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Abstract 

Pricing non-life insurance products is based on the prediction of two components; claim frequency and claim severity. In this study 

we focus on claim frequency data that has a zero-inflated structure. Although zero-modified regression models such as zero-inflated 
and hurdle models are used for data sets with excess zeros, machine learning (ML) methods are also preferred for this type of data 
sets in recent years. When the objective is the prediction, ML methods generally provide more accurate results than regression 
models especially for large and complex datasets. Tree-based ML methods run decision trees as the base of the algorithm and 
improve performance by using the predictions of multiple trees. Combining the traditional methods with ML methods is a current 
popular approach for prediction tasks. Objective of this study is to compare the predictive performance of regression methods and 
tree-based ML methods for zero-inflated claim frequency data using a real insurance dataset. Motor third party liability insurance 
claim data from an insurance company in Turkey is used for the case study. To predict claim frequency, generalized linear models 

(GLM), zero-inflated model and hurdle model are used under Poisson distribution as regression models and regression trees, 
boosting and GLM-Boost that is a combination of GLM and Boosting algorithm are used as ML methods. Predictive performances 
of candidate models are compared using both average in-sample and average out-of-sample losses. According to the case study 
results, ML methods performed better predictive performance than zero-modified models. Specially, GLM-Boost method 
performed best among others and that is a promising result for the approaches that are combinations of GLM and ML methods.  

 

© 2023 DPU All rights reserved. 
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1. Introduction 

Actuarial pricing methods in non-life insurance is generally based on generalized linear models due to the ease of 
implementation and interpretation. Beside the practical usage, GLMs assume a linear relationship between the 

transformed response and explanatory variables on the basis of link function, need an exponential dispersion family 

distribution for the response variable, has sensitivity to multicollinearity and don’t take into account interactions and 
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non-linear relationships. Also, GLMs may struggle with high-dimensional data with regards to matrix operations in 

maximum likelihood estimation. Because of these drawbacks, machine learning methods become popular since they 
can handle interactions and non-linearities automatically, can control overfitting, have flexibility with data types and 

are generally robust to outliers. Due to the data driven property of insurance business, machine learning methods 

became popular also for insurance data modelling in recent years [1-5]. Wuthrich and Buser [1] use various ML 

methods including regression trees, ensemble methods and neural networks for claim frequency data. Liu et al. [2] 

compare the predictive performance of AdaBoost algorithm with GLM, neural network and support vector machines 

to predict claim frequency. Dal Pozzolo [3] used various ML methods to estimate claims in Kaggle competition. Noll 

et al. [4] used GLM, regression trees, boosting, GLM-Boost and neural network methods to predict claim frequency 

data. Clemente et al. [5] compared GLM and gradient boosting model for claim frequency data.  

Classification and regression trees are simple and visually practical methods that provide basis for other ML 

methods such as boosting. Boosting is an iterative ensemble learning method that is a combination of many weak 

learners such as regression trees. For the predictive purposes, boosting algorithm performs well due to the iterative 

process that combines weak learners into a strong learner by minimizing error.  Various boosting algorithms are used 

to estimate both claim frequency and claim severity data [2, 6-9]. All these studies emphasise the promising 

performance of boosting algorithms for claim data modelling. In recent years, combination of ML algorithms and 

traditional methods is also popular for predictive issues in insurance data [1, 4]. One of these methods is GLM-Boost 

[4] that is a combination of GLM and boosting algorithm.  

From the other side, main characteristic of motor insurance claim data is excess zeros due to the No Claim Discount 

(NCD) system and deductible modification. Policyholders don’t report low-cost claims not to pay over-premium in 

the next policy year or when the claim size is below the deductible amount. Zero-inflated and hurdle models are 

popular for imbalanced data that is frequently observed property in insurance [10, 11]. Those zero-modified methods 

are used as an alternative to GLMs for zero-inflated claim frequency data [12, 13]. 

In this study, we aim to compare predictive performance of traditional GLM, zero-inflated model, hurdle model, 

regression trees, boosting and GLM-Boost approach for the prediction of a zero-inflated motor insurance claim 
frequency data. Different from other studies in the literature, zero-inflated and hurdle models are compared with tree-

based ML methods for zero-inflated claim frequency data in this study.  

In the second part of the paper, statistical methods are summarized, in the third part, dataset is explained and the 

statistical analysis is performed. The paper ends with the conclusion part. 

2. Statistical Models 

2.1. Generalized linear models 

Generalized linear models are purposed by Nelder and Wedderburn [14]. The distribution of response variable in 

GLMs can be any distribution from exponential family and the mean of response variable can be a linear function of 

explanatory variables on different scales depending on the ink function.  

For 𝑖 = 1,2, … , 𝑛  let  𝑁𝑖 be the number of claims of policy i. Under GLM, 𝑁𝑖’s are assumed to be independent. 

Mean function of 𝑁𝑖 is defined as, 

𝐸(𝑁𝑖) = ℎ−1(𝒙𝒊
′𝜷)                                                                                                                                      (1) 

where 𝒙𝒊
′ and 𝜷 are  the vector of covariates and the vector of regression coefficients respectively. h(.) is the link 

function that specifies the relation between the linear predictor and the response variable. 
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Under Poisson assumption, distribution of 𝑁𝑖 is defined as, 

𝑁𝑖  ~ 𝑃𝑜𝑖(𝜆(𝑥𝑖) 𝑣𝑖)                                                                                                                               (2) 

where, 𝜆(𝑥𝑖) is the regression function and 𝑣𝑖   is the exposure for policy i.  

2.2. Zero-inflated and hurdle models 

Zero-inflated and hurdle models are used to model datasets that have excess zeros. Zero-inflated models are mixed 

models that consist of a point mass at zero and a positive count distribution. Hurdle models are the combinations of 

left-truncated count and right-censored hurdle components [15].   

Let the probability of observing zero and the probability density function of counts are denoted by π and 𝑓2(𝑛) 

respectively. Probability function of zero-inflated distribution is defined as, 

𝑃(𝑁 = 𝑗) = {
𝜋 + (1 − 𝜋)𝑓2(0), 𝑗 = 0

(1 − 𝜋)𝑓2(𝑗), 𝑗 > 0
                                                                                                                     (3) 

In hurdle model, let the probability of observing zero is denoted by 𝑓1(0). Probability of observing  j claims with 

hurdle model is defined as follows [16], 

𝑃(𝑁 = 𝑗) = {
𝑓1(0), 𝑗 = 0

1−𝑓1(0)

1−𝑓2(0)
𝑓2(𝑗), 𝑗 > 0

                                                                                                                               (4) 

2.3. Regression trees 

Regression trees are the popular non-parametric, simple and flexible methods for regression tasks. The objective is 

to construct trees in a way that feature space is partitioned into homogenous subsets. For the partitioning, binary tree 

growing algorithm can be used. The algorithm is repeated until a stopping rule is applied. For the goodness of binary 

splits, optimal split is chosen such that deviance loss is minimized. Regression trees are the fundamental methods for 
other ensemble algorithms that rely on iterative process such as boosting.  

Let’s assume that there are p explanatory variables and we will split data into M regions (𝑅1, 𝑅2, … , 𝑅𝑀). In each 

region, claim frequency parameter is 𝜆𝑚 . So, expected frequency is, 

�̂�(𝑥) = ∑ �̂�𝑚  𝐼(𝑥𝜖𝑅𝑚)𝑀
𝑚=1                                                                                                                                            (5) 

If we minimize the sum of squares of the difference between the responses and predictions, �̂�𝑚 is the average of 

response in region Rm [17]. For more details about classification and regression trees we refer [1].  

2.4. Boosting 

In boosting method, forward stage-wise algorithm of Friedman [18] is applied to solve optimization problem by 

fitting weak learners and adding it to the previous fitted terms sequentially. We try to find optimal parameters by 

adaptively minimizing loss function in each iteration adding a weak learner to the present predictor. This algorithm is 

called gradient boosting machine. In our case, weak learners are the regression trees and the objective is to minimize 
Poisson deviance.  

Assume that 𝐿(. ) is the objective function and we try to minimize in-sample loss over class of functions f  given as, 
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𝑓 =
𝑎𝑟𝑔𝑚𝑖𝑛

𝑓
1

𝑛
 ∑ 𝐿(𝑁𝑖 , 𝑓(𝒙𝒊), 𝑣𝑖)

𝑛
𝑖=1                                                                                                                             (6) 

Let 𝑓𝑚−1(. ) be the minimizer of Eq. (6) and 𝑔𝑚(𝒙) is a regression model that acts as base learner in the algorithm. 
If we define working weights, 

 

𝑤𝑖
(𝑚)

= 𝑣𝑖  𝑒
𝑓𝑚−1(𝒙𝒊)                                                                                                                                                      (7) 

and f  functions as the logged frequency ( 𝑙𝑜𝑔𝜆), the steps of Poisson regression tree boosting machine with 

logarithmic link function are given as follows, 

1. Choose a constant shrinkage parameter, 𝛼 ∈ (0,1]. This parameter makes weak learner even weaker.  

2. Calculate 𝑓0(𝒙) = log �̂�0 (𝒙) = log (
∑ 𝑁𝑖

𝑛
𝑖=1

∑ 𝑣𝑖
𝑛
𝑖=1

)  

3. For m=1,2,..,M repeat, 

a) Calculate working weights, 𝑤𝑖
(𝑚)

 

b) Fit a Poisson regression tree to working data (learning dataset) 

c) Update:  𝑓𝑚(𝒙) = 𝑓𝑚−1(𝒙) + 𝛼𝑔𝑚(𝒙) 

 

4. Obtain the estimator, 𝑓(𝒙) = 𝑓𝑀 (𝒙) [1] 

2.5. GLM-Boost 

In this method, optimal GLM estimates are used as initial values (𝑓0(𝒙)) that is set into the exposure of the boosted 

regression trees and then boosting algorithm is processed iteratively [4].   

3. Case Study 

In this study, objective function is the average Poisson deviance loss function that is defined as follows, 

𝐿(𝐷, �̂�) =
1

𝑛
 ∑ 2𝑁𝑖

𝑛
𝑖=1 [

𝜆(𝒙𝒊) 𝑣𝑖

𝑁𝑖
− 1 − log (

𝜆(𝒙𝒊)𝑣𝑖

𝑁𝑖
)] ≥ 0                                                                                             (8) 

where D is training data set. We try to minimize this loss function that provides maximum likelihood estimate of λ 

[4]. For test dataset, we put T instead of D in Eq.(8).  

3.1. Data set 

Dataset consists of information related to motor third party liability insurance, started/renewed in years 2009-2012. 

Dataset is taken from a private insurance company in Turkey. Only the policies of private automobiles are taken into 

account. Response variable is the number of claims in one policy year.  

Risk factors do not change during the policy period. For each policy, we have information about policy number, 

novation number, rider number, rider type, policy year, province where vehicle is registered, no claim discount (ncd) 

code, age of vehicle, age and gender of policyholder, cubic capacity of vehicle, previous claim number of policy and 

binary code that indicates whether policy has just started (new) or not (old). Exposure is calculated using policy 
number and rider numbers in one accounting year. One policy number belongs to only one year, repeated information 

of the same policy in unknown since policy number changes in each renewal process. Any deductible modification is 
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not applied in these policies. We made an exposure based calculation of correction factors for each accident quarter, 

using the Bornhuetter-Ferguson and Cape-Cod methods and multiplied those factors with the observed claim numbers 
to prevent distortion due to the reporting process.  

Provinces are clustered into seven regions where clusters are generated using k-means clustering algorithm based 

on the 2010 year accident statistics of accident numbers, death numbers and injured party numbers for each province. 

Accident statistics are taken from the web site of Turkish Statistical Institute. 

In preliminary analysis of data, we observed some values for age of driver, age of vehicle and previous claim number 

were pointless. So, we assumed upper limit of 90 for the age of driver, 50 for the age of vehicle and 5 for the previous 

claim number. All analyses of case study are performed using R Studio software, version 4.3.0. 

There are 1,246,990 automobile insurance policies between the years 2009-2012. Explanatory variables are given 

below, 

 Policy year (year) 

 Previous claim number (prev_cnum), number of claim that occurred in previous policy year 

 Age of driver (age),  

 Age of vehicle (ageveh) 

 Cubic capacity of vehicle (cc) 

 No claim discount (ncd) level of policy, categorical variable with 7 levels where 4 is entrance level, 7 is 

highest discount and 1 is highest over premium level.  

 Region, cluster of provinces where the vehicle is registered. Categorical with 7 levels 

 Gender of policyholder, binary variable 

 New_old, binary variable that indicates whether the policy is new or renewed (old). (new:0, old:1) 

Statistics of continuous features, exposure and claim numbers are given in Table 1, 

 
         Table 1. Summary statistics of continuous features, exposure and claim numbers 

 

Age of 

policyholder 

Age of 

vehicle 

Cubic 

capacity Year Prev_cnum Exposure 

Claim 

number 

Min 18 0 0 2009 0 0.0027 0 

Median 42 13 1600 2011 0 1 0 

Mean 43.31 13.13 1555 2011 0.0264 0.8317 0.0661 

Max 90 50 7000 2012 5 1 8 

 

Data is highly zero inflated since the median value of claim number is zero. Mean exposure value is close to one 
that shows most of the policies are in force for the whole policy year. Histogram of claim numbers is given in Figure 

1. In accordance with Table 1, we see that data has a highly zero-inflated structure.  
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Figure 1. Histogram of claim numbers 

Number of policies in each level of categorical variables are given in Table 2, 

                             Table 2. Policy numbers in levels of categorical features 

Gender  

Female Male 

172,264 1,074,726 

New_old 

New Old 

931,168 315,822 

Ncd 

1 2 3 4 5 6 7 

1,257 7,499 23,933 452,874 214,223 157,528 389,676 

Region 

0 1 2 3 4 5 6 

165,754 258,567 93,757 261,859 189,234 84,586 193,233 

Most of the policy holders are male, are new in the system, have entrance ncd level (4) and from Region 3. Claim 

frequency of general portfolio is 0.0795 that is an indication of zero-inflation.  

Dummy coding is applied for categorical variables and chose reference level that has the biggest volume. To test 

the collinearity between the variables we calculated Pearson’s correlation coefficients for continuous features and 

Cramer’s V measures for categorical variables are given in Table 3 and Table 4.  

 

                                      Table 3. Pearson’s correlation coefficients 

 Year Prev_cnum Age Ageveh Cc 

Year 1 0 0.08 0.03 0.02 

Prev_cnum 0 1 0 -0.01 0 

Age 0.08 0 1 0.11 -0.02 
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Ageveh 0.03 -0.01 0.11 1 -0.03 

Cc 0.02 0 -0.02 -0.03 1 

 
                                      Table 4. Cramer’s V measures 

 Region Ncd Gender New_old 

Region 1 0.0397 0.0793 0.0603 

Ncd 0.0397 1 0.0215 0.4270 

Gender 0.0793 0.0215 1 0.0046 

New_old 0.0603 0.4270 0.0046 1 

Based on correlation coefficients, there is a high correlation between ncd level and new_old status of policies and 

a slight correlation between the age of driver and the age of vehicle. For now, we will use all the features in the models.  

3.2. Analysis 

We fit Poisson GLM by assuming the age of driver, age of vehicle and the cubic capacity both continuous and 

categorical while other features are same in the models. We compared results based on AIC and the significance of 

the variables. In each case, variables are significant at 95% significance level but AIC is smaller when the variables 

are categorical. As a result, we used these three variables categorical in regression models. Categories are binned as 
follows: 

Cubic capacity, with 3 levels [0-1300], (1300-1600], (1600-7000] 

Age of driver, with 6 levels [18,25], (25,30], (30,40], (40,50], (50,70], (70,90] 

Age of vehicle, with 5 levels [0,1], (1,5], (5,10], (10,20], (20,50] 

We applied dummy coding for categorical variables. Design matrix has full rank under dummy coding and this 

means linearly independence of columns [19]. To compare the predictive performance of candidate models, dataset is 

partitioned into two parts, training dataset (80%) and the test dataset (20%). In-sample loss is calculated on training 

data set while out-of-sample loss is calculated on test data set using Eq. (8). Reason of using deviance loss function is 
that this loss function evaluated on a different test dataset provides a good predictive performance indicator [4].  

First model is GLM under Poisson distribution with logarithmic link function. We used all explanatory variables 

in Poisson GLM only taking into account main effects. We call this model as GLM1. According to the model results, 

new_old was not statistically significant with p-value 0.5261. Analysis of deviance table is given in Table 5, 

                        Table 5. Anova results of GLM1 

 Df Deviance Resid. Df Resid. Dev 

Null   997591 407221 

ageglm 5 1824 997586 405396 

agevehglm 4 1101 997582 404295 

cc 2 188 997580 404106 

gender 1 86 997579 404020 

region 6 2425 997573 401594 

ncd 6 4370 997567 397223 

new_old 1 0 997566 397223 

prev_cnum 1 197 997565 397026 

year 1 7 997564 397019 
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A decrease in residual deviance from a simple model to a complex model indicates that the additional parameters 

provide a better fit. Based on deviance results, new_old variable is excluded from the model since there is no difference 
in residual deviance after new_old variable is added to the model. Summary of refitted model without new_old 

(GLM2) is given in Table 6, 

 
                                    Table 6. Results of GLM2 

Parameter Estimate Std. Error z value Pr(>|z|) 

 

Intercept 17.5549 7.5406 2.3280 0.0199 

ageglm1 0.3402 0.0173 19.6990 < 2e-16 

ageglm2 0.1599 0.0128 12.4940 < 2e-16 

ageglm4 0.0259 0.0105 2.4660 0.0136 

ageglm5 -0.0608 0.0111 -5.4840 0.0000 

ageglm6 -0.0785 0.0297 -2.6410 0.0083 

agevehglm1 0.1418 0.0165 8.5850 < 2e-16 

agevehglm2 0.1281 0.0113 11.2870 < 2e-16 

agevehglm3 0.0516 0.0108 4.7890 0.0000 

agevehglm5 -0.0436 0.0126 -3.4590 0.0005 

cc1 -0.1138 0.0150 -7.5660 0.0000 

cc2 -0.0300 0.0120 -2.4970 0.0125 

gendermale -0.0738 0.0108 -6.8610 0.0000 

region1 -0.5689 0.0133 -42.8340 < 2e-16 

region2 -0.7020 0.0196 -35.7280 < 2e-16 

region3 -0.3588 0.0125 -28.7530 < 2e-16 

region4 -0.3691 0.0136 -27.1010 < 2e-16 

region5 -0.1587 0.0162 -9.7980 < 2e-16 

region6 -0.4954 0.0139 -35.6550 < 2e-16 

ncd1 0.2658 0.0816 3.2560 0.0011 

ncd2 -0.1077 0.0443 -2.4290 0.0151 

ncd3 -0.0877 0.0259 -3.3840 0.0007 

ncd5 -0.2886 0.0109 -26.4110 < 2e-16 

ncd6 -0.4449 0.0130 -34.2660 < 2e-16 

ncd7 -0.6396 0.0106 -60.1430 < 2e-16 

prev_cnum 0.3003 0.0203 14.7890 < 2e-16 

year -0.0096 0.0038 -2.5720 0.0101 

According to GLM results, all features are statistically significant at 95% confidence level. Mean claim frequency 

is decreasing after driver’s age 50, vehicle’s age 20 and at lower cubic capacity when compared to the base level. 

Claim frequency is higher in female drivers than males and in region 0. While previous claim number increases the 

claim frequency, policy year has a decreasing effect on it. Comparison of two GLMs based on loss values and AICs 

is given in Table 7.  
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                               Table 7. In-sample losses, out-of-sample losses and AIC values of GLMs 

Model Average in-sample loss Average out-of-sample loss AIC 

GLM1 0.3979 0.4011 501404 

GLM2 0.3979 0.4011 501403 

 

There is not a significant difference based on in-sample and out-of-sample loss of two GLMs. According to AIC 

values GLM2 performs better with a small difference. To compare other methods, we use same explanatory variables, 

new_old variable is excluded.  

3.2.1. Zero-inflated and hurdle Poisson model 

Due to the excess zero structure of claim numbers, we fit both zero-inflated Poisson (ZIP) and hurdle Poisson model 

to claim numbers. Logistic regression is used for the zero component of the models. First, for the ZIP model, we 

assumed the probability of excess zero part is independent of exposure and did not use exposure in logit part. Then 

exposure is used in both parts of the model. Average losses are lower when exposure is used only in count part. Similar 

with ZIP model, we used exposure only in Poisson part of hurdle model. Average in-sample and out-of-sample losses 

of models are given in Table 8, 

                                 Table 8. Average in-sample and out-of-sample losses of zero-modified models 

Model Average in-sample loss Average out-of-sample loss 

ZIP 0.3980 0.4010 

Hurdle Poisson 0.4047 0.4074 

Based on average losses, ZIP model shows better predictive performance than the hurdle model. Hurdle model may 

not capture the complex structure of excess zeros as effective as the zero-inflated model since zero-inflated models 

incorporate a separate process for zeros. Average portfolio frequencies of predicted claim numbers from ZIP is 0.0794 

and hurdle model is 0.0761. In accordance with prediction performances, hurdle model underestimates average 

portfolio frequency.  

3.2.2. Regression trees 

We did not make any feature pre-process for regression trees but used age of driver, age of vehicle and the cubic 

capacity as continuous variables. 5000 policies are assumed at each leaf of the tree. We also fitted tree with 10000 

policies at each leaf but deviances were higher. According to the analysis results, optimal cost complexity (cp) 
parameter that controls the size of the tree is 0.01. We call this regression tree with cp 0.01 as RT1. To be an alternative, 

we also fitted tree with cp=0.00001 value (RT2) since smaller cp value provides a larger tree. Average in-sample and 

out-of-sample loss values are given in Table 9, 

 

                         Table 9. Average in-sample and out-of-sample losses of regression trees 

Model Average in-sample loss Average out-of-sample loss 

RT1 (cp=0.01) 0.4036 0.4061 

RT2 (cp=0.00001) 0.3971 0.4009 

According to the model results, when cp is smaller (0.00001), tree is constructed on all explanatory variables except 

previous claim number. When cp is 0.01, the tree is constructed on only ncd level of policy. We can conclude that 

regression trees perform better predictive performance when they have larger cp value that provides larger tree and 
more features.  
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3.2.3. Boosting and GLM-Boost methods 

We used regression trees as weak learners for boosting. Similar to regression trees, we assumed cp parameter 

0.0001, 50 iterations for the construction of weak learners and 5000 policies at each leaf of the tree. We did not apply 

shrinkage in the boosting algorithm. We choose depth of the tree as J=2 (Boost2) and J=3 (Boost3), that shows the 

number of levels from the root node to a leaf node. Average loss values of both boosting methods are given in Table 

10, 

                                   Table 10. Average in-sample and out-of-sample losses of boosting algorithms 

Model Average in-sample loss Average out-of-sample loss 

Boost2 (J=2) 0.3966 0.4001 

Boost3 (J=3)  0.3956 0.4000 

We can say that predictive performance of boosting algorithm increases when the depth of the tree is higher.  

In GLM-Boost methods, estimates of GLM2 model are used as initial values that is set into the exposure of the 
boosted regression trees. Under the same parameters with Boost3, at the end of 50th iteration, average in-sample loss 

is 0.3955 and out-of-sample loss is 0.3999 that are the smallest loss values among all candidate models. These results 

support the combination of GLM and boosting approach that iteratively improves the predictive performance of the 

model is a good alternative for the prediction purposes. In this approach, parameter estimates of best performing GLM 

are set into the exposure of the regression trees and boosting algorithm works. Combining optimal initial values from 

GLM and a strong boosting algorithm improves the predictions.  

Since average out-of-sample loss is calculated using test data, it is the main indicator for the prediction when 
compared with in-sample loss. To sum up, average out-of-sample loss of Poisson GLM, ZIP, regression trees and 

boosting methods are given in Table 11. Although data has a zero-inflated structure, machine learning methods based 

on regression trees, perform better predictive performance than zero-inflated model. Specially, GLM-Boost approach 

that combined GLM and boosting is a promising point for the future studies that combine traditional and machine 

learning methods.  

                                             Table 11. Average out-of-sample losses of candidate methods 

Model Average out-of-sample loss 

GLM2 0.4011 

ZIP 0.4010 

RT2  0.4009 

Boost3 0.4000 

GLM-Boost 0.3999 

 

To see the similarity between the observed claim numbers and predicted (test data) ones, we give statistics in Table 

12. 

 
                       Table 12. Statistics of observed and predicted claim numbers 

 Model Min Median Mean Max 

Observed 0.00000 0.00000 0.06660 8.00000 

GLM2 0.00009 0.06164 0.06603 0.42789 

ZIP 0.00009 0.06199 0.06611 0.35541 

RT2 0.00009 0.06257 0.06604 0.20690 
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Boost3 0.00008 0.06062 0.06601 0.45123 

GLM-Boost 0.00007 0.06064 0.06605 0.43006 

Because of zero-inflated structure of the data set, predictions have distribution around zero. Predictions of each 
model have mean value close to the mean of observed claim numbers. In general, we can say that the predictions of 

different models have similar values and that supports the small differences between the average loss values of the 

models.  

4. Conclusion 

In this study, we compared the predictive performances of GLM, zero-modified models, regression trees and two 

boosting approaches using a zero-inflated claim frequency data. Main result of this study is, boosted regression trees 

and GLM-Boost performed better than both zero-inflated Poisson and hurdle Poisson model in addition to Poisson 

GLM based on average in-sample and average out-of-sample losses. These results are in accordance with the studies 

in the literature in that tree-based ML methods (specially boosting) show better predictive performance for claim data 

when compared with GLM [4, 5]. Although GLMs are easy to implement and interpret, steps such as feature pre-

processing, feature selection, interactions affect the predictive performance of the model. Instead, ML methods 
provide flexibility for these processes and handle interactions and non-linearities automatically. When the predictive 

accuracy is the subject, ensemble methods provide a good choice since they combine predictions from learners that 

reduce overfitting and variance. As an ensemble method, boosting strengthens the predictions by sequentially fitting 

weak learners that are regression trees in this study. GLM-Boost that showed best predictive performance is applied 

by boosting GLM with regression trees. This approach is a simple example for the combination of a classical 

regression model and a machine learning method. This type of combinations look bright for the predictive purposes 

of actuarial data. As a future work, combination of neural networks with a classical regression model can be used to 

predict claim data [20]. Also, approaches that combine zero-inflated models with boosting can be used to predict 

imbalanced claim frequency data [21].  

A statistical method that shows good predictive performance on a data, may not show the same performance on a 

different dataset. Additively, average loss values between the predictive models have small differences due to the 

zero-inflated structure of the data in this study. So, it may be a good idea to perform related models on different 

datasets that don’t have imbalanced distribution and to predict different response variables such as claim amount or 

probability of a claim.  
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