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ABSTRACT. In this paper, we consider a linear elliptic operator E with real constant coefficients of order 2m in two
independent variables without lower order terms. For this equation, we consider linear BVPs in which the boundary
operators T1, . . . , Tm are of order m and satisfy the Lopatinskii-Shapiro condition with respect to E. We prove bound-
ary completeness properties for the system {(T1ωk, . . . , Tmωk)}, where {ωk} is a system of polynomial solutions of
the equation Eu = 0.
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1. INTRODUCTION

The problem of the completeness of particular sequences of solutions of a PDE on the bound-
ary of a domain has a long history. The prototype of such results is the theorem which states
that harmonic polynomials are complete in Lp(∂Ω) (1 ⩽ p < ∞) or in C0(∂Ω), where Ω is a
bounded domain in Rn and Rn \ Ω is connected. This result has been proved by Fichera [5].
Since then, many other results have been obtained. They are related to different BVPs for sev-
eral PDEs, including some systems. We refer to [4, Section 2] for an introduction to the subject
and a quite updated bibliography. Here we mention that there are numerical methods that are
founded on the boundary completeness properties of certain sequences of solutions of a given
PDE (see [8, p.36–37]).

In the present paper, we deal with a linear elliptic operator E with real constant coefficients
of order 2m in two independent variables without lower order terms. For this equation, we
consider the BVP in a bounded domain Ω ⊂ R2 in which the boundary conditions are given by
m linear differential operators T1, . . . , Tm of order m. We assume that the operators Tj satisfy
the Lopatinskii-Shapiro condition with respect to E and that R2 \ Ω is connected.

The aim of this paper is to prove that the system {(T1ωk, . . . , Tmωk)}, where {ωk} is a system
of polynomial solutions of the equation Eu = 0, is complete in the subspace of [Lp(∂Ω)]m

constituted by the vectors which satisfy the compatibility conditions of the BVP: Eu = 0 in
Ω, Tju = ψj on ∂Ω (j = 1, . . . ,m). We also prove a similar and more delicate result in the
uniform norm. The BVP Eu = 0 in Ω, Tju = 0 on ∂Ω (j = 1, . . . ,m) was considered by Paolo
Emilio Ricci in his paper [13]. There Ricci developed a theory of the simple layer potential
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for such BVP, mainly using results from complex analysis related to singular integral systems.
Our results hinge on Ricci’s paper. Later BVPs with higher order boundary conditions were
considered in [10]. The present paper could probably be extended to these more general BVPs,
using the results contained in [11, 12]. We plan to investigate this topic in future work.

The present paper is organized as follows. In Section 2, after some preliminaries, we recall
some of the results obtained by Ricci. Section 3 is devoted to the completeness of the system
{(T1ωk, . . . , Tmωk)} in Lp norm. The completeness in C0 norm is proved in Section 4.

2. RICCI’S RESULTS

Let us consider an elliptic operator of order 2m

E =

2m∑
k=0

ak
∂2m

∂x2m−k∂yk

ak being real coefficients. The ellipticity condition we assume is

2m∑
k=0

akξ
2m−kηk ̸= 0, ∀ (ξ, η) ∈ R2 \ {(0, 0)} .

Let Ω be a bounded domain in R2 and denote its boundary by Σ, which is supposed to be C1,h

(0 < h ⩽ 1). Let us consider the following BVP

(2.1)

{
Eu = 0 in Ω

Tju = ψj on Σ (j = 1, . . . ,m),

where the Tj are m boundary operators of order m. This means that we can write

Tj =

m∑
h=0

bjh(z)
∂m

∂xm−h∂yh
+ T̃j ,

T̃j =

m−1∑
s=0

m−1−s∑
i=0

bji,m−1−s(z)
∂m−1−s

∂xm−1−s−i∂yi
,

where z = x + iy. We assume that all the functions bjh and bji,m−1−s belong to H(Σ), the space
of real valued Hölder continuous functions defined on Σ.

Let us denote by L(w) the characteristic polynomial of E

L(w) =

2m∑
k=0

akw
2m−k

and by Lj(w, z) the characteristic polynomial of the boundary operator Tj , i.e.

Lj(w, z) =

m∑
h=0

bjh(z)w
m−h (j = 1, 2, . . . ,m).

Let us consider also the polynomial

L(−)(w) = (w − w1)
ν1 · · · (w − wp)

νp ,

where w1, . . . , wp are the zeros of polynomial L with negative imaginary part (wi ̸= wj if i ̸= j,
ν1 + · · ·+ νp = m).
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We recall that the operators Tj satisfy the Lopatinskii condition with respect to E if, for any
z ∈ Σ, there are no complex constants c1, . . . , cm such that the polynomial L(−)(w) divides the
polynomial

m∑
j=1

cj Lj(w, z) .

From now on, we assume that this condition is satisfied.
Let Γ be a rectifiable Jordan curve in the complex w-plane enclosing the zeros of L(w) in the

lower half-plane and oriented in the positive direction. Agmon [1, p.189–190] showed that the
function

P(z − ζ) = Re
{

−1

2π2(2m− 2)!

∫
+Γ

[(x− ξ)w + (y − η)]2m−2 log[(x− ξ)w + (y − η)]

L(w)
dw

}
,

(z = x + iy, ζ = ξ + iη), where some fixed determination of the logarithm has been chosen, is
a fundamental solution of the operator E.

In [7], Fichera gave the concept of simple layer potential for a class of linear elliptic operators
of higher order in two independent variables. In the case of the operator E, it is given by

u(z) =

m−1∑
k=0

∫
Σ

φk(ζ)
∂m−1

∂ξm−1−k∂ηk
P(z − ζ)dsζ ,

the functionsφk being real valued. It is clear that this definition extends the classical one related
to the Laplace operator

(2.2) u(z) =
1

2π

∫
Σ

φ(ζ) log |z − ζ| dsζ .

The following jump formula holds (see [7, p. 65–66], [13, p. 7])

(2.3)

lim
z→z+

0

∫
Σ

φ(ζ)
∂2m−1

∂x2m−1−l∂yl
P(z − ζ)dsζ

=− φ(z0)
1

2π
Im

∫
+Γ

w2m−1−l

L(w) (ẋ0w + ẏ0)
dw

− 1

2π2
Re

∫
Σ

φ(ζ)dsζ

∫
+Γ

w2m−1−l

L(w) [(x0 − ξ)w + (y0 − η)]
dw , (0 ⩽ l ⩽ 2m− 1).

Here z0 ∈ Σ and z → z0 from the interior of Ω and the dot denotes the derivative with respect
to the arc length on Σ. In [13] these formulas have been proved for any z0 ∈ Σ assuming the
Hölder continuity of the density φ, but they are still valid a.e. on Σ if φ ∈ L1(Σ) (see, e.g., [3]).
Similarly one can prove that

(2.4)

lim
z→z−

0

∫
Σ

φ(ζ)
∂2m−1

∂x2m−1−l∂yl
P(z − ζ)dsζ

=φ(z0)
1

2π
Im

∫
+Γ

w2m−1−l

L(w) (ẋ0w + ẏ0)
dw

− 1

2π2
Re

∫
Σ

φ(ζ)dsζ

∫
+Γ

w2m−1−l

L(w) [(x0 − ξ)w + (y0 − η)]
dw , (0 ⩽ l ⩽ 2m− 1),

where z → z0 from the exterior of Ω.
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Using jump formulas (2.3), Ricci [13] showed that, given the functions ψj ∈ H(Σ) (j =
1, . . . ,m), there exists a solution of BVP (2.1) in the form of a simple layer potential (2.2) if and
only if there exists a solution of the following singular integral system on the boundary

(2.5)

−
m∑

k=1

m∑
h=0

1

2π
bjh(z)φk(z) Im

∫
+Γ

w2m−1−h−k

L(w) (ẋw + ẏ)
dw

−
m∑

k=1

m∑
h=0

1

2π2
bjh(z)Re

∫
Σ

φk(ζ) dsζ

∫
+Γ

w2m−1−h−k

L(w) [(x− ξ)w + (y − η)]
dw

+
m∑

k=1

m−1∑
s=0

m−1−s∑
i=0

bji,m−1−s(z)

∫
Σ

φk(ζ)
∂2m−2−s

∂x2m−2−s−i−k∂yi+k
P(z − ζ)dsζ

= (−1)m−1ψj(z) , j = 1, . . . ,m .

In [13] it is also proved that this singular integral system can be written in the canonical form

(2.6)
A(z)Φ(z) +

1

πi
B(z)

∫
+Σ

Φ(ζ)

ζ − z
dζ +

∫
+Σ

M(z, ζ)Φ(ζ)dζ

=(−1)m−12πΨ(z) , z ∈ Σ .

Here Ψ and Φ are the vectors

Ψ(z) =


ψ1(z)
ψ2(z)

...
ψm(z)

 , Φ(z) =


φ0(z)
φ1(z)

...
φm−1(z)


and

A(z) = {Ajk(z)}; B(z) = {Bjk(z)}; M(z, ζ) = {Mjk(z, ζ)},
where

(2.7)
Ajk(z) = − Im

∫
+Γ

Lj(w, z)w
m−1−k

L(w) (ẋw + ẏ)
dw,

Bjk(z) = iRe
∫
+Γ

Lj(w, z)w
m−1−k

L(w) (ẋw + ẏ)
dw

and Mjk(z, ζ) are weakly singular kernels.
Ricci [13] proved the following result:

Theorem 2.1. The singular integral system (2.6) is regular (i.e. det(A+B) ̸= 0; det(A−B) ̸= 0) if
and only if the BVP (2.1) satisfies the Lopatinskii condition.

By (2.7) we get

A+B =

{
i

∫
+Γ

Lj(w, z)w
m−1−k

L(w) (ẋw + ẏ)
dw

}
,

A−B =

{
i

∫
+Γ

Lj(w, z)wm−1−k

L(w) (ẋw + ẏ)
dw

}
,

from which it follows that system (2.6) is of regular type if and only if the function

δ0(z) = det

{∫
+Γ

Lj(w, z)w
m−1−k

L(w) (ẋw + ẏ)
dw

}
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never vanishes on Σ ([13, p.14]).
It is well known (see, e.g., [14]) that if a singular system is of regular type, then the associ-

ated homogeneous system has a finite number of eigensolutions and there exists a solution of
the system if and only if the data satisfies a finite number of compatibility conditions. More
precisely, there exists a complex valued solution of the system (2.6) if and only if the given
vector Ψ is such that ∫

+Σ

ΨX dζ = 0

for any (complex valued) eigensolution X of the homogeneous adjoint system

(2.8) A′(z)X(z)− 1

πi
B′(z)

∫
+Σ

X(ζ)

ζ − z
dζ +

∫
+Σ

N(ζ, z)X(ζ)dζ = 0 , z ∈ Σ .

Here A′ and B′ are the transposed matrices of A and B, respectively, and

N(ζ, z) =M ′(ζ, z)− 1

πi

B′(ζ)−B′(z)

ζ − z

M ′(ζ, z) being the transposed matrix of M(ζ, z) (see [13, p.12–13]).
We remark that, if we denote byKΦ andK ′X the left hand side of (2.6) and (2.8) respectively,

we have

(2.9)
∫
+Σ

XKΦ dζ =

∫
+Σ

ΦK ′X dζ

for any (complex valued) Hölder continuous vector Φ, X (see [13, p.13]).

3. COMPLETENESS THEOREMS IN Lp NORM

From now on, we assume that R2 \ Ω is connected.
Let us denote by {ωk} (k ∈ N) a complete system of polynomial solutions of the equation

Eu = 0. This means that any polynomial solution of the equation Eu = 0 can be written as
a finite linear combination of elements of {ωk}. A method for the explicit construction of the
system {ωk} is given in [2].

Let us denote by X1, . . . , Xs a base of the eigenspace related to the equation (2.8). It is well
known that these vectors are Hölder continuous.

Let 1 ⩽ p <∞ and

Λp =

{
G = (g1, . . . , gm) ∈ [Lp(Σ)]m

∣∣∣ ∫
+Σ

GXh dζ = 0, h = 1, . . . , s

}
.

We remark that (g1, . . . , gm) are real valued functions.
Let us denote by K∗ : [Lq(Σ)]m → [Lq(Σ)]m (q = p/(p− 1)) the operator defined by∫

Σ

GK∗F ds =

∫
Σ

F KGds .

Recalling (2.9), we have∫
Σ

F KGds =

∫
+Σ

F KG ζ̇ dζ

=

∫
+Σ

GK ′
z(żF ) dζ =

∫
Σ

GK ′
z(żF ) ζ̇ ds

and then K∗F = ζ̇ K ′
z(żF ). This shows that ζ̇X1, . . . , ζ̇Xs are (complex valued) eigensolutions

of the equation K∗F = 0. Since the operator K∗ maps real vectors to real vectors, we have
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that Re(ζ̇Xj) and Im(ζ̇Xj) are (not necessarily linearly independent) real eigensolutions of the
equation K∗Ξ = 0 and that the kernel Ker(K∗) is spanned by

{Re(ζ̇X1), Im(ζ̇X1), . . . ,Re(ζ̇Xs), Im(ζ̇Xs)}.
We note that Λp is the annihilator of the kernel of K∗:

(3.10) Λp = ⊥Ker(K∗) .

This follows from the remark that if G ∈ Λp, we have

0 =

∫
+Σ

GXh dζ =

∫
Σ

GXh ζ̇ ds =

∫
Σ

G Re(ζ̇Xh) ds+ i

∫
Σ

G Im(ζ̇Xh) ds

and then ∫
Σ

G Re(ζ̇Xh) ds =

∫
Σ

G Im(ζ̇Xh) ds = 0 (h = 1, . . . , s).

We remark that K∗ has the following expression

(3.11)

K∗
kF (z) = −

m∑
j=1

m∑
h=0

1

2π
bjh(z)Fj(z) Im

∫
+Γ

w2m−1−h−k

L(w) (ẋw + ẏ)
dw

+

m∑
j=1

m∑
h=0

1

2π2
Re

∫
Σ

bjh(ζ)Fj(ζ) dsζ

∫
+Γ

w2m−1−h−k

L(w) [(x− ξ)w + (y − η)]
dw

+

m∑
j=1

m−1∑
s=0

m−1−s∑
i=0

∫
Σ

bji,m−1−s(ζ)Fj(ζ)
∂2m−2−s

∂ξ2m−2−s−i−k∂ηi+k
P(z − ζ)dsζ .

Note that we have also used the property P(z − ζ) = P(ζ − z) (see [1, p.189]).
Let us consider the system {Tωk} = {(T1ωk, . . . , Tmωk)}. It is clear that it is contained in Λp.

We aim to show that it is complete in Λp. Let us begin with a couple of lemmas.

Lemma 3.1. Let

(3.12) pk,s(z, ζ) = pk,s(x, y, ξ, η) =

∫
+Γ

(ξw + η)k(xw + y)s

L(w)
dw ,

where k ∈ N, s ∈ Z. The function pk,s is homogeneous of degree k + s. For any fixed z ∈ C, pk,s is a
homogeneous polynomial of degree k in ξ, η and is a solution of the equation Eζpk,s = 0. For any fixed
ζ ∈ C, pk,s is a homogeneous function (a homogeneous polynomial, if s ⩾ 0) of degree s in x, y and is a
solution of the equation Ezpk,s = 0.

Proof. Clearly pk,s(λx, λy, λξ, λη) = λk+spk,s(x, y, ξ, η) (λ > 0). It is obvious that, for any fixed
z ∈ C, pk,s is a homogeneous polynomial of degree k in ξ, η. Therefore, if k ⩽ 2m−1, it satisfies
the equation Eζpk,s = 0. Let k ⩾ 2m. We have

Eζpk,s =

2m∑
h=0

ah
∂2m

∂ξ2m−h∂ηh

∫
+Γ

(ξw + η)k(xw + y)s

L(w)
dw

=

2m∑
h=0

ah k(k − 1) · · · (k − 2m+ 1)

∫
+Γ

(ξw + η)k−2m(xw + y)sw2m−h

L(w)
dw

= k(k − 1) · · · (k − 2m+ 1)

∫
+Γ

(ξw + η)k−2m(xw + y)s dw .

The holomorphy of (ξ ·+η)k−2m(x ·+y)s in the interior of Γ gives the result.
A similar argument works for a fixed ζ. □
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Lemma 3.2. There exists R > 0 such that, for any |z| > R, we have

(3.13) P(z − ζ) = q0(z, ζ) +
1

2π2(2m− 2)!

∞∑
h=1

2m−2∑
j=0

(
2m− 2

j

)
(−1)j

h
Re pj+h,2m−2−j−h(z, ζ)

uniformly for ζ varying on Σ, where q0 is, for any fixed z ∈ C, a polynomial of degree at most 2m − 2
in ξ, η (and then satisfies Eζq0 = 0). The series (3.13) can be differentiated with respect to ξ, η term by
term and the differentiated series converge uniformly for ζ varying on Σ.

Proof. We first prove that there exists R > 0 such that

(3.14)
∣∣∣∣ ξw + η

xw + y

∣∣∣∣ < 1

for any |z| > R, ζ ∈ Σ, w ∈ Γ. Let us consider the function

ψ(u, v, ϑ) =
√

(u cosϑ+ sinϑ)2 + v2 cos2 ϑ

and set

m = min
ϑ∈[0,2π]
u+iv∈Γ

ψ(u, v, ϑ), M = max
ϑ∈[0,2π]
u+iv∈Γ

ψ(u, v, ϑ).

It is easy to see that m > 0. Then we can write∣∣∣∣ ξw + η

xw + y

∣∣∣∣ ⩽ M

m

|ζ|
|z|

.

Choosing

R ⩾
M

m
max
ζ∈Σ

|ζ| ,

we have that (3.14) is satisfied for any |z| > R. If |z| > R and ζ ∈ Σ, w ∈ Γ, we have

log[(x− ξ)w + (y − η)] = log[(xw + y)− (ξw + η)]

= log

[
(xw + y)

(
1− ξw + η

xw + y

)]
= log(xw + y) + log

(
1− ξw + η

xw + y

)
,

where we take the principal determination of log
(
1− ξw+η

xw+y

)
and the determination of log(xw+

y) is chosen so that this formula holds. Therefore, fixed |z| > R,

log[(x− ξ)w + (y − η)] = log(xw + y)−
∞∑
h=1

1

h

(
ξw + η

xw + y

)h
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where, thanks to (3.14), the series uniformly converges for ζ ∈ Σ, w ∈ Γ. Then∫
+Γ

[(x− ξ)w + (y − η)]2m−2 log[(x− ξ)w + (y − η)]

L(w)
dw

=

∫
+Γ

[(x− ξ)w + (y − η)]2m−2 log(xw + y)

L(w)
dw

−
∞∑
h=1

1

h

∫
+Γ

[(x− ξ)w + (y − η)]2m−2

L(w)

(
ξw + η

xw + y

)h

dw

=

∫
+Γ

[(x− ξ)w + (y − η)]2m−2 log(xw + y)

L(w)
dw

−
∞∑
h=1

2m−2∑
j=0

(
2m− 2

j

)
(−1)j

h

∫
+Γ

(ξw + η)j+h(xw + y)2m−2−j−h

L(w)
dw .

We have then proved (3.13), where

q0(z, ζ) = −Re
1

2π2(2m− 2)!

∫
+Γ

[(x− ξ)w + (y − η)]2m−2 log(xw + y)

L(w)
dw ,

which is clearly a polynomial in ξ, η of degree at most 2m− 2.
In the same manner, we can see the uniform convergence of differentiated series. □

Theorem 3.2. The system {Tωk} is complete in Λp (1 ⩽ p <∞).

Proof. We have to show that, if a functional Θ ∈ ([Lp(Σ)]m)∗ vanishes on {Tωk}, i.e. if

⟨Θ, Tωk⟩ = 0, ∀ k ∈ N ,

then it vanishes on Λp:
⟨Θ, G⟩ = 0, ∀ G ∈ Λp.

Let 1 < p <∞ and suppose that Θ = (Θ1, . . . ,Θm) ∈ [Lq(Σ)]m is such that

(3.15)
∫
Σ

ΘTωk ds = 0, ∀ k ∈ N.

Let us denote by ωk,1, . . . , ωk,νk
a basis of the (real) linear span generated by all the homoge-

neous real polynomials of degree k satisfying the equation Eu = 0 (see [2, p.34–35]). Since for
any z ∈ C, the polynomials (3.12) are homogeneous and satisfy the equation Eu = 0, Lemma
3.2 shows that there exist real functions ck,j(z) such that, for any |z| > R,

P(z − ζ) =

∞∑
k=0

νk∑
j=1

ck,j(z)ωk,j(ζ)

uniformly for ζ ∈ Σ. The same holds for differentiated series. Then, for any |z| > R, we can
write ∫

Σ

Θ(ζ)TζP(z − ζ) dsζ =

∞∑
k=0

νk∑
j=1

ck,j(z)

∫
Σ

Θ(ζ)Tωk,j(ζ) dsζ .

In view of (3.15), we have
u(z) = 0

for any |z| > R, where

u(z) =

∫
Σ

Θ(ζ)TζP(z − ζ) dsζ .
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The function u being analytic in C \ Σ, we find

u(z) = 0, ∀ z ∈ C \ Ω.

Then we can write
m∑
j=1

m∑
h=0

∫
Σ

Θj(ζ) b
j
h(ζ)

∂m

∂ξm−h∂ηh
P(z − ζ)dsζ

+

m∑
j=1

∫
Σ

Θj(ζ) T̃j,ζP(z − ζ)dsζ = 0

for any z ∈ C \ Ω. This implies

m∑
j=1

m∑
h=0

∫
Σ

Θj(ζ) b
j
h(ζ)

∂m−1

∂xm−1−k∂yk
∂m

∂ξm−h∂ηh
P(z − ζ)dsζ

+

m∑
j=1

∫
Σ

Θj(ζ) T̃j,ζ
∂m−1

∂xm−1−k∂yk
P(z − ζ)dsζ = 0, k = 0, . . . ,m− 1

for any z ∈ C \ Ω, i.e.

(−1)m
m∑
j=1

m∑
h=0

∫
Σ

Θj(ζ) b
j
h(ζ)

∂2m−1

∂x2m−1−h−k∂yh+k
P(z − ζ)dsζ

+

m∑
j=1

m−1∑
s=0

m−1−s∑
i=0

∫
Σ

Θj(ζ) b
j
i,m−1−s(ζ)

∂m−1−s

∂ξm−1−s−i∂ηi
∂m−1

∂xm−1−k∂yk
P(z − ζ)dsζ

=0, k = 0, ...,m− 1

for any z ∈ C \ Ω. Applying (2.4), we get

−
m∑
j=1

m∑
h=0

1

2π
Θj(z) b

j
h(z) Im

∫
+Γ

w2m−1−h−k

L(w) (ẋw + ẏ)
dw

+

m∑
j=1

m∑
h=0

1

2π2
Re

∫
Σ

Θj(ζ) b
j
h(ζ) dsζ

∫
+Γ

w2m−1−h−k

L(w) [(x− ξ)w + (y − η)]
dw

+

m∑
j=1

m−1∑
s=0

m−1−s∑
i=0

∫
Σ

Θj(ζ) b
j
i,m−1−s(ζ)

∂2m−2−s

∂ξ2m−2−s−i−k∂ηi+k
P(z − ζ)dsζ = 0,

k = 0, ...,m−1, a.e. on Σ. Comparing this formula with (3.11), we see that this system coincides
with K∗Θ = 0, i.e. Θ belongs to Ker(K∗). Recalling (3.10) we have∫

Σ

ΘGds = 0

for any G ∈ Λp. This completes the proof when 1 < p <∞.
If p = 1, we observe that if Θ ∈ [L∞(Σ)]m, then Θ ∈ [Ls(Σ)]m for any s > 1. Then we can

repeat the proof. □
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4. COMPLETENESS THEOREMS IN C0 NORM

In this section, we prove that the completeness property obtained in the previous section is
also valid in the uniform norm. Namely, we want to prove the completeness in the space

Λ0 =

{
G = (g1, . . . , gm) ∈ [C0(Σ)]m

∣∣∣ ∫
+Σ

GXh dζ = 0, h = 1, . . . , s

}
.

Theorem 4.3. The system {Tωk} is complete in Λ0.

Proof. We have to show that, if a functional in Θ ∈ ([C0(Σ)]m)∗ vanishes on {Tωk}, i.e. if

(4.16) ⟨Θ, Tωk⟩ = 0, ∀ k ∈ N ,

then it vanishes on Λ0:

⟨Θ, G⟩ = 0, ∀ G ∈ Λ0.

It is well known that a functional Θ ∈ ([C0(Σ)]m)∗ can be represented as Θ = (µ1, . . . , µm),
where µj are Borel measures defined on Σ. Therefore conditions (4.16) can be written as

(4.17)
m∑
j=1

∫
Σ

Tjωk dµ
j = 0, ∀ k ∈ N .

The same arguments used in the first part of the proof of Theorem 3.2 lead to

m∑
j=1

∫
Σ

Tj,ζP(z − ζ) dµj
ζ = 0

for any z ∈ C \ Ω. This implies

m∑
j=1

m∑
h=0

∫
Σ

bjh(ζ)
∂m−1

∂xm−1−k∂yk
∂m

∂ξm−h∂ηh
P(z − ζ) dµj

ζ

+

m∑
j=1

∫
Σ

T̃j,ζ
∂m−1

∂xm−1−k∂yk
P(z − ζ) dµj

ζ = 0, k = 0, . . . ,m− 1

for any z ∈ C \ Ω, i.e.

(−1)m−1
m∑
j=1

m∑
h=0

∫
Σ

bjh(ζ)
∂2m−1

∂ξ2m−1−h−k∂ηh+k
P(z − ζ) dµj

ζ

+

m∑
j=1

m−1∑
s=0

m−1−s∑
i=0

∫
Σ

bji,m−1−s(ζ)
∂m−1−s

∂ξm−1−s−i∂ηi
∂m−1

∂xm−1−k∂yk
P(z − ζ) dµj

ζ

=0, k = 0, . . . ,m− 1

for any z ∈ C \ Ω. Let us introduce a family of “parallel curves” Σϱ. Let us denote by τ(z) a
unit vector of class C1(Σ) such that τ(z) · ν(z) ⩾ β0 > 0, ν being the exterior unit normal to Σ.
We can choose ϱ > 0 in such a way that the curve Σϱ defined by zϱ = z + ϱτ(z), z ∈ Σ, is the
boundary of a domain containing Ω (contained in Ω) if 0 < ϱ ⩽ ϱ0 (if −ϱ0 ⩽ ϱ < 0). One can
prove that if Σ ∈ C1 such a vector does exist (see [9, p.273–275]). For 0 < ϱ ⩽ ϱ0 and for any
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fk ∈ H(Σ) (k = 0, . . . ,m− 1), we may write

(4.18)

m−1∑
k=0

∫
Σϱ

fk(zϱ)

[ m∑
j=1

m∑
h=0

∫
Σ

bjh(ζ)
∂2m−1

∂ξ2m−1−h−k∂ηh+k
P(zϱ − ζ) dµj

ζ

+

m∑
j=1

m−1∑
s=0

m−1−s∑
i=0

∫
Σ

bji,m−1−s(ζ)
∂2m−2−s

∂ξ2m−2−s−i−k∂ηi+k
P(z − ζ) dµj

ζ

]
dszϱ = 0.

Due to the weak singularity of the kernel, we have that

lim
ϱ→0+

∫
Σϱ

fk(zϱ) dszϱ

∫
Σ

bji,m−1−s(ζ)
∂2m−2−s

∂ξ2m−2−s−i−k∂ηi+k
P(z − ζ) dµj

ζ

=

∫
Σ

bji,m−1−s(ζ) dµ
j
ζ

∫
Σ

fk(z)
∂2m−2−s

∂ξ2m−2−s−i−k∂ηi+k
P(z − ζ) dsz .

Concerning the first term in (4.18), we may write∫
Σϱ

fk(zϱ) dszϱ

∫
Σ

bjh(ζ)
∂2m−1

∂ξ2m−1−h−k∂ηh+k
P(zϱ − ζ) dµj

ζ

=

∫
Σ

bjh(ζ) dµ
j
ζ

∫
Σϱ

fk(zϱ)
∂2m−1

∂ξ2m−1−h−k∂ηh+k
P(zϱ − ζ)dszϱ

and ∫
Σϱ

fk(zϱ)
∂2m−1

∂ξ2m−1−h−k∂ηh+k
P(zϱ − ζ) dszϱ

=

∫
Σϱ

fk(zϱ)
∂2m−1

∂ξ2m−1−h−k∂ηh+k
P(zϱ − ζ) dszϱ

−
∫
Σ

fk(z)
∂2m−1

∂ξ2m−1−h−k∂ηh+k
P(z − ζ−ϱ) dsz

+

∫
Σ

fk(z)
∂2m−1

∂ξ2m−1−h−k∂ηh+k
P(z − ζ−ϱ) dsz.

By means of the results proved in [6] (see also [3, p.58–60]) and recalling (2.3), we see that

lim
ϱ→0+

(∫
Σϱ

fk(zϱ)
∂2m−1

∂ξ2m−1−h−k∂ηh+k
P(zϱ − ζ)dszϱ

−
∫
Σ

fk(z)
∂2m−1

∂ξ2m−1−h−k∂ηh+k
P(z − ζ−ϱ) dsz

)
= 0

and

lim
ϱ→0+

∫
Σ

fk(z)
∂2m−1

∂ξ2m−1−h−k∂ηh+k
P(z − ζ−ϱ) dsz

= lim
ϱ→0+

∫
Σ

fk(z)
∂2m−1

∂ξ2m−1−h−k∂ηh+k
P(ζ−ϱ − z) dsz

=− fk(ζ)
1

2π
Im

∫
+Γ

w2m−1−h−k

L(w) (ξ̇w + η̇)
dw

− 1

2π2
Re

∫
Σ

fk(z) dsz

∫
+Γ

w2m−1−h−k

L(w) [(ξ − x)w + (η − y)]
dw
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uniformly for ζ varying on Σ. So, letting ϱ→ 0+ in (4.18) and keeping in mind (2.5), we get

(4.19)
m∑
j=1

∫
Σ

Kjf dµ
j = 0

for any f = (f0, . . . , fm−1) ∈ [H(Σ)]m. Thanks to Theorem 2.1 the operator K can be reduced
on the left (and on the right). This means that there exists a singular integral operator S of the
form

Sg(z) = C(z)g(z) +
1

πi
D(z)

∫
+Σ

g(ζ)

ζ − z
dζ

such that

KSg(z) = g(z) +

∫
+Σ

R(z, ζ) g(ζ)dζ,

where R(z, ζ) = {Rjk(z, ζ)} is a kernel with a weak singularity. Taking f = Sg in (4.19), we
find

m∑
j=1

∫
Σ

Kj Sg dµ
j = 0 , ∀ g ∈ [H(Σ)]m,

i.e.,
m∑
j=1

∫
Σ

gj dµ
j +

m∑
j,k=1

∫
Σ

dµj
z

∫
+Σ

Rjk(z, ζ) gk(ζ)dζ = 0 , ∀ g ∈ [H(Σ)]m.

By Tonelli and Fubini’s theorems, we get

m∑
j=1

∫
Σ

gj dµ
j = −

m∑
j,k=1

∫
+Σ

gk(ζ)dζ

∫
Σ

Rjk(z, ζ) dµ
j
z , ∀ g ∈ [H(Σ)]m.

This shows that µj are absolutely continuous measures and their Radon Nykodym derivatives
with respect to the one-dimensional Lebesgue measure on Σ belong to Lr(Σ) for some r > 1.
In other words, there exist Θj ∈ Lr(Σ) (r > 1) such that

dµj = Θjds (Θj ∈ Lr(Σ)).

Conditions (4.17) become
m∑
j=1

∫
Σ

Tjωk Θ
jds = 0, ∀ k ∈ N .

But this coincides with (3.15) and the result follows from what we have proved in Theorem
3.2. □
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