, η) =K−1
∫ ∞

0

∫ ∞

0
v(ν, η)

( 2
Γ(ν)

)D
ννD+a1−1η−νD+a2−1

D∏
i=1

x
−(2ν+1)
i e

− ν
η

∑D

i=1 x
−2
i

e−b1ν−b2η
D∏
i=1

γ
(
ν, ν

ηx2
i

)
Γ(ν)


Ri γ

(
ν, ν

ηT 2

)
Γ(ν)

R
∗

dνdη, (3.5)

and

v̂LLF (ν, η) = − 1
h

log
[
K−1

∫ ∞

0

∫ ∞

0
v(ν, η)

( 2
Γ(ν)

)D
ννD+a1−1η−νD+a2−1

D∏
i=1

x
−(2ν+1)
i

e
− ν
η

∑D

i=1 x
−2
i e−b1ν−b2η

D∏
i=1

γ
(
ν, ν

ηx2
i

)
Γ(ν)


Ri γ

(
ν, ν

ηT 2

)
Γ(ν)

R
∗

dνdη

 (3.6)

respectively. In order to compute the BE of ν and η, it is necessary to replace ν and
η in place of the function v(ν, η) in (3.5) and (3.6). Furthermore, it is seen that the
integral involved in Equations (3.5) and (3.6) are very difficult and therefore cannot be
solved analytically. Therefore, MCMC approximation techniques are required to derive the
approximate BEs. The MCMC is a very popular technique for computing approximate
BEs. For additional information on MCMC methods, seeet al. [25]. Here, we use the
Metropolis-Hasting (M-H) algorithm to obtain the BEs of the unknown parameters ν and
η based on UPHC data, which is described in the following subsection.
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3.2. Metropolis-Hastings algorithm
The Metropolis-Hastings (M-H) algorithm is a technique for obtaining random sam-

ples from complex probability distributions that may be challenging to directly sample
from. By constructing a Markov chain- a sequence of interconnected random variables-the
algorithm creates a pathway with a stationary distribution matching the desired target dis-
tribution. For more details on the M-H algorithm, see Metropolis et al. [28] and Hastings
[35]. From Equation (3.4), the full conditional posterior pdfs of ν and η can be written,
respectively, as:

π∗
1(ν|η, x) ∝

( 1
Γ(ν)

)D
ννD+a1−1η−νD

D∏
i=1

x−2ν−1
i e

− ν
η

∑D

i=1 x
−2
i e−b1ν

×
D∏
i=1

γ
(
ν, ν

ηx2
i

)
Γ(ν)


Ri γ

(
ν, ν

ηT 2

)
Γ(ν)

R
∗

(3.7)

and

π∗
2(η|ν, x) ∝ η−νD+a2−1e− ν

η

D∑
i=1

x−2
i e−b2η

D∏
i=1

γ
(
ν, ν

ηx2
i

)
Γ(ν)


Ri γ

(
ν, ν

ηT 2

)
Γ(ν)

R
∗

, (3.8)

respectively. Note that the conditional posterior pdfs in Equation (3.7) and Equation
(3.8) are not in any well-known distribution. So, the M-H algorithm with normal pro-
posal distributional family is used. To compute Bayes estimates and construct associated
Bayesian credible intervals of ν and η, the following algorithm is considered:
Step 1: Start with an initial guess ν(0) = ν̂ and η(0) = η̂.

Step 2: Generate ν∗ and η∗ from the normal proposal distributions N(ν(j−1), σ̂νν) and
N(η(j−1), σ̂ηη), respectively, for j = 1, 2, ..., N .

Step 3: Compute the acceptance probabilities for

φ1(ν(j−1), ν∗) = min

(
1, π∗

1(ν∗|η(j−1), x)
π∗

1(ν(j−1)|η(j−1), x)

)
,

and

φ2(η(j−1), η∗) = min

(
1, π∗

2(η(j)|ν(j), x)
π∗

2(η(j−1)|ν(j), x)

)
.

Step 4: Draw u1 and u2 from U(0, 1).

Step 5: If u1 ≤ φ1, set ν(j) = ν∗; otherwise, set ν(j) = ν(j−1). If u2 ≤ φ2, set η(j) = η∗;
otherwise, set η(j) = η(j−1).

Step 6: Set j = j + 1.

Step 7: Replicate steps 2-6 up to N times.

Thus, the BEs of ν and η under SELF and LLF can be obtained as
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ν̂SELF =

N∑
j=M+1

ν(j)

N −M
, ν̂LLF = −

(1
h

)
log


N∑

j=M+1
e−hν(j)

N −M

 , (3.9)

and

η̂SELF =

N∑
j=M+1

η(j)

N −M
, η̂LLF = −

(1
h

)
log


N∑

j=M+1
e−hη(j)

N −M

 , (3.10)

respectively, where M is the burn-in period of the Markov chain and h 6= 0.

3.3. HPD credible intervals
We follow the technique proposed by Chen and Shao [18] to construct the HPD credible

intervals. First, order the simulated MCMC samples of ν(j) and η(j) for j = 1, .., N after
burn-in as (ν(M+1), ν(M+2), ..., ν(N)) and (η(M+1), η(M+1), ..., η(N)) respectively. Hence,
100(1 − ψ)% two sided HPD credible intervals for ν and η are given by[

ν
[ (N−M)ψ

2

]
, ν
[
(N−M)

(
1−ψ

2

)]]
and

[
η
[ (N−M)ψ

2

]
, η
[
(N−M)

(
1−ψ

2

)]]
respectively.

3.4. Selection of prior-parameter
In Bayesian analysis, the main problem is the elicitation process used to determine

the hyperparameter value. The goal of the elicitation process is to capture as accurately
as possible the prior uncertainty about the parameters, which serves as a starting point
for Bayesian inference. It is essential to conduct elicitation carefully to ensure that the
prior distributions are informative and reflect the available knowledge without bias. Many
authors investigate this problem in the literature [9, 23,33]. In this respect, we follow the
algorithm of [23] to determine the value of the hyperparameters (a1, b1) and (a2, b2) of ν
and η, respectively.

The mean and variance of the prior gamma densities given in Equation (3.3) are, re-
spectively, as follows:

1
B

B∑
j=1

ν̂(j) = a1
b1

and 1
B − 1

B∑
j=1

ν̂(j) − 1
B

B∑
j=1

ν̂(j)

2

= a1
b2

1
, (3.11)

and
1
B

B∑
j=1

η̂(j) = a2
b2

and 1
B − 1

B∑
j=1

η̂(j) − 1
B

B∑
j=1

η̂(j)

2

= a2
b2

2
, (3.12)

where B is the total number of replications required to generate ν̂(j) and η̂(j) for j =
1, 2, ..., B. Using Equation (3.3), the estimated hypeparameter values â1 and b̂1 of a1 and
b1 for ν can be obtained, respectively, by

â1 =

(
1
B

∑B
j=1 ν̂

(j)
)2

1
B−1

∑B
j=1

(
ν̂(j) −B−1∑B

j=1 ν̂
(j)
)2 , (3.13)

and
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b̂1 =
1
B

∑B
j=1 ν̂

(j)

1
B−1

∑B
j=1

(
ν̂(j) −B−1∑B

j=1 ν̂
(j)
)2 . (3.14)

Solving (3.12), the estimated hyperparameters values â2 and b̂2 of a2 and b2 for η can
be obtained, respectively, by

â2 =

(
1
B

∑B
j=1 η̂

(j)
)2

1
B−1

∑B
j=1

(
η̂(j) −B−1∑B

j=1 η̂
(j)
)2 , (3.15)

and

b̂2 =
1
B

∑B
j=1 η̂

(j)

1
B−1

∑B
j=1

(
η̂(j) −B−1∑B

j=1 η̂
(j)
)2 . (3.16)

4. Maximum a posteriori estimation
In Bayesian analysis, maximum a posteriori (MAP) estimation refers to estimating the

parameters of a statistical model by finding the most probable values given both the
observed data and prior knowledge about the parameters. It is a method used to infer
the parameters of a model based on Bayes’ theorem, which allows us to update our beliefs
about the parameters in light of observed data.

If Θ̂MAP represents MAP estimates of the parameters Θ = (ν, η) then

Θ̂MAP = arg max
Θ

π(Θ|data)

= arg max
Θ

{log π(data|Θ) + log π(Θ)}, (4.1)

where π(Θ|data) is the posterior distribution, π(data|Θ) joint distribution of data and
π(Θ) joint prior distribution. Using (3.3) and (3.4), the MAP estimates can be obtained
from the following formula:

Θ̂MAP = arg max
Θ

{
D log( 1

Γ(ν)) + (Dν + a1 − 1) log(ν) + (−Dν + a1 − 1) log(η) − (2ν + 1)

D∑
i=1

log(xi) − ν

η

D∑
i=1

x−2
i − (b1ν + b2η) +

D∑
i=1

log

γ(ν, ν
ηx2
i
)

Γ(ν)

+R∗ log
[
γ(ν, ν

ηT 2 )
Γ(ν)

] .
(4.2)

To obtain α̂MAP and β̂MAP, differentiating (4.2) with respect to α and β respectively,
then setting to zero

−D
Γ(ν)′

Γ(ν) +D log(ν) + (Dν + a1 − 1)
ν

−D log(η) − 2
D∑
i=1

log(xi) − 1
η

D∑
i=1

x−2
i − b1

+
D∑
i=1

Ri
γ(ν, ν

ηx2
i
)′

γ(ν, ν
ηx2
i
) +R∗γ(ν, ν

ηT 2 )′

γ(ν, ν
ηT 2 ) −

D∑
i=1

Ri
Γ(ν)′

Γ(ν) −R∗ Γ(ν)′

Γ(ν) = 0 (4.3)
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and

−Dν + a2 − 1
η

+ ν

η2

D∑
i=1

x−2
i − b2 +

D∑
i=1

γη

(
ν, ν

ηx2
i

)′

γ

(
ν, ν

ηx2
i

) +R∗
γη
(
ν, ν

ηT 2

)′

γ
(
ν, ν

ηT 2

) = 0. (4.4)

It has been noticed that Equations (4.3) and (4.4) cannot be explicitly solved. To obtain
ν̂MAP and η̂MAP, the nonlinear system of equations given by Equation (4.3) and Equation
(4.4) can be solved numerically using the Newton-Rapson iterative method.

5. Simulation study
This section conducts a simulation study to examine the behavior of various estimates

of ν and η under the UPHC scheme. The evaluation of the estimates’ performance has
been conducted from the following viewpoint:

• Mean square error (MSE): Let χ and χ̂ denote the unknown parameters of the
associated estimates and N is the total number of replications. Then, the MSE is
defined as follows:

MSE(χ̂) = 1
N

N∑
i=1

(
χ̂(i) − χ

)2
.

The smaller value of MSE signifies the superior performance of the estimates.
• Average bias (AB): The AB is defined as follows:

AB(χ̂) = 1
N

N∑
i=1

(χ̂(i) − χ).

A smaller AB value suggests that the experimental data exhibits higher accuracy
with the predictive model.

• Average width (AW): The AW of the interval estimates at a significance level of
ψ has been assessed. Let Li and Ui be the lower and upper limits of the estimates,
then the AW can be written as follows

AW(χ̂) = 1
N

N∑
i=1

(Ui − Li) .

A shorter length indicates superior performance in the estimation of intervals.
• Average Coverage probability (ACP): The probability of containing the

actual parameter values within the estimated interval ranges. The average coverage
probability (ACP) for the ACI/HPD credible intervals of the unknown parameters
are derived using the following formula

ACP(χ̂) = 1
N

N∑
i=1

1(Ui;Li)(χ),

where 1(·) is the indicator function.

Note that all calculations are executed using R code. To generate 103 UPHC sample
from INK distribution, different combination of n,m, k, T1, and T2 have been taken. The
UPHC samples are generated using the algorithm proposed by Kim and Lee [15]. To
generate the random sample, the actual values of the parameters are assumed ν = 1.5
and η = 2.5. Moreover, two different sets of time thresholds T1, T2 are taken (1, 2) and
(1.5, 2.5). In addition, to this, various sets of sample and effective sample sizes (n,m, k)
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are taken as {(40, 20, 10), (40, 20, 15), (40, 30, 15), (40, 30, 20), (60, 30, 20),
(60, 30, 25), (60, 40, 25), (60, 40, 30)}. In this study, three different PCS are adopted:

• Scheme-A: R1 = n−m, Ri = 0 for i 6= 1,
• Scheme-B: R1 = Rm = n−m

2 , Ri = 0 for i 6= 1,m,
• Scheme-C: Rm = n−m, Ri = 0 for i 6= m.

In the Bayesian paradigm, the choice of hyperparameters plays an important role. In
this study, the gamma prior distributions are considered as a prior distribution for ν and
η. For different values of n,m, k, T1, T2 and different CS, the hyperparameter values are
presented in Table 1.

Using 103 samples the classical estimates of ν and η with their 95% ACIs are calculated.
To perform the M-H sampler, 5 × 103 MCMC samples are created, and the first 103

observations are discarded to avoid the effect of the initial guess. So, based on 4 × 103

MCMC samples, the expected BE and 95% BCI are calculated. The biases and MSEs
of the frequentist and Bayesian approaches of ν and η are calculated and provided in
Tables 2, 3, 5 and 6, respectively. In addition, the credible intervals 95% ACIs / HPD
with average coverage probabilities (CPs) are derived and tabulated in Tables 4 and 7,
respectively. All calculations are done using R code via packages “coda" (explored by
Plummer et al. [24]) and “nleqslv" (proposed by Hasselman and Hasselman [6]). From
the numerical result, it is noted that the MLEs and BEs of the unknown parameters
produce satisfactory results in terms of average biases and MSE. In addition, for fixed n,
as the failure rate m increases, the MSE decreases as expected for all estimates. Therefore,
increasing the effective sample size may yield more accurate estimation results. In most
scenarios, when the threshold time values T1 and T2 increase, the AB and MSE of the
parameters decrease. Regarding the loss functions, the BEs under LLF (h = 0.5) are
better than the SELF and MAP for AB and MSE. It is evident from comparing the
three censoring schemes ABs and MSEs related to unknown parameters ν for scheme A
are lower than schemes B and C. Moreover, scheme C has lower ABs and MSEs for the
parameter η. The numerical experiment demonstrates that the BEs outperform the two
frequentist approaches, namely NR and EM, with regard to MSEs and ABs. Regarding
interval estimations, the ACLs of the credible ACI and HPD intervals tend to decrease as
the number of failures m and k increases. Moreover, the ACLs of the ACI/HPD credible
intervals get smaller when the threshold times T1 and T2 rise. However, no specific trends
were obtained regardingrage coverage probabilities (ACPs). Tables 4 and 7 show that
the ACLs of scheme A are smaller than those of schemes B and C for the parameters
ν. Moreover, Tables 4 and 7 demonstrate that the ACLs of parameters η are smaller for
scheme C than for schemes A and B. In summary, the simulation results show that, in
terms of MSEs, ABs, and ACLs, respectively, the performance of the Bayes point and the
credible intervals is superior to that of the frequentist approach.

6. Optimality
In reliability theory, the optimal choice of a censoring scheme holds significant impor-

tance, particularly in scenarios involving progressive censoring. Progressive censoring is a
method where data is collected gradually over time. Selecting the best censoring scheme
involves considering factors like data type, study goals, resource constraints, and statis-
tical efficiency. This decision directly impacts the accuracy of reliability estimates. By
thoughtfully choosing an optimal censoring scheme, researchers can enhance the precision
of reliability assessments, ensuring more reliable and trustworthy results in the context
of gradually collected data in reliability theory. Recently, the issue of comparing two or
more competing censoring plans has gained attention from various authors, for example,
[7, 19, 23, 29] among others. The variance optimality criteria are commonly applied to
single-parameter distributions, whereas trace and determinant optimality criteria apply
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Table 1. Hyper-Parameters values based on various censoring schemes.

T1 = 1, T2 = 2 T1 = 1.5, T2 = 2.5
(n,m) k CS a1 b1 a2 b2 a1 b1 a2 b2

(40,20) 10 A 7.47 4.39 33.08 13.25 9.16 5.58 35.56 14.09
B 5.77 3.22 46.14 18.35 7.25 4.18 44.93 17.79
C 5.45 3.00 53.68 21.19 4.98 2.71 56.61 22.35

15 A 8.61 5.00 36.99 14.63 9.27 5.61 36.10 14.19
B 7.13 4.15 46.82 18.53 7.27 4.10 47.22 18.58
C 5.47 3.00 47.50 18.85 5.83 3.16 57.29 22.67

(40,30) 15 A 11.14 6.72 46.99 18.80 14.50 8.89 46.27 18.44
B 12.20 7.58 57.02 22.78 13.60 8.30 52.00 20.70
C 11.37 6.91 59.09 23.69 11.98 7.07 58.81 23.26

20 A 12.41 7.53 47.44 18.89 13.81 8.47 45.64 18.13
B 13.78 8.47 52.98 21.16 13.74 8.24 51.30 20.44
C 12.02 7.29 57.09 22.87 14.20 8.60 58.70 23.60

(60,30) 20 A 11.39 6.94 54.44 21.54 15.08 9.33 55.08 21.94
B 12.20 7.39 67.16 26.61 14.20 8.60 73.50 29.20
C 9.70 5.64 81.57 32.30 9.87 5.76 81.45 32.31

25 A 12.66 7.74 55.91 22.26 16.00 10.00 54.20 21.70
B 11.93 7.15 64.75 25.63 13.57 8.17 70.60 27.97
C 10.07 5.86 82.00 32.60 9.24 5.39 78.12 30.96

(60,40) 25 A 15.18 9.55 64.91 25.91 19.50 12.20 71.40 28.50
B 17.01 10.66 75.07 29.94 18.10 11.20 75.70 30.40
C 15.21 9.32 95.40 38.17 17.90 11.00 88.70 35.30

30 A 15.49 9.51 67.66 26.86 20.43 12.76 62.22 24.76
B 17.70 10.85 71.54 28.61 19.18 11.99 78.90 31.47
C 17.38 10.69 87.30 34.68 16.50 10.18 91.52 36.65

to distributions with multiple parameters. To obtain the optimal PCS, some prevalent
criteria for different values of the n,m, k, and Ti, i = 1, 2, with censoring scheme Ri,
i = 1, ...,m are taken. Criteria I and II aim to minimize the trace and determinant of the
variance-covariance (V-C) matrix. The comparison of two or more observed V-C matrices
is not a trivial task, as criteria I and II are not scale-invariant. However, one can choose
the most suitable censoring scheme for a multi-parameter distribution using criteria III,
invariant to scale. These criteria are provided in the following Table 8.
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Table 2. Biases and MSEs (in parentheses) of ν for (T1, T2) = (1, 2).

(n,m) k CS NR EM MAP SELF LLF

h = -0.25 h=0.50
(40,20) 10 A 0.1708 0.1384 0.0345 0.0782 0.0491 -0.0162

(0.4012) (0.2419) (0.1286) (0.1034) (0.0839) (0.0721)
B 0.2986 0.1675 0.1136 0.0896 0.0606 0.0588

(0.5909) (0.2878) (0.1382) (0.1208) (0.0916) (0.1018)
C 0.3329 0.1605 0.1184 0.1279 0.0799 0.0594

(0.6141) (0.3585) (0.1378) (0.1383) (0.1110) (0.0993)

15 A 0.1795 0.1388 0.0579 0.1027 0.0705 0.0066
(0.3574) (0.2408) (0.0757) (0.0984) (0.0715) (0.0576)

B 0.2724 0.1620 0.0836 0.1875 0.1070 0.0367
(0.5023) (0.2482) (0.1050) (0.1482) (0.1047) (0.0799)

C 0.2839 0.1440 0.0907 0.2312 0.1256 0.0369
(0.6048) (0.3368) (0.1334) (0.2084) (0.1368) (0.0989)

(40,30) 15 A 0.1281 0.1373 0.0404 0.0997 0.0463 -0.0023
(0.2703) (0.2361) (0.0611) (0.0723) (0.0579) (0.0504)

B 0.1224 0.1666 0.0270 0.0781 0.0313 -0.0116
(0.2335) (0.2237) (0.0483) (0.0564) (0.0465) (0.0416)

C 0.1541 0.1646 0.0509 0.1069 0.0580 0.0131
(0.2580) (0.2204) (0.0597) (0.0726) (0.0579) (0.0492)

20 A 0.1332 0.1480 0.0439 0.0996 0.0494 0.0035
(0.2431) (0.1858) (0.1277) (0.0627) (0.0499) (0.0430)

B 0.1448 0.1287 0.0491 0.0979 0.0527 0.0110
(0.2326) (0.2096) (0.0473) (0.0570) (0.0458) (0.0394)

C 0.1150 0.1124 0.0336 0.0886 0.0417 -0.0013
(0.2307) (0.1998) (0.0564) (0.0674) (0.0551) (0.0482)

(60,30) 20 A 0.1162 0.1297 0.0364 0.0977 0.0478 0.0021
(0.2048) (0.1638) (0.0512) (0.0621) (0.0496) (0.0430)

B 0.1525 0.1393 0.0614 0.1270 0.0795 0.0357
(0.2237) (0.1882) (0.0539) (0.0711) (0.0552) (0.0451)

C 0.2185 0.1209 0.0932 0.1866 0.1238 0.0674
(0.3284) (0.2221) (0.0717) (0.1093) (0.0793) (0.0602)

25 A 0.1220 0.1186 0.0550 0.1090 0.0635 0.0215
(0.2002) (0.1623) (0.0507) (0.0620) (0.0489) (0.0418)

B 0.1415 0.1350 0.0534 0.1121 0.0634 0.0334
(0.2177) (0.1802) (0.0419) (0.0619) (0.0454) (0.0409)

C 0.2180 0.1199 0.0834 0.0668 0.0742 0.0591
(0.3001) (0.2201) (0.0611) (0.0899) (0.0652) (0.0525)

(60,40) 25 A 0.0813 0.0905 0.0156 0.0591 0.0217 -0.0132
(0.1531) (0.1298) (0.0368) (0.0414) (0.0354) (0.0325)

B 0.1021 0.1306 0.0337 0.0730 0.0398 0.0086
(0.1609) (0.1504) (0.0388) (0.0454) (0.0388) (0.0348)

C 0.1339 0.1161 0.0532 0.0977 0.0610 0.0265
(0.1982) (0.2082) (0.0455) (0.0552) (0.0452) (0.0386)

30 A 0.0808 0.0805 0.0151 0.0580 0.0209 -0.0102
(0.1484) (0.1225) (0.0311) (0.0401) (0.0339) (0.0319)

B 0.1001 0.0999 0.0321 0.0322 0.0327 0.0302
(0.1580) (0.1382) (0.0374) (0.0359) (0.0359) (0.0342)

C 0.1261 0.0997 0.0488 0.0772 0.0532 0.0202
(0.1751) (0.1582) (0.0434) (0.0532) (0.0442) (0.0366)
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Table 3. Biases and MSEs (in parenthesis) of η for (T1, T2) = (1, 2).

(n,m) k CS NR EM MAP SELF LLF

h = -0.25 h=0.50
(40,20) 10 A 0.0630 0.0337 -0.0169 0.0561 0.0565 -0.0257

(0.1829) (0.1637) (0.0441) (0.0475) (0.0476) (0.0412)
B 0.0078 -0.0177 -0.0267 0.0652 0.0654 0.0158

(0.1395) (0.1289) (0.0759) (0.0711) (0.0712) (0.0567)
C 0.0202 -0.0125 -0.0120 0.0303 0.0112 0.0424

(0.1230) (0.1077) (0.0796) (0.0854) (0.0763) (0.0680)

15 A 0.0370 0.0230 -0.0155 0.0545 0.0150 -0.0225
(0.1823) (0.1601) (0.0437) (0.0463) (0.0417) (0.0403)

B 0.0198 -0.0151 -0.0325 0.0173 0.0122 0.1079
(0.1315) (0.1214) (0.0736) (0.0633) (0.0556) (0.0494)

C 0.0196 -0.0177 -0.0186 0.0392 0.0188 0.0587
(0.1229) (0.1073) (0.0719) (0.0835) (0.0733) (0.0641)

(40,30) 15 A 0.0194 0.0199 -0.0241 0.0222 -0.0088 -0.0387
(0.1322) (0.1159) (0.0337) (0.0341) (0.0326) (0.0330)

B 0.0022 -0.0115 -0.0266 0.0169 -0.0100 -0.0359
(0.1216) (0.1087) (0.0293) (0.0318) (0.0311) (0.0318)

C -0.0077 -0.0110 -0.0337 0.0658 0.0445 0.0239
(0.1031) (0.1004) (0.0673) (0.0515) (0.0596) (0.0586)

20 A 0.0089 0.0207 -0.0235 0.02315 -0.0078 -0.0374
(0.1368) (0.0891) (0.0352) (0.0355) (0.0339) (0.0342)

B 0.0143 0.0194 -0.0210 0.0257 -0.0016 -0.0291
(0.1236) (0.1002) (0.0317) (0.0356) (0.0344) (0.0346)

C 0.0327 0.00877 0.0051 0.0237 0.0225 0.0214
(0.0793) (0.0673) (0.0480) (0.0762) (0.0704) (0.0629)

(60,30) 20 A 0.0108 -0.0151 -0.0124 0.0391 0.0118 -0.0145
(0.1227) (0.0728) (0.0294) (0.0308) (0.0285) (0.0278)

B 0.0163 -0.0210 -0.0068 0.1800 0.1639 0.1481
(0.0829) (0.0717) (0.0221) (0.0576) (0.0519) (0.0468)

C 0.0144 -0.0113 -0.0147 -0.0031 -0.0029 -0.0041
(0.0522) (0.0451) (0.0416) (0.0416) (0.0416) (0.0416)

25 A 0.0250 -0.0177 -0.0154 0.0328 0.0063 -0.0193
(0.1222) (0.0688) (0.0284) (0.0292) (0.0274) (0.0269)

B 0.0250 -0.0179 -0.0154 0.0328 0.0063 -0.0193
(0.1222) (0.0628) (0.0284) (0.0292) (0.0274) (0.0269)

C 0.0206 0.0158 -0.0109 0.0007 0.0008 -0.0004
(0.0521) (0.0408) (0.0404) (0.0405) (0.0405) (0.0405)

(60,40) 25 A 0.0017 -0.0035 -0.0213 0.0166 -0.0061 -0.0283
(0.0899) (0.0473) (0.0225) (0.0224) (0.0216) (0.0209)

B 0.0092 0.0045 -0.0124 0.0474 0.0291 0.0113
(0.0822) (0.0599) (0.0311) (0.0316) (0.0304) (0.0298)

C 0.0121 -0.0070 -0.0189 0.1390 0.1280 0.0172
(0.0690) (0.0669) (0.0365) (0.0377) (0.0347) (0.0320)

30 A 0.0056 -0.0039 -0.0171 -0.0066 -0.0065 -0.0078
(0.0618) (0.0321) (0.0212) (0.0212) (0.0212) (0.0211)

B -0.0094 -0.010 -0.0201 -0.0093 -0.0092 -0.0104
(0.0504) (0.0358) (0.0238) (0.0229) (0.0229) (0.0227)

C 0.0109 0.0122 -0.0139 -0.0039 -0.0042 -0.0039
(0.0456) (0.0400) (0.0280) (0.0271) (0.0272) (0.0261)
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Table 4. ACI, HDI and CP of ν and η for (T1, T2) = (1, 2).

(n,m) k CS ν η
ACI CP HDI CP ACI CP HDI CP

(40,20) 10 A 2.1915 0.9570 1.5341 0.9890 1.6754 0.9600 1.1481 0.9900
B 2.2587 0.9570 1.6691 0.9750 1.3709 0.9140 0.9041 0.9360
C 2.5292 0.9620 1.8153 0.9860 1.2632 0.9180 0.7836 0.8270

15 A 2.1651 0.9590 1.4833 0.9910 1.6392 0.9330 1.1173 0.9920
B 2.2224 0.9480 1.5632 0.9850 1.3641 0.9300 0.9038 0.9410
C 2.4590 0.9580 1.7882 0.9830 1.2795 0.9210 0.8070 0.8150

(40,30) 15 A 1.8225 0.9520 1.2753 0.9960 1.4159 0.9410 0.9874 0.9910
B 1.7146 0.9610 1.1962 0.9940 1.3207 0.9270 0.9179 0.9820
C 1.7093 0.9470 1.2222 0.9900 1.2415 0.9310 0.8249 0.9630

20 A 1.8153 0.9550 1.2390 0.9920 1.4026 0.9340 0.9840 0.9900
B 1.7315 0.9530 1.1758 0.9930 1.3192 0.9320 0.9265 0.9790
C 1.6692 0.9450 1.1964 0.9920 1.2635 0.9300 0.8407 0.9490

(60,30) 20 A 1.7479 0.9640 1.2354 0.9950 1.3554 0.9350 0.9271 0.9930
B 1.6958 0.9660 1.2051 0.9930 1.1524 0.9460 0.7245 0.8940
C 1.9309 0.9700 1.3906 0.9910 1.0494 0.9330 0.6178 0.8980

25 A 1.6893 0.9620 1.1769 0.9900 1.3384 0.9340 0.9152 0.9940
B 1.6904 0.9480 1.1879 0.9990 1.1221 0.9490 0.7180 0.9120
C 1.8775 0.9750 1.0905 0.9910 1.0431 0.9390 0.6105 0.9180

(60,40) 25 A 1.4513 0.9460 1.1030 0.9920 1.1526 0.9470 0.8651 0.9660
B 1.4200 0.9500 1.0111 0.9940 1.1062 0.9370 0.7632 0.9530
C 1.4765 0.9540 1.0626 0.9800 1.0205 0.9350 0.5988 0.9040

30 A 1.4493 0.9600 1.1004 0.9990 1.0931 0.9390 0.8587 0.9710
B 1.4115 0.9450 1.0067 0.9970 1.0462 0.9390 0.7534 0.9630
C 1.4545 0.9610 1.0081 0.9950 1.0009 0.9500 0.5899 0.9510
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Table 5. Biases and MSEs (in parenthesis) of ν for (T1, T2) = (1.5, 2.5).

(n,m) k CS NR EM MAP SELF LLF

h = -0.25 h=0.50
(40,20) 10 A 0.1992 0.1456 0.0276 0.0978 0.0984 -0.0156

(0.3914) (0.2416) (0.0656) (0.0801) (0.0803) (0.0544)
B 0.2734 0.1576 0.0901 0.1934 0.1943 0.0432

(0.4990) (0.2858) (0.1021) (0.1477) (0.1483) (0.0782)
C 0.3182 0.1602 0.0442 0.0813 0.0790 -0.0063

(0.5079) (0.3495) (0.1074) (0.1089) (0.1088) (0.0828)

15 A 0.2052 0.1442 0.0086 0.0760 0.0207 -0.0293
(0.3449) (0.2410) (0.0562) (0.0660) (0.0533) (0.0478)

B 0.2505 0.1542 0.0440 0.1342 0.0640 0.0018
(0.4453) (0.2804) (0.0684) (0.0950) (0.0686) (0.0550)

C 0.3014 0.1568 -0.0195 0.1204 0.0251 -0.0445
(0.4519) (0.3384) (0.0741) (0.3841) (0.0751) (0.0638)

(40,30) 15 A 0.1221 0.1245 0.0453 0.0886 0.0484 0.0109
(0.1981) (0.2311) (0.0456) (0.0532) (0.0436) (0.0379)

B 0.1401 0.1171 0.0514 0.1089 0.1093 0.1047
(0.2603) (0.2188) (0.0269) (0.0400) (0.0404) (0.0382)

C 0.1476 0.1641 0.1898 0.2411 0.1895 0.1421
(0.2252) (0.2171) (0.0987) (0.1251) (0.0952) (0.0732)

20 A 0.0947 0.1355 0.0307 0.0753 0.0348 -0.0029
(0.1784) (0.1654) (0.0444) (0.0507) (0.0423) (0.0376)

B 0.1566 0.1808 0.0707 0.1174 0.0751 0.0358
(0.2372) (0.1790) (0.0544) (0.0660) (0.0525) (0.0436)

C 0.1448 0.1225 0.0546 0.1043 0.0613 0.0215
(0.2161) (0.1901) (0.0460) (0.0571) (0.0452) (0.0379)

(60,30) 20 A 0.1192 0.1394 0.0419 0.0883 0.0501 0.0144
(0.1734) (0.1577) (0.0415) (0.0499) (0.0411) (0.0358)

B 0.1371 0.1309 0.0678 0.1274 0.0832 0.0423
(0.2296) (0.1796) (0.0511) (0.0656) (0.0520) (0.0434)

C 0.1935 0.1190 0.0798 0.1691 0.1080 0.0529
(0.3086) (0.2210) (0.0686) (0.1022) (0.0752) (0.0583)

25 A 0.1059 0.1132 0.2219 0.2724 0.2257 0.1823
(0.1698) (0.1524) (0.1057) (0.1336) (0.1047) (0.0823)

B 0.1534 0.1380 -0.0049 0.0369 0.0372 0.0342
(0.2566) (0.1800) (0.0141) (0.0169) (0.0168) (0.0162)

C 0.1731 0.1281 -0.0024 0.0397 0.0400 0.0369
(0.3040) (0.2150) (0.0445) (0.0468) (0.0469) (0.0465)

(60,40) 25 A 0.0992 0.0871 0.0409 0.0737 0.0444 0.0166
(0.1291) (0.1154) (0.0314) (0.0363) (0.0308) (0.0273)

B 0.0972 0.0992 0.0393 0.0776 0.0467 0.0175
(0.1387) (0.1280) (0.0344) (0.0411) (0.0345) (0.0302)

C 0.1153 0.1176 0.0480 0.0887 0.0551 0.0234
(0.1631) (0.2078) (0.0365) (0.0446) (0.0367) (0.0316)

30 A 0.0748 0.0861 0.0307 0.0625 0.0341 0.0071
(0.1285) (0.1101) (0.0312) (0.0352) (0.0304) (0.0271)

B 0.1130 0.1051 0.0409 0.0773 0.0472 0.0186
(0.1311) (0.0923) (0.0340) (0.0401) (0.0337) (0.0295)

C 0.1239 0.0915 0.0671 0.1048 0.0711 0.0394
(0.1608) (0.1362) (0.0349) (0.0437) (0.0357) (0.0315)
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Table 6. Biases and MSEs (in parenthesis) of η for (T1, T2) = (1.5, 2.5).

(n,m) k CS NR EM MAP SELF LLF

h = -0.25 h=0.50
(40,20) 10 A 0.0122 -0.0487 -0.0301 0.0412 0.0416 -0.0374

(0.1679) (0.1621) (0.0425) (0.0436) (0.0436) (0.0399)
B 0.0386 0.0264 -0.0084 0.2015 0.2018 0.1516

(0.1396) (0.1216) (0.0761) (0.0749) (0.0750) (0.0557)
C -0.0268 -0.0438 -0.0292 0.2093 0.1905 0.1721

(0.1177) (0.0985) (0.0789) (0.0727) (0.0645) (0.0572)

15 A 0.0607 0.0164 -0.0500 0.0176 -0.0203 -0.0566
(0.1641) (0.1542) (0.0405) (0.0382) (0.0367) (0.0381)

B 0.0318 0.0026 0.0207 0.2296 0.2039 0.1690
(0.1338) (0.1217) (0.0758) (0.0864) (0.0744) (0.0541)

C 0.0218 -0.0106 -0.0844 0.1271 0.1091 0.0916
(0.1126) (0.0955) (0.0598) (0.0586) (0.0548) (0.0499)

(40,30) 15 A 0.0049 -0.0034 -0.0279 0.0189 -0.0123 -0.0422
(0.1426) (0.1141) (0.0381) (0.0380) (0.0366) (0.0372)

B -0.0049 -0.0057 -0.0060 0.0103 0.0104 0.0087
(0.0746) (0.0990) (0.0496) (0.0470) (0.0462) (0.0469)

C -0.0028 -0.0085 0.0074 0.1602 0.1422 0.1247
(0.1119) (0.0998) (0.0618) (0.0577) (0.0518) (0.0466)

20 A 0.0106 0.0027 -0.0208 0.0269 -0.0050 -0.0354
(0.1364) (0.0819) (0.0375) (0.0370) (0.0352) (0.0343)

B -0.0053 -0.0116 -0.0281 0.0821 0.0582 0.0353
(0.1119) (0.0915) (0.0418) (0.0396) (0.0358) (0.0332)

C 0.01532 0.0097 -0.0259 0.1202 0.1019 0.0839
(0.1076) (0.1056) (0.0569) (0.0518) (0.0472) (0.0434)

(60,30) 20 A 0.0323 0.0061 -0.0106 0.0380 0.0113 -0.0145
(0.1170) (0.0613) (0.0346) (0.0289) (0.0267) (0.0260)

B 0.0057 -0.0104 -0.0139 0.1703 0.1555 0.14098
(0.0877) (0.0736) (0.0413) (0.0391) (0.0340) (0.0334)

C 0.0190 -0.0111 -0.0086 0.0224 0.0212 0.0200
(0.0796) (0.0682) (0.0482) (0.0402) (0.0387) (0.0385)

25 A 0.0339 0.0060 -0.0107 0.00285 0.0029 -0.0024
(0.0775) (0.0609) (0.0325) (0.0257) (0.0217) (0.0216)

B 0.0138 0.0030 -0.0127 -0.0017 -0.0016 -0.0029
(0.0542) (0.0521) (0.0391) (0.0280) (0.0270) (0.0263)

C 0.0206 0.0058 -0.0109 0.0007 0.0008 -0.0004
(0.0475) (0.0408) (0.0395) (0.0304) (0.0291) (0.0255)

(60,40) 25 A 0.0003 -0.0071 -0.0208 0.0138 -0.0077 -0.0283
(0.0714) (0.0491) (0.0318) (0.0215) (0.0209) (0.0203)

B 0.0859 0.0637 0.0225 0.0329 0.0297 0.0270
(0.0493) (0.0365) (0.0366) (0.0235) (0.0235) (0.0241)

C 0.0105 0.0036 -0.0072 0.1635 0.1522 0.1411
(0.0694) (0.0666) (0.0278) (0.0261) (0.0263) (0.0269)

30 A 0.0094 0.0010 -0.0138 0.0235 0.0005 -0.0218
(0.0887) (0.0476) (0.0307) (0.0228) (0.0207) (0.0201)

B 0.0122 0.0039 -0.0118 0.1150 0.1005 0.0864
(0.0794) (0.0362) (0.0305) (0.0231) (0.0223) (0.0219)

C 0.0044 0.0002 -0.0139 -0.0039 -0.0038 -0.0049
(0.0682) (0.0658) (0.0274) (0.0259) (0.0254) (0.0251)
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Table 7. ACI, HDI and CP of ν and η for (T1, T2) = (1.5, 2.5).

(n,m) k CS ν η
ACI CP HDI CP ACI CP HDI CP

(40,20) 10 A 1.9108 0.9620 1.3479 0.9940 1.6170 0.9390 1.1270 0.9930
B 2.2148 0.9660 1.5592 0.9950 1.3942 0.9270 0.9123 0.9260
C 2.3012 0.9600 1.7732 0.9930 1.2781 0.9200 0.7743 0.8900

15 A 1.8673 0.9500 1.2942 0.9950 1.6208 0.9420 1.0925 0.9890
B 2.1843 0.9740 1.4615 0.9950 1.3922 0.9220 0.9070 0.9000
C 2.2371 0.9520 1.6211 0.9860 1.2654 0.9400 0.7486 0.9730

(40,30) 15 A 1.5904 0.9150 1.1211 0.9920 1.5218 0.9300 1.0065 0.9920
B 1.5986 0.9550 1.1305 0.9870 1.3069 0.9410 0.8868 0.9780
C 1.6645 0.9610 1.2562 0.9730 1.2402 0.9170 0.7309 0.9200

20 A 1.5517 0.9540 1.1124 0.9900 1.4056 0.9380 1.0014 0.9900
B 1.6009 0.9520 1.1363 0.9910 1.2967 0.9250 0.8810 0.9800
C 1.6616 0.9670 1.1453 0.9980 1.2501 0.9330 0.7757 0.9580

(60,30) 20 A 1.5354 0.9580 1.0816 0.9910 1.3485 0.9420 0.9165 0.9950
B 1.7093 0.9610 1.1632 0.9940 1.1446 0.9400 0.6968 0.9090
C 1.9021 0.9670 1.3703 0.9900 1.0463 0.9280 0.6190 0.9350

25 A 1.5330 0.9560 1.0201 0.9930 1.3298 0.9440 0.9121 0.9960
B 1.6833 0.9620 1.1361 0.9930 1.1201 0.9420 0.6812 0.9210
C 1.8256 0.9690 1.3280 0.9910 1.0190 0.9290 0.6099 0.9420

(60,40) 25 A 1.3400 0.9580 0.9478 0.9980 1.1943 0.9370 0.8301 0.9920
B 1.3520 0.9620 0.9740 0.9910 1.1029 0.9280 0.6973 0.9530
C 1.4568 0.9540 1.0172 0.9900 1.0283 0.9350 0.6074 0.8650

30 A 1.3209 0.9540 0.9330 0.9890 1.1901 0.9520 0.8527 0.9970
B 1.3466 0.9510 0.9612 0.9910 1.1001 0.9420 0.6923 0.9590
C 1.4553 0.9620 1.0164 0.9910 1.0246 0.9410 0.6051 0.8990
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Table 8. Various optimality criterion.

Criterion Goal
I Min. trace(I−1(ν̂, η̂))
II Min. det(I−1(ν̂, η̂))
III Max. trace(I(ν̂, η̂))

7. Application
In this section, we analyze two data sets that represent the fracture toughness of sil-

icon nitrate (Si3N4) and active repair times (in hours) for an airborne communication
transceiver.

7.1. Application I
Dataset I represents the fracture toughness of silicon nitrate (Si3N4). Fracture tough-

ness data are crucial to understanding the mechanical behavior of materials such as silicon
nitride (Si3N4). Silicon nitride is renowned for its excellent mechanical properties, includ-
ing high strength and toughness. Measurements of fracture toughness reveal the resistance
of a material to crack propagation, which is crucial for creating strong structural parts and
designing robust structural components in demanding applications such as the aerospace
and automotive industries. Accurate fracture toughness data enable engineers and re-
searchers to assess the reliability and performance of the material under varying loading
conditions, facilitating the development of advanced materials based on Si3N4 tailored for
specific industrial needs. Panahi [11] first analyzed the complete fracture toughness data
set for silicon nitride and fitted it to the Burr-III distribution. Later, Dutta and Kayal
[34] reexamined the same data and applied the Burr-III distribution again.

First, we fit the INK distribution to complete fracture toughness data along with five
various lifetime models as its competitors, namely: Burr III (B-III), inverse Weibull (IW),
inverse Gompertz (IG), inverse Maxwell (IM), and inverse Rayleigh (IR) distribution.
To verify the validity of the INK distribution along with other competent distributions,
the Kolmogorov-Smirnov distance (K-S) along with the associated p-value, the negative
log-likelihood criterion (NLC), the Akaike information criterion (AIC), the Bayesian infor-
mation criterion (BIC), the Hannan-Quinn information criterion (HQIC), and the Akaike
information criterion with correction (AICC) are calculated and presented in Table 9. In
addition, the MLEs with their standard errors (SE) of the unknown parameters are cal-
culated and tabulated in the same Table 9. It shows that the INK distribution is the
best model among all competitive fit distributions for fitting fracture toughness data sets
because its p-value is the highest and its goodness-of-fit values are the smallest. For a
pictorial representation, the histogram and density plots of the INK, B-III, IW, IG, IM,
and IR distributions of the data set are shown in Figure 4 and validate our findings.
Furthermore, the empirical CDF (ECDF) and CDF of the data set are plotted in Figure
5. These plots confirmed that the INK distribution approximates the general pattern of
the histograms of the fracture toughness datasets. Therefore, the visual representation
validates the numerical results. Moreover, to show the existence and uniqueness of MLE
for the real dataset, the contour plot for ν and η is plotted and shown in Figure 3. It
shows that MLEs may exist uniquely.

Using complete fracture toughness data sets, three different artificial UPHC samples
with m = 24, 28, and 30 and various choices of R and T1 and T2. Table 10 provides
the created samples and the associated censoring scheme. In short, the scheme R =
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(2, 0, 0, 0, 2) is assumed to be R = (2, 0∗3, 2). Utilizing the generated sample presented
in Table 10, the point estimates of unknown parameters under frequentist and BEs are
calculated and provided in Table 11. In addition, the 95% ACIs and HPD credible intervals
of the unknown parameters with their average lengths (ALs) are obtained and tabulated in
Table 12. While computing BEs, since no prior information is available for the parameters
ν and η therefore non-informative priors, i,e. a1 = a2 = 0 and b1 = b2 = 0 are considered.
However, to perform the calculation, we consider all ai and bi = 0.001 for i = 1, 2.

Applying the MCMC technique described in Section 3.2, the first 104 iterations of the
5 × 104 MCMC samples have been eliminated to remove the impacts from the starting
values. The starting values of ν0 and η0 are assumed to be their MLEs to run the MCMC
sampler. Furthermore, to check the convergence of the MCMC sample, the trace plots
based on the 5 × 104 MCMC chain values of ν and η are plotted and shown in Figure
6. In each trace plot, the solid line (−) represents the mean sample, and the dotted line
(− − −) denotes the two limits of 95% HPD credible intervals. From these plots, it is
seen that the chain is well mixed and converges quite well. Furthermore, based on the
4×104 MCMC samples, the histogram and kernel density plots of ν and η are plotted and
depicted in Figure 7. The posterior sample generated from ν and η is observed to be fairly
symmetric, leading to a positive indication of the convergence of the MCMC sample. In
addition, the autocorrelation plots based on the MCMC samples 4 × 104 are plotted and
shown in Figure 8. The autocorrelation is rapidly decreasing, indicating that the chain
is mixing well and that the samples are becoming less dependent on their predecessors,
which supports our convergence of MCMC samples.

To clarify the concept of an optimal censoring plan, the different criteria presented in
Table 8 are considered based on three created samples. The available data yield more
accurate estimations of survival probabilities by optimizing the trace. The values of all
three criteria based on the created samples are calculated and provided in Table 17. Of the
aforementioned criteria, it is evident that the best censoring scheme has the lowest value
of criteria I and II and the highest value of criterion III. Table 14 indicates that Scheme
C with censoring scheme R = (0∗29, 0∗23) is optimal for criteria I and II. In Criteria III,
scheme B with censoring scheme R = (4∗1, 0∗26, 4∗1) is optimal.

Application II

Dataset II represents active repair times (in hours) for an airborne communication
transceiver (n=40), originally proposed by Jorgensen [14]. To assess the suitability of the
INK distribution for this dataset, we computed the KS test statistic and the corresponding
p-value. The distance from KS was found to be 0.1033, with a p-value of 0.7867. These
results indicate that the INK distribution provides an adequate fit to dataset II.

Using the complete data set II, three different artificial UPHC samples with m = 20, 24
and 30 are created and various choices of R and T1 and T2. Table 14 provides the created
samples and the associated censoring scheme. Utilizing the generated sample presented
in Table 14, the point estimates of unknown parameters under frequentist and BEs are
calculated and provided in Table 15. In addition, the 95% ACIs and HPD credible intervals
of the unknown parameters with their average lengths (ALs) are obtained and tabulated in
Table 16. While computing BEs, since no prior information is available for the parameters
ν and η therefore non-informative priors, i,e. a1 = a2 = 0 and b1 = b2 = 0 are considered.
However, to perform the calculation, we consider all ai and bi = 0.001 for i = 1, 2.

We evaluated three sample data sets and evaluated them using the criteria listed in
Table 8 to better understand the idea of an optimal censoring plan. The results for all
three criteria based on these samples are shown in Table 17. Among the criteria, the best
censoring scheme is the one with the lowest values for criteria I and II and the highest value
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for criterion III. According to Table 17, Scheme C with censoring plan R = (029, 101) is
found to be optimal for all three criteria.

Figure 3. Contour plot of log-LF for different choices of ν and η for dataset I.

Table 9. Goodness of fit test and MLEs (with SEs) for dataset I.

Model ν̂ η̂ -2NLC AIC BIC HQIC AICC K-S p-value
INK 4.052(0.918) 0.047(0.004) 119.299 123.299 127.585 124.985 123.499 0.075 0.988
B-III 215.869(115.680) 3.665(0.387) 123.754 127.754 130.921 128.859 128.117 0.111 0.771
IW 113.984(52.236) 3.226(0.327) 126.188 130.188 133.355 131.293 130.552 0.122 0.653
IG 0.432(0.194) 15.071(1.981) 132.830 136.830 139.997 137.935 137.194 0.145 0.435
IM - 0.032(0.004) 133.940 135.940 137.523 136.492 136.057 0.197 0.121
IR - 21.136(3.523) 145.802 147.802 149.385 148.355 147.920 0.279 0.007
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Table 10. Three artificial UPHC schemes for dataset I
.

(n,m,k) Scheme UPHC sample (T1, T2) D R* T*
2.70, 4.53, 4.60, 4.61, 4.70,4.70,

(36,24,16) R = (12∗1, 0∗23) 4.90, 4.96, 4.98, 5.02, 5.22, 5.25, (5,7) 16 8 6
5.36, 5.40, 5.50, 6.00

2.70, 3.96, 4.00, 4.00, 4.10, 4.26,
(36,28,20) R = (4∗1, 0∗26, 4∗1) 4.30, 4.30, 4.50, 4.53, 4.60, 4.61, (5,6) 20 12 5.25

4.70, 4.70, 4.90, 4.96, 4.98, 5.02,
5.22, 5.25,

2.70, 3.12, 3.20, 3.70, 3.80, 3.96,
(36,30,24) R = (0∗29, 6∗1) 4.00, 4.00, 4.10, 4.26, 4.30, 4.30, (4,5) 21 15 5

4.50, 4.53, 4.60, 4.61, 4.70, 4.70,
4.90, 4.96, 4.98

Table 11. Point estimates ν and η (with their SEs) based on dataset I.

LLF
(n,m) k CS Parameters NR EM MAP SELF p = -0.25 p = 0.50
(36,24) 16 A ν 3.4622 3.4614 2.9666 3.2738 3.3109 2.9525

η 0.0368 0.0368 0.0360 0.0371 0.0371 0.0370

(36,28) 20 B ν 4.9763 4.9751 3.9680 4.6969 5.0498 4.1551
η 0.0430 0.0431 0.0422 0.0431 0.0431 0.0432

(36,30) 24 C ν 3.8365 3.8355 3.3725 3.6262 3.8314 3.2915
η 0.0473 0.0472 0.0465 0.0480 0.0480 0.0480

Table 12. 95% ACI and HPD (with their lengths) based on dataset I.

ν η
(n,m,k) CS ACI HPD ACI HPD

(36,24,16) A (0.9451,5.9792) (1.1238,5.6768) (0.0287, 0.0450) (0.0281, 0.0459)
5.0341 4.5530 0.0162 0.0177

(36,28,20) B (1.6431, 8.3094) (1.9056,7.9251) (0.0360,0.0501) (0.0355,0.0510)
6.6663 6.0195 0.0140 0.0155

(36,30,24) C (1.2922, 6.3808) (1.4378,6.0803) (0.0390,0.0555) (0.0377,0.0563)
5.0887 4.6425 0.0165 0.0186

Table 13. Optimal censoring scheme under various criteria for generated sample
based on dataset I.

Criterion
Scheme I II III

A 1.6492 2.752e-5 59924

B 2.8918 3.523e-5 82092

C 1.6852 2.869e-05 58744
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Figure 4. Histogram and density plots different models fitted to the dataset I.

Figure 5. Empirical cdf and cdf plots for different models fitted to the dataset I.

Figure 6. Trace plots of MCMC samples for ν and η based on dataset I.
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Figure 7. Histogram and kernel density plots of ν and η based on dataset I.

Figure 8. Autocorrelation plots of ν (left) and η (right) based on dataset I.

Table 14. Three artificial UPHC schemes for dataset II.

(n,m,k) Scheme UPHC sample (T1, T2) D R* T*
0.5, 2.5, 2.7, 3, 3, 3.3,

(40,20,16) R = (20∗1, 0∗19) 4, 4, 4.5, 4.7, 5, 5.4, 5.4, (5,10) 16 4 8.8
7, 7.5, 8.8, 9, 10.2, 22, 24.5

0.5, 1, 1, 1, 1.1, 1.3,
(40,24,20) R = (8∗1, 0∗22, 8∗1) 1.5, 1.5, 1.5, 1.5, 2, 2, (3,5) 20 12 4

2.2, 2.5, 2.7, 3, 3, 3.3
4, 4, 4.5, 4.7, 5, 5.4

0.5, 0.6, 0.6, 0.7, 0.7, 0.7,
(40,30,24) R = (0∗29, 10∗1) 0.8, 0.8, 1, 1, 1, 1, 1.1, 1.3, (4,5) 24 16 3

1.5, 1.5, 1.5, 1.5, 2, 2, 2.2,
2.5, 2.7, 3, 3, 3.3, 4, 4, 4.5



1158 M. Irfan, A. K. Sharma

Table 15. Point estimates ν and η (with their SEs) based on dataset II.

LLF
(n,m) k CS Parameters NR EM MAP SELF p = -0.25 p = 0.50
(40,20) 16 A ν 0.3001 0.3001 0.2729 0.2921 0.2923 0.2904

η 0.2467 0.2465 0.2097 0.2856 0.2861 0.2812

(40,24) 20 B ν 0.3748 0.3748 0.3444 0.3642 0.3644 0.3617
η 0.3670 0.3672 0.3365 0.3992 0.3996 0.3950

(40,30) 24 C ν 0.3712 0.3713 0.3461 0.3606 0.3609 0.3585
η 0.6897 0.6895 0.6426 0.7494 0.7508 0.7368

Table 16. 95% ACI and HPD (with their lengths) based on dataset II.

ν η

(n,m,k) CS ACI HPD ACI HPD
(40,20,16) A (0.1322, 0.4680) (0.1402, 0.4577) (0.0564, 0.4370) (0.0998,0.5426)

0.3359 0.3175 0.3807 0.4427

(40,24,20) B (0.1720, 0.5776) (0.1753,0.5646) (0.1630, 0.5711) (0.1876, 0.6533)
0.4057 0.3893 0.4081 0.4658

(40,30,24) C (0.1848, 0.5577) (0.1894,0.5427) (0.3388,1.0405) (0.3814,1.2048)
0.3729 0.3533 0.7017 0.8234

Table 17. Optimal censoring scheme under various criteria for generated sample
based on dataset II.

Criterion
Scheme I II III

A 0.01677 6.912e-05 242.6

B 0.02155 1.159e-04 185.9

C 0.0127 3.827e-05 332.3

8. Conclusion
In this article, we have investigated the estimation problems of the inverse Nakagami-

m distribution based on the unified progressive hybrid censored sample. The model
parameters are estimated using the maximum likelihood method, implemented via the
Newton-Raphson algorithm and the expectation-maximization (EM) algorithm. Bayesian
estimates are obtained under gamma prior distributions using squared error and LINEX
loss functions. Approximate confidence intervals for the unknown parameters are con-
structed on the basis of the asymptotic properties of the maximum-likelihood estimators
(MLEs). To compute Bayesian estimates and construct the associated highest posterior
density (HPD) credible intervals, the Markov Chain Monte Carlo (MCMC) approximation
is employed. In addition, maximum a posteriori (MAP) estimates are evaluated.

Various diagnostic plots assess the convergence of the MCMC method. A comprehensive
simulation study compares the performance of different estimation methods. The results
indicate that Bayesian estimators outperform frequentist approaches in terms of bias,
mean squared error (MSE), average confidence lengths (ACLs), and coverage probabilities
(CPs). Furthermore, several optimality criteria determine the most suitable censoring
scheme. Two real data sets are analyzed to demonstrate the practical applicability of the
proposed methods. Based on the findings, the Bayesian MCMC approach is recommended
for parameter estimation in the inverse Nakagami distribution under progressive hybrid
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censoring.
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Appendix

The R code for sample generation and maximum likelihood estimation of unknown pa-
rameters of the inverse-Nakagami distribution under unified progressive hybrid censored
sample is given below:

library ( numDeriv )
library ( Matrix )
library ( rootSolve )
library (coda)
library ( MCMCpack )
library (MASS)
library ( nleqslv )
library ( matlib )
library (zipfR)
library (Deriv)
library ( nleqslv )
library ( matlib )
library (zipfR)
n=50
m=40
T1 = 1
T2 = 2
k = 30
alpha = 1.5
beta = 2.5
lg= c()
z = c()
U= runif (n,0,1)
X1= array (0,m)
X= array (0,m)
t=array (0,m)
V= array (0,m)
Z= array (0,m)
#R=c(array (n-m,1), array (0,m-1)) # CS 1
#R = c(array (((n-m)/2), 1), array (0, (m-2)), array ((n-m)/2, 1)) ## censoring 2
R=c(array (0,m-1), array (n-m,1)) ##cs 3
#R = c(array (1,5), array (0,m-6), array(n-m-5,1)) ## censoring

for(i in 1:m)
{

t[i]= sum(R[(m-i+1):m])
}
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for(i in 1:m)
{

V[i]=U[i]^(1/(i+t[i]))
}
for(i in 1:m)
{

Z[i]=1-prod(V[(m-i+1):m])
}
Data <- function (m,alpha ,beta)
{

u= runif (n, min = 0, max =1)
library (zipfR)
cdf = function (x,alpha ,beta)
{fn = (1/gamma (alpha ))*( Igamma (alpha , (alpha /( beta*x^2)), lower =FALSE ))}
data=c() # Create an empty vector
for(i in 1:m){

fn <- function (x){ cdf(x,alpha ,beta)-Z[i]}
uni <- uniroot (fn ,c(0,100000))
data=c(data ,uni$root )}

return (data )}
X = Data(m,alpha ,beta)
if (X[m] < T1) {

D = m;
} else if (X[k] < T1 && T1 < X[m]) {

D = sum(X<T1);
} else if (T1 < X[k] && X[k] < T2) {

D = k;
} else if (T2 < X[k]) {

D = sum(X<T2);
} else {

D =m
}

if (X[m] < T1) {
Ts = X[m];

} else if (X[k] < T1 && T1 < X[m]) {
Ts = T1;

} else if (T1 < X[k] && X[k] < T2) {
Ts = X[k];

} else if (T2 < X[k]) {
Ts = T2;

} else {
Ts =X[m]

}

Rs = n-D-sum(R[1:D])
f = function (x){

loglik = D*log(2/( gamma (x[1])))+x[1]*D*log(x[1]/x[2]) -((2*x[1]+1)* sum(log(X[1:D]))) -((x[1]/x[2])* sum(X[1:D]^(-2)))+ sum(R[1:D]* log ((1 -((1/gamma (x[1]))*( Igamma (x[1], (x[1]/(x[2]*X[1:D]^2)), lower =FALSE ))))))+( Rs*log ((1 -((1/gamma (x[1]))*( Igamma (x[1], (x[1]/(x[2]*Ts^2)), lower = FALSE ))))))
-loglik

}
G1= optim (c(alpha ,beta),f, method ="L-BFGS -B",lower =c(0.000001,0.000001), upper =c(Inf ,Inf), hessian =TRUE)
A=sqrt(abs(diag(ginv(G1$ hessian ))))
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v = ginv(G1$ hessian )
ML=G1$par
ML


