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Abstract 

Panoramic radiographs are a low radiation exposure type often used as a data source 

for many deep learning algorithms. On the other hand, the operational structure of a 

traditional deep learning algorithm requires a large amount of data, which is a major 

problem for many researchers. It is aimed to overcome this problem through deep 

GAN models, many versions of which have been developed recently. The main 

purpose of the study is to generate a two-stage GAN model for data with the same 

image dimensions. The study is carried out in the form of inputting panoramic images 

containing a whole view, as well as single tooth data whose performance is desired 

to be measured, to the architecture. The generator model created for each tooth object 

in all panoramic radiographs generates new tooth objects that the model has yet to 

encounter in the dataset. Fréchet Inception Distance was used as a performance 

metric by measuring the distance for the Inception-v3 activation distributions for the 

real samples in the generated and training set. Thus, the statistical similarity of these 

two groups obtained from the experimental results was observed in the part of the 

experimental results. The cropped individual tooth classes were much more 

successful than the entire panoramic dataset. 
 

 
1. Introduction 

 

Dental radiographs, widely used in medical imaging, 

are continuously used to detect tooth loss, tooth 

material loss, and many health problems that are not 

detected by visual examination. Various digital 

radiographs and scan results containing data are 

essential in medicine, especially in forensic dentistry 

[1]. In addition, digital imaging has become the most 

widely used imaging technique in dentistry, the most 

common field of digital radiography [2]. Although 

intraoral and extraoral radiographic techniques have 

advantages or disadvantages relative to each other, 

both types of imaging contribute negatively to the 

health of the patient. Radiographs have extremely 

impressive impacts on radiation, whether a device 

placed in the mouth or imaging the whole oral region. 

Therefore, apart from using radiographs to treat the 

patient during the examination, there should be a 
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limited acquisition process for the datasets intended 

to contribute to the academic literature [1]. The use of 

various Artificial Learning (AL) techniques is more 

appropriate when sufficient data cannot be obtained. 

If the amount of data in the studies mentioned above 

is small, it would only be appropriate for the 

individuals who will use the data to reproduce it 

manually with an expert. It is also possible to 

misinterpret the types of radiographs taken in clinics 

and healthcare institutions depending on the quality 

of the device and the need for more expert 

interpretation [2]. It is obvious that the learning-based 

world goes beyond manual programming and 

produces solutions to these problems [3]. For this 

reason, the age of Artificial Intelligence (AI) has 

rapidly developed in medicine, health, science, and 

many other important fields [4]. 

 Deep Learning (DL), which has made a name 

for itself as a sub-branch of AI, makes things much 
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easier compared to classical machine learning 

techniques. In the last decade, it has been observed 

that the frequency of use of DL models has increased 

significantly, especially in the field of health and 

medicine, due to their use in the detection of 

important diseases such as cancer, tumor cells, and 

pneumonia [5]. The function of using AI in dentistry 

has been inevitable due to the reasons explained and 

the development of the technology. In the literature, 

many qualified scientific studies, both old and new, 

have taken their place in this field. One of the DL 

methods, Convolutional Neural Networks (CNNs), is 

that many conventional studies in dentistry identify 

teeth by non-manual detection or segmentation [6]. 

CNNs, which are very effective learning and 

recognition models, include the building blocks of 

algorithms used to detect objects in data [7]. Thanks 

to the use of CNN models, it is possible to detect teeth 

in radiographic images, but sometimes satisfactory 

performance is not achieved when the existing images 

are limited. Augmenting the existing images 

externally or with an automatic AI model is 

necessary. Although data augmentation for 

preprocessing is done in classification studies, it has 

been observed that the purpose of targeted data 

duplication has yet to be achieved. The need for more 

data is a disadvantage, especially for deep learning 

studies with a small dataset. For this reason, synthetic 

data generation is provided using the Generative 

Adversarial Networks (GANs) introduced by 

Goodfellow et al. [8]. GANs are models that can 

generate data using two different Artificial Neural 

Networks (ANNs) that compete in their internal 

structure. In particular, GAN models have been 

widely used for synthetic data generation in dental 

data. Thus, small datasets will be expanded by GAN 

generation. Therefore, these models have been 

created to eliminate the data generation problem and 

generate synthetic data that is very similar to reality 

[9]. The purpose of generative models is to analyze 

the given training examples to produce the most 

similar fake data and, thus, to analyze the probability 

distributions [8]. It is concluded that the performance 

of a Machine Learning (ML) based algorithm 

positively depends on the size, cleanliness, quality, 

and diversity of the input data [10], [11], [12],[13]. 

The most significant reason for choosing the model 

predicted for this study as GAN is the lack of an 

adequate dataset and the fact that radiographic data 

harms human health, so X-ray data cannot be obtained 

again. 

The literature has many types of neural 

networks and different data generation and 

augmentation theories. Although the performance of 

the data increased by transformation with CNN 

models is acceptable, the augmented versions of the 

cropped and zoomed data do not lead to generating 

different data. A great deal of the previous research 

into the small sample problem has focused on the 

“generative classification” paradigm, proposing a 

semi-supervised framework [7], [8]. While most 

studies have used GAN models on intraoral and 

extraoral radiographs, some studies have used high-

quality dental computed tomography data. The study 

by Hu et al. [12], it was stated that more increased 

quality results would be obtained because the noise, 

such as low-dose artifacts and blurring found in dental 

computed tomography data compared to other 

panoramic data is less. While it is mentioned in the 

study that low-dose artifacts and soft tissues are 

detected with high quality, it should be noted that 

dental objects in extraoral radiographs will be used to 

produce high-quality data. 

 
Figure 1. Automatically according to the coordinates of 

objects in radiographs. 

 

Figure 1 shows that dental objects in a whole 

panoramic radiographic data are evaluated separately 

by cropping from their individually labeled bounding 

boxes. Although GANs can generate new objects by 

using the features in data, the most remarkable reason 

for using them individually is because each tooth 

class exhibits very different features in complex data, 

such as a molar, premolar, and incisor. The method 

proposed in the DentaGAN is passed through 

convolutional filters for conventional deep learning 

models and generates fake images with a two-stage 

neural network model. The data generated by the 

generator network is discriminated by the 

discriminator and passed through the two-stage 

structure. The accuracy of the discriminator network 

in separating spurious samples depends on optimizing 

the model during its natural training. Therefore, it is 

ensured that the discriminator neural network is 

sufficiently trained so that the model can distinguish 

between real and fake samples. The tooth classes for 
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the common notation used by dentists were 

determined and cropped, and each was given to the 

GAN model as a separate class. The main 

contribution of our work can be summarized as 

follows: 

• This paper presents a GAN-based approach, 

which is an innovative algorithm in this field, 

especially for radiographic images containing 

individual dental data. This method offers 

synthetic data as an alternative, especially 

when real data sets are limited. In addition, 

this study is the first to implement 

conventional GAN networks in the field of 

dental radiography, making it an innovative 

contribution to the literature. In the literature, 

GANs have generally been used in medical 

image processing to expand limited datasets. 

However, these studies have generally 

focused on general medical imaging fields 

such as brain images, eye vessel to eye fundus 

images in MRI, CT, etc. data. 

• The dataset used in the study was evaluated 

as a total of three separate studies, including 

all uncropped panoramic images, cropped 

tooth data from panoramic images, and a 

separate class according to Dental Federation 

Notation (FDI) each of which was evaluated. 

• The proposed model has effectively increased 

the diversity and quality of dental datasets. 

This strategy is crucial for improving the 

accuracy of dental image analysis models. 

• The study showed that traditional GANs are 

more challenging for generating dental 

objects than other object classes. 

• Since the new radiographic data is close to 

real-world data and can be used in different 

neural networks, all caries, damaged, or 

healthy dental objects are included in the 

training set.  

 

2. Material and Method 

 

2.1. Generative Adversarial Networks 

 

GANs provide an AL method without the need for 

annotation files and pieces of information developed 

as an alternative to learning image spaces. Today, the 

unique data produced by GANs are used in many 

different applications, such as image classification, 

object detection, style transfer, and semantic 

processing. Thanks to the two different neural 

network structures it contains, it ensures that the 

image data produced is statistically indistinguishable 

from the images in the training set and is new and 

similar [13]. GANs are also known as generative 

algorithms, which fall under both generative and 

discriminative algorithms in ML. For this reason, it 

has become prevalent nowadays [14]. In the GAN 

architecture concept, random latent vectors (noise) 

are passed through the generator to synthesize new 

data from scratch. Note that there is no direct image 

input, as the generator only uses the latent vector 

structure to generate images. Furthermore, since the 

new images generated from this structure are noise-

based, the images in the dataset are only used to check 

the discriminator for real and fake data. During 

training, the discriminator is taught to accurately 

discriminate between real and generated images, 

ensuring that the generator gets better at generating 

more realistic images. These two networks are trained 

in tandem, with the generator continuously adapting 

to fool the discriminator as the discriminator gets 

increasingly better at identifying synthetic data. 

 

2.2. Image Generation 
 

Image generation means generating data similar to the 

input data by adding noise. As shown in Figure 2, it 

consists of five block layers. The semantic feature 

vector extracted from the input data is generated in the 

last dense layer. When the architecture of the 

generator is examined, the tanh activation unit is used 

to normalize the last layer from [-1, +1]. Then, the 

generated vector is given to the next block, the 

discriminator network [15]. 

 
Figure 2. Generator module architecture responsible for 

image generation for GANs. 

 

In the generator module, the images are 

passed through certain pre-processing steps to be 

given to the neural network in the same format. 

Images are given to the model architecture as “Single 

Tooth” classes. This architecture input only points to 

an example model. Otherwise, the model is given per 

class such as “13”, “48”, or the entire panoramic data. 

 
2.3. Image Discrimination 

 

In the discriminator module, the similarity of the data 

to the original data is calculated by a discriminator as 

a result of the combination of real and fake data. In 

this case, while the generator neural network 

generates the data in the decoder structure, the 

generated data is in the decoded position while being 

transmitted to the discriminator neural network. The 

crucial task is the discriminator, which tries to reach 
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the maximum likelihood of predicting real and fake 

data [16]. As seen in Figure 3, it consists of five dense 

layers. The sigmoid function was found suitable for 

the activation function, which will be used in the 

probability estimation in the last layer. In addition, the 

reason for using Leaky ReLU activation instead of 

Rectified Linear Unit (ReLU) is due to the faster 

convergence of the discriminator network. Thus, we 

have taken precautions to avoid overfitting the model. 

 

 
Figure 3. The architecture of the discriminator module 

responsible for the fidelity of images generated for GANs. 

The loss value needs to be backpropagated for 

the weights updated in the predictions made by the 

discriminator. Hence, the layers are frozen, and the 

backpropagation is done with the generator in the 

weight update. The main method of training the 

network in GANs is to select the appropriate 

generator to enable the discriminator to perform 

classification with maximum accuracy [17]. During 

the training of the generator network, the optimization 

phase of the value function in [1] is included [18]. 
 

𝑉(𝐷, 𝐺) =

 𝑥𝑝𝑥[𝑙𝑜𝑔𝐷(𝑥)]+𝑧𝑝𝑧 [log (1𝐷(𝐺(𝑧)))] 
(1) 

 

where 𝑝𝑥 and 𝑝𝑧 indicate original data (𝑥) and 

generated data distributions (𝑧), respectively [17]. 

The generator is represented by mapping from the 

noise space to the data space. 𝐷(𝑥) indicates the 

likelihood that input 𝑥 comes from data rather than 

generator 𝐺. At the same time, 𝐺 is trained to 

minimize [𝑙𝑜𝑔(1 –  𝐷(𝐺(𝑧)))]. 
 

2.4. Dental dataset and preparation 

 

The dental dataset used in the study, 565 panoramic 

radiographs, was annotated by dentists to determine 

the bounding boxes of dental objects. DentiAssist 

[19] was used as an object annotation software 

specifically designed for dental radiographic data. 

Panoramic radiographs for this study were initially 

𝐺(𝑥) to be generated as a “Single Tooth” class. Then, 

considering that the tooth structures in panoramic 

radiographs are very different, they were cropped by 

looking at the spatial information in the label files. 

 

Figure 4. Teeth numbering notation in data labeling and 

preparation step. 

In the FDI notation shown in Figure 4, the 

superset digits are ordered from left to right, and the 

subset digits are from right to left. The first digits are 

named (1 - 2 - 3 - 4) and consist of four separate digits. 

The reason for using this notation is that it is a 

universal system of notation in the world. These 32 

classes, also labeled in the panoramic radiographs, 

were cropped from their bounding boxes, as shown in 

Figure 1. In this way, it also provided the individual 

evaluation of the teeth. The cropped classes were 

prepared as “Single Tooth” to be given as input to the 

generator in the GAN model. In addition, the 32-class 

tooth categories in the GAN model were considered 

separately in a complete panoramic class and the 

single tooth class. Figure 5 shows the data numbers of 

individual dental datasets in 32 classes. In Figure 5, 

the names of the individual tooth classes are indicated 

by the number (11). The percentages written below 

the numbers represent their contribution to the data 

set. The difference in the data numbers in the figure is 

that the molar teeth with the second digit of eight 

(impacted) are very likely to be extracted in 

individuals. From this conclusion, the clusters of teeth 

belonging to the 18-28-38-48 classes are expected to 

be slightly lower than the discriminator networks. 

Apart from these situations, the small number of data 

compared to other datasets is due to the dental 

structures of the patients who underwent radiographs. 

This study uses test data for evaluation after 

the training phase. A specifically allocated validation 

cycle needs to be allocated during the training 

process. It means that the test set is only used for post-

training evaluation. Considering that the generator 

and discriminator performance is continuously 

evaluated against each other, no direct validation and 

test sets are defined in the study. On average, 10% of 

each dataset is reserved for testing and 90% for 

training. For example, 509 train data were allocated 

for the training of the panoramic dataset, while 56 

were selected for testing. For instance, for a single 

tooth, this was 13,497 train data and 1,499 test data, 

while for an example, individual class (class 47) was 

421 train data and 46 test data. 
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Figure 5. Data distribution statistics for different dataset 

groups. 

During image preprocessing in the generator, 

batch size 16 was selected, and the image size was 

64x64. The scaling, size reduction, and normalization 

processes are completed before the input data is given 

to the generator architecture. Then, it passed the 

relevant data loader and augmentation stage and 

duplicated the data with certain pre-processing steps. 

2.5. Dental dataset and preparation 

 

The architecture of the two-stage neural network 

structure in dental radiographs is shown in Figure 6. 

As the first step in the architecture, all panoramic 

radiographs were given input, while simultaneously 

cropped panoramic images in 224x224 dimensions 

were used as input. The original input images are 

passed through the appropriate pre-processing steps, 

and the data generated by the generator through latent 

space and added noises are given to the discriminator. 

The generated fake and real images of the data set are 

controlled by a discriminator using the binary cross-

entropy loss function. During the training procedure, 

the output unit should be a number between 0-1 when 

calculating the loss value for the generator and the 

discriminator. For this reason, we will calculate the 

loss value with the binary cross-entropy calculation 

[20]. The purpose of the function at this stage is to 

determine whether the generated image is real or fake. 

The binary cross-entropy loss minimizes the mean 

probability error between the target and the estimation 

label for all pixel values found [19]. 

 As seen in the [2], 𝑙𝑜𝑔(𝑦^′𝑥 ) for 𝑙𝑜𝑔𝐷(𝑥^𝑖 ) 

wants likelihood close to 1 by capturing satisfactory 

predictions in real images with gradient ascent. The 𝑦 

in the equation represents the original images, while 

𝑦′ tries to be 1 in this case. Also, for 1 − 𝐷(𝐺(𝑧^𝑖)), 
the fake images must be well-estimated, so a 

probability close to 0 is intended [17]. 

𝐿(𝑤) = −𝑦𝑖 log(𝑦′(𝑖)
) (1 − 𝑦(𝑖))log (1 − 𝑦′(𝑖)) (2) 

 
Figure 6. Two-stage generation and discrimination 

architecture of dental images [8]. 

 Gradient descent in neural networks descends 

on a static loss surface. In GANs, on the other hand, 

each downhill step changes the entire surface by a 

certain amount. The training of the model takes place 

under difficult conditions, as it is a dynamic system 

that searches for the experiment between two forces 

instead of searching for minimum values [17]. 

Therefore, it was necessary to carefully consider the 

parameters of the GAN model to be created. In the 

selected parameters, different learning rates were 

chosen as the size of the hidden vector z that is, 64 as 

the size of the generator input, 128 as the size of the 

feature maps in the builder, 𝑛𝑑𝑓: 64 as the size of the 

feature maps in the discriminator, 𝑔𝑙𝑟: 0.001 

(learning rate of the generator) and 𝑑𝑙𝑟: 0.0005 

(learning rate of the discriminator) for the optimizers. 

The same parameters were chosen for comparison in 

the appropriate epoch training of all the datasets 

mentioned in the study. One of the hyperparameters 

that should be used for Adam optimizers, (beta1) was 

determined as 0.5. In addition, the real label value is 

0.9, and the fake label is 0. Following the determined 

parameters, the original images in the dataset are 

trained with the discriminator, and the weights are 

updated during the training. In the figure, starting 

from the first layer 512 of the created generator neural 

network, the 2-dimensional transpose convolution 

layer is used to the last layer 32. Figure 7 is an 

example of the generator and discriminator pipeline 

on whole panoramic images. Other datasets are also 

given as inputs to the generator and discriminator 

networks. The three output channels from the 

ConvTranspose2d unit of the generator network are 

given to the discriminator network in the next section. 

Then it is transmitted to the 64, 128, 256, and 512 

layers, respectively, as shown in the figure. Both 

weight updates and feature extractions take place in 

this step. Pixel distance and feature distance are 

compared in images for diversity and fidelity. 

Therefore, evaluating GANs is a challenging task 

[21], [22].
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Algorithm 1. Pseudocode of the training procedure for the proposed approach 

Input: maxepoch, dataloader,generator,discriminator, classifier,cof ,adw 

for epoch in range(maxepoch) do 

for (realdata, reallabel, embedding) in dataloader do 

batchsize = len(realdata) 

#step 1: generate fake images and train the discriminator with real data 

genimg=generator(random((batch, 128, 1, 1)), embedding) 

predreal=discriminator(realdata), BCE(predreal, ones((batchsize, 1))).backward() 

#step 2: train the discriminator with generated data 

predfake=discriminator(genimg), BCE(predfake, zeros((batchsize, 1))).backward() 

#step 3: train the generator and opt. discriminator 

predgen=discriminator(genimg), BCE(pred−gen, zeros((batchsize, 1))).backward() 

#step 4: train the classifier with real data 

outreal=classifier(realdata), classification−loss(outreal, reallabel) 

#step 5: train the classifier and data generated in the sample control 

fakeprob=classifier(genimg) 

outlabel=argmax(fakeprob, dim = 1) 

if softmax(fake)[reallabel] ≥ cof then 

loss’=adw ∗ classificationloss(selectout, selectlabel) 

loss’.backward() 

end 

end 

end 

Output: Generated synthetic data (radiographic image) 

Input: maxepoch, dataloader,generator,discriminator, classifier,cof ,adw 

for epoch in range(maxepoch) do 

for (realdata, reallabel, embedding) in dataloader do 

 
The algorithm of the training procedure for 

the GAN model is as follows. The input image and 

the label are generated for each epoch, creating fake 

images in the specified batch size. The data loader 

parameter is central to loading the training data. It 

provides iterability over the dataset with the shuffle 

parameter: “True” option. When 𝑛 epochs are 

performed for Algorithm 1 the images created by the 

generator are kept. Then, the discriminator model 

takes the real data and provides a backward prediction 

for binary cross-entropy loss. The total error is 

propagated back and updated. The generator and the 

discriminator are trained for original and fake samples 

that provide sequences of zeros and ones, the result to 

be detected in the output [22]. Thus, predicted data is 

generated. The classifier in steps 5 and 6 of Algorithm 

1 represents a general neural network. Therefore, the 

classifier refers to both the generator and the 

discriminator networks. Also, a classical GAN 

structure has only a generator and a discriminator. 

However, this algorithm has an additional classifier. 

The task of the classifier is to support the learning 

process of the model by classifying real and generated 

data. In other words, the generator generates fake 

images using random input and embedding, the 

discriminator is the network that tries to distinguish 

whether these images are real or fake, and the 

classifier is the structure that helps the model to better 

learn the difference between real and fake data. As a 

result, the classifier acts as an additional control 

mechanism for the GAN. A classification process is 

performed between the input images and the new 

images generated, and they are checked with softmax 

condition. Accordingly, the loss value is updated. 

Because GAN models mostly consist of two models 

that can be tuned to each other, this training 

demonstrates the struggle between the two neural 

networks [23]. In summary, we maximize 

𝐷(discriminator) and 𝑙𝑜𝑔(𝐷(𝑥)) + 𝑙𝑜𝑔(1 −
 𝐷(𝐺(𝑧))) by maximizing 𝑙𝑜𝑔(𝐷(𝐺(𝑧))) 

𝐺(generator) is updated. Evaluation is an open area in 

generator model research. The FID metric in [3] is the 

most popular for evaluating the success of the data 

generated by the generator. The Inception-v3 network 
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measures the performance of the fake images 

generated. The purpose of using this initial network is 

to extract features from the intermediate. The data is 

distributed using a multivariate Gaussian distribution 

with mean and covariance for statistical purposes 

[16], [23]. 

 
𝐹𝐼𝐷 
= | 𝜇1 − 𝜇2| + 𝑇𝑟(𝜎1

+ 𝜎2 − 2√𝜎1 ∗ 𝜎2
2 ) 

(3) 

 

where 𝑇𝑟 sums all the diagonal elements, 𝜇1 

and 𝜎1 are the mean and covariance of the training 

data, and 𝜇2 and 𝜎2 are the mean and covariance of 

the test data [16]. It calculates the distance of the 

curves between the fake and the real embeddings. The 

closer these statistics are to each other, the closer the 

fake embeddings model is to the real embeddings. 

Therefore, a smaller value means that features in the 

reals and fakes are more similar, so the lower the FID, 

the better and closer distributions. 

 

3. Experimental Results and Discussion 

 

To obtain the experimental results, a device with 

NVIDIA Geforce RTX 3050 graphics card support 

was used in the GAN model training. GANs with the 

same parameters and hyperparameters were generated 

for 34 dental datasets mentioned in the paper. The 

experimental findings obtained under the specified 

conditions are given in Table 1. While training with 

the generator continues, the high threshold value set 

by the discriminator ensures that the generator obtains 

a thriving fake image. When the table is examined, it 

is revealed that different datasets are used. Taking 

into account the possible errors that can occur when 

generating panoramic images, one of the main 

objectives of the study was to properly trim the data 

from the bounding boxes. One of the most significant 

reasons for this is that although GANs generate 

successful images, radiographic data is more complex 

than simple data has a disadvantage. As a first step in 

the study, panoramic data were generated, and due to 

the high FID value, even if changed the parameter, it 

was necessary to find another solution. Thus, the teeth 

were cropped according to the FDI notation, and all 

the crops were used as a given dataset. In this study, 

500 epoch training sessions were performed on dental 

radiographs and single tooth images to ensure a fair 

approach. The average training time of the generative 

and discriminative networks simultaneously per 

dataset is 7466 seconds, about 124 minutes for the 

individual class (41 classes). The single tooth class of 

combined teeth trained in the study: 14,996 images, 

and the panoramic dataset contains 565 images. Also, 

the number of individually cropped tooth images 

varies depending on the panoramic images, as shown 

in Figure 5. This situation is mainly since sometimes 

cases such as impacted teeth and molars are not 

included depending on the age of the extracted 

individual.  

 

 

Figure 7. Fake images generated because of training 

GANs. (a) the results of cropped images, (b) the result of 

an entire panoramic image. 

 

Nevertheless, the total amount of data 

generated for all classes reached 10,000. Considering 

the results in Table 1, the single tooth class has a large 

amount of data, which leads to a lower FID result. The 

training time for the single tooth class was about 

3,420 minutes, or 57 hours, because it contains a lot 

of data. In addition, other individual tooth classes 

produced different results depending on their number 

and complexity in the dataset. The panoramic dataset 

contains 565 images, but it also contains a wider range 

of mouth views and patterns, which increases the time 

for the neural networks to scan the data. Therefore, 

producing the entire panoramic image takes 9,300 

seconds, or 155 minutes. During the training of this 

data, the loss of the generator reached 2.9414, while 

the loss of the discriminator reached 1.2484. 

The fake images generated by neural network 

are shown in Figure 7, and according to this figure, it 

was observed that the individual tooth classes were 

generated by GAN much better than all the panoramic 

images. However, more was needed to restrict all 

images generated to one class due to the differences 

in the mouth’s molar, premolar, and incisor classes.  

For these reasons, one-sided label softening was 

performed while adjusting the parameter. For these 

reasons, one-sided label softening was performed 

when adjusting the parameter. An excessively high 

confidence value can cause some problems with deep 

neural networks. If the discriminator depends on the 

small feature map while recognizing the actual 

images, the generator generates these features to 
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benefit from the discriminator. In this case, the 

optimization performed can be very greedy. To avoid 

such problems in real image estimation, the 

discriminator is penalized when it exceeds 

0.9(𝐷(𝑟𝑒𝑎𝑙 >  0.9)). The target label value has been 

updated to 0.9 instead of 1.0. 

Since FID measures the distributional 

similarity between the generated and real images, the 

test set provides a realistic example of this 

distribution. The results of the test data are shown in 

Table 1 below. In contrast, the discriminator loss 

value is excessively high, causing overfitting due to 

the imbalance between the generator and the 

discriminator. Overfitting is recognized as one of the 

major challenges in training GANs. Suffering from 

such difficulties, the experimental results in this study 

may not have achieved the expected performance in 

some individual tooth classes. However, the overall 

panoramic view was worse in all conditions than in 

other individual tooth classes. On the other hand, it is 

expected that the single tooth class created with 

samples from single tooth classes will have high 

performance due to the high diversity of data. 

 
Table 1. Findings of neural networks generated and discriminated for different dataset. 

Generated 

class 
Loss G Loss D 

Fréchet 

Inception 

Distance 

Generated 

class 
Loss G Loss D 

Fréchet 

Inception 

Distance 

Single tooth 2.9414 1.2484 124.8310 Tooth 31 3.4235 0.5093 102.8283 

Tooth 11 4.7493 0.4203 187.8658 Tooth 32 3.8033 0.4238 114.4682 

Tooth 12 5.0410 0.3903 178.6688 Tooth 33 4.2498 0.6059 144.1210 

Tooth 13 3.3994 0.4371 127.4457 Tooth 34 4.0968 0.3835 153.1053 

Tooth 14 4.3447 0.3905 146.7246 Tooth 35 4.0497 0.4592 158.1447 

Tooth 15 4.6472 0.4127 173.7276 Tooth 36 4.1037 0.5133 213.4831 

Tooth 16 3.8004 1.1397 160.5275 Tooth 37 3.1822 0.4515 127.4164 

Tooth 17 6.7436 0.6928 297.8457 Tooth 38 4.0272 0.4591 175.5649 

Tooth 18 3.8478 0.4241 138.1094 Tooth 41 4.9409 0.3572 151.7190 

Tooth 21 3.8511 0.4163 169.2506 Tooth 42 3.1018 0.7503 190.0691 

Tooth 22 3.8585 0.3945 181.6382 Tooth 43 4.1703 0.6607 131.0531 

Tooth 23 4.2090 0.7617 126.5523 Tooth 44 5.3700 0.3606 150.3511 

Tooth 24 5.1406 0.3366 179.1189 Tooth 45 3.1822 0.4515 127.4164 

Tooth 25 5.2565 1.4472 215.2094 Tooth 46 4.8492 0.9850 171.0522 

Tooth 26 3.0496 1.7622 163.5350 Tooth 47 4.4303 0.4255 257.3137 

Tooth 27 4.4674 0.6183 215.6518 Tooth 48 4.6258 0.3531 226.9374 

Tooth 28 4.8688 0.7251 135.4039 Panoramic 3.9198 0.4527 223.4762 

 

On the other hand, our study adapts existing 

GAN algorithms to dental radiography, enabling the 

synthetic generation of individual tooth images. 

However, datasets with more complex and 

individual characteristics, such as dental structures, 

are being studied. This requires more detailed 

modeling than general medical imaging studies. As 

a result, in terms of the applicability of GANs to 

radiographic images and the solution to data 

limitations in dentistry, this study makes an 

important contribution to the literature. In 

particular, it is necessary to accurately generate 

anatomical details and anomalies that may be 

present in radiographic data, such as periodontal 

structures, root canals, or differences due to 

anomalies such as caries and restorations. However, 

the current architecture of conventional GANs is 

insufficient to maintain such a precise level of 

detail. 

4. Conclusion and Suggestions 

 

This paper implements a novel method for 

generating and augmenting synthetic individual 

dental data in radiographic images using GANs. 

The results show that the recommended strategy is 

effective in increasing the diversity and quality of 

dental datasets, both of which are necessary to 

improve the accuracy of dental image analysis 

models. Synthetic data alleviates the problems 

caused by the lack of real-world datasets and 

provides a reliable alternative for building robust 

DL models in dental radiography. Results have 

shown that the AI generated by the DentaGAN 

model produces synthetic data that is as high quality 

as actual dental radiographs, with the added benefit 

of being adaptable to a range of clinical settings. 

This capability has significant potential in the field 

of dental informatics as it provides larger and more 
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representative training datasets, leading to more 

robust models and, therefore, better patient 

outcomes. However, when the FID findings for each 

class were analyzed, it was observed that evaluating 

alternative GAN methods in future research may be 

appropriate. The findings suggest that the 

performance can be improved in the future by 

experimenting with different GANs with larger-

sized images. 

 In future studies, although the individual 

tooth classes are balanced in the dataset, the data of 

the tooth classes that are difficult to learn will be 

increased. As a result of experimental studies and 

findings, we have concluded that generating dental 

objects with the traditional GAN model is more 

challenging than other object classes. The results of 

the study indicate that conventional GANs are more 

difficult to generate dental objects than other object 

classes. This finding suggests that experimenting 

with different GANs on larger images may improve 

performance in the future. Therefore, in the next 

stage of the study, it will be possible to increase the 

possible performance by working with different 

types of GAN models with large image sizes. 
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