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Abstract. A main result of this article establishes that every involution in a

sequentially complete locally convex topological algebra with an orthonormal

generalized basis is bounded. This result is obtained through a representation
for involutions in these algebras.

1. Introduction

It was known that every multiplicative linear functional on a real or complex
Banach algebra is continuous. It is being stated that Mazur questioned in his lec-
tures about the extension of this result to general complex complete metrizable
topological algebras. However, Michael [12] raised the following two particular
questions: (a) Is every complex multiplicative linear functional on a commutative
complex complete metrizable locally multiplicatively convex topological algebra
continuous?; (b) Is every complex multiplicative linear functional on a commuta-
tive complex complete locally multiplicatively convex topological algebra bounded?
All these questions are still being open problems. To obtain some partial answers to
these questions, a concept of orthonormal bases in topological algebras was intro-
duced and studied [1, 3, 4, 6, 7, 8, 9, 10, 15], and many successful partial answers
were obtained. This article generalizes the concept of orthonormal bases . This
article presents a representation theorem for involutions in topological algebras
with orthonormal generalized bases, and then obtains boundedness of these involu-
tions in sequentially complete locally convex algebras with orthonormal generalized
bases. For the purpose of boundedness, a technique of Dixon and Fremlin [5] is
used. Dixon and Fremlin proved in [5] that the questions (a) and (b) of Michael
[12], which are given above, are equivalent. Only Hausdorff topological spaces are
considered in this article. Vector spaces to be considered are vector spaces over the
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real field or over the complex field. Algebras to be considered will be commutative,
because topological algebras [2] with orthonormal generalized bases are commu-
tative. All algebraic operations of topological algebras are jointly continuous in
this article. A complete metrizable topological vector space is called an F−space
[14]. A locally convex F−space is called a B0-space. A complete metrizable topo-
logical algebra is called an F−algebra. A locally convex F−algebra is called a
B0-algebra. A topological algebra (A, (pi)i∈I) is called a locally multiplicatively
convex algebra, if the topology on the algebra A is generated by a family (pi)i∈I
of submultiplicative semi norms. A locally multiplicatively convex F−algebra is
called a Frechet algebra. A sequence (xn)∞n=1 in a topological vector space X is
called a basis [16], if to each x ∈ X, there is a unique sequence of scalars (fn(x))∞n=1

such that x =
∑∞
n=1 fn(x)xn. Then the sequence (fn)∞n=1 of linear functionals are

called the sequence of coefficient functionals associated with the basis (xn)∞n=1. It is
known that every coefficient functional is continuous on an F−space with a basis.
A sequence (en)∞n=1 in a topological algebra A is called an orthonormal basis, if
enem = 0, for m 6= n, and enen = en for every n. It is known that every coefficient
functional is continuous on a topological algebra with an orthonormal basis [17].

2. Uniform boundedness principle

The next result is known [14] for sequences of linear mappings. The usual argu-
ments for sequences are applicable even for nets.

Theorem 2.1. Let (Tα)α∈D be a net of continuous linear mappings from an
F−space X into a topological vector space Y . Let T : X → Y be a linear mapping
such that (Tα(x))α∈D converges to T (x),∀x ∈ X, and such that the set {Tα(x) : α ∈
D} is bounded, for every x ∈ X. Then T : X → Y is a continuous linear mapping.

Proof: By the Banach Stainhaus theorem, the family {Tα : α ∈ D} is an equicon-
tinuous family on X. Fix an open neighbourhood U of 0 in Y . Find an open
neighbourhood V of 0 in Y such that V ⊂ U . Then there is an open neighbour-
hood W of 0 in X such that Tα(W ) ⊂ V , ∀α ∈ D. Then T (W ) ⊂ V ⊂ U . Thus,
for a given neighbourhood U of 0 in Y , there is a neighbourhood W of 0 in X such
that T (W ) ⊂ U . That is, T is continuous on X.

Let us next apply the technique of Dixon and Fremlin [5] in the proof of the next
theorem.

Theorem 2.2. Let (Tα)α∈D be a net of bounded linear mappings from a sequentially
complete locally convex topological vector space (X, (pi)i∈I) into a topological vector
space Y , when (pi)i∈I is a family of seminorms which induce the topology of X.
Suppose (Tα(x))α∈D converges to some T (x), ∀x ∈ X, and suppose {Tα(x) : α ∈ D}
is bounded, for every x ∈ X. Then T : X → Y is a bounded linear mapping.

Proof: Let B be a bounded subset of X. For each n = 1, 2, 3, · · · , let In = {i ∈
I : pi(x) ≤ n, ∀x ∈ B}, and let qn(x) = sup{pi(x) : i ∈ In},∀x ∈ X. Let X0 =
{x ∈ X : qn(x) < ∞,∀n = 1, 2, 3, · · · }. Then (X0, (qn)∞n=1) is a B0-space. When
the previous theorem is applied to the restricted mappings Tα : (X0, (qn)∞n=1) →
Y, α ∈ D, it can be concluded that the restricted mapping T : (X0, (qn)∞n=1) → Y
is continuous. So, T (B) is a bounded set in Y , because B is a bounded subset of
(X0, (qn)∞n=1). This proves the theorem.
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The same Dixon-Fremlin technique along with the classical closed graph theorem
can be applied to derive the following closed graph theorem. This theorem is
Theorem 2.1 in [18].

Theorem 2.3. Let X be a sequentially complete locally convex topological vector
space and Y be an F−space. Let T : X → Y be a linear mapping such that its graph
{(x, Tx) : x ∈ X} is sequentially closed in X × Y . Then T is a bounded mapping
on X.

The next proposition is useful in applying Theorem 2.1 and Theorem 2.2.

Proposition 2.4. Let (D,≤) be a directed set such that {α ∈ D : α 6≥ β} is a
finite set for every β ∈ D. If (xα)α∈D is a Cauchy net in a topological vector space
X, then the set {xα : α ∈ D} is bounded.

Proof: Fix a balanced open neighbourhood U of 0 in X. Find a balanced open
neighbourhood V of 0 in X such that V +V ⊂ U . Find a γ ∈ D such that xα−xβ ∈
V ,∀α, β ≥ γ in D. Find a c > 1 such that xγ ∈ cV and such that xα ∈ cV whenever
α 6≥ γ in D. For α ≥ γ in D, xα = (xα − xγ) + xγ ∈ V + cV ⊂ cV + cV ⊂ cU .
Thus, xα ∈ cU,∀α ∈ D. This proves the proposition.

The condition imposed on the directed sets of the previous proposition is not
vague, as it is seen from the next example.

Example 2.1. For each n = 1, 2, 3, · · · , let En be a non empty finite set such that

En ∩ Em = ∅, whenever n 6= m. Let D =
∞
∪
n=1

En. Define α < β in D if and

only if α ∈ En and β ∈ Em for some m,n satisfying n < m. Then (D,≤) is a
directed set such that {α ∈ D : α 6≥ β} is a finite set for every β ∈ D. Moreover,
{α ∈ D : α ≤ β} is finite and {α ∈ D : α ≥ β} is infinite, for every β ∈ D.

Proposition 2.5. Let I be an infinite set. Let D be the collection of all non empty
finite subsets of I, which is a directed set under the inclusion relation: E ≤ F in
D if and only if E ⊂ F . To each i ∈ I, let xi be a member of a topological vector
space X. To each F ∈ D, let yF =

∑
i∈F

xi. Suppose (yF )F∈D is a Cauchy net in X.

Then {yF : F ∈ D} is a bounded set in X.

Proof: Let U be a balanced neighbourhood of 0 in X. Find a balanced neighbour-
hood V of 0 in X such that V + V ⊂ U . Find a set E ∈ D such that yF − yE ∈ V
whenever F ∈ D and F ⊃ E. Thus yF ∈ V whenever F ∈ D and F ⊂ I \ E. Find
c > 1 such that yF ∈ cV whenever F ∈ D and F ⊂ E. Then, for any F ∈ D,
yF = yF∩E + yF∩(I\E) ∈ cV + V ⊂ cV + cV ⊂ cU . This proves that {yF : F ∈ D}
is a bounded set in X.

3. Unconditional orthonormal generalized basis

The last result of the previous section gives a motivation for the results of this
section.

Definition 3.1. A collection (ei)i∈I in a topological algebra A is said to be or-
thonormal, if eiej = 0 whenever i 6= j in I and eiei = ei 6= 0,∀i ∈ I. This
orthonormal collection (ei)i∈I is said to be total in A, if the linear span of the set
{ei : i ∈ I} is dense in A.

Remark.
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(a) If (ei)i∈I is orthonormal in A, then the set {ei : i ∈ I} is linearly inde-
pendent. For, if

∑
i∈F

λiei = 0, for some finite subset F of I and for some

scalars λi, then λjej = ej
∑
i∈F

λiei = 0, ∀j ∈ F , when ej 6= 0.

(b) If (ei)i∈I is orthonormal in A, then the linear span of the set {ei : i ∈ I}
is also an algebra.

(c) If (ei)i∈I is a total orthonormal collection in A, then it is a maximal or-
thonormal collection in A. (Verification: Suppose (ei)i∈I is a total or-
thornormal collection in A. If it is not a maximal orthonormal collection
in A, then there is an element eα in A such that eα 6= ei,∀i ∈ I, and such
that {ei : i ∈ I} ∪ {eα} is orthonormal. Then there is a net (xδ)δ∈D in
B, the linear span of {ei : i ∈ I}, such that (xδ)δ∈D converges to eα. Let
xδ =

∑
i∈Fδ

λiδei, when Fδ is a finite subset of I and λiδ are scalars. Then

(xδeα)δ∈D converges to eα, when xδeα = 0,∀δ ∈ D and when eα 6= 0. This
is impossible.)

(d) Let (ei)i∈I be a total orthonormal collection in A, and let B = span{ei :
i ∈ I}. To each x =

∑
i∈F

λiei in B, let us define fi(x) = λi,∀i ∈ F ,

a finite subset of I. This is meaningful in view of the linear indepen-
dence of {ei : i ∈ I}. Let (xδ)δ∈D be a net in B that converges to zero.
Then (eixδ)δ∈D = (fi(xδ)ei)δ∈D converges to zero for every i ∈ I. Thus
(fi(xδ))δ∈D converges to the scalar zero, for every i ∈ I. Thus each fi
is a continuous linear functional on B. Then there is a unique continu-
ous extension for fi to A. Let us denote this extension also by the same
notation fi. Let us call the continuous linear functional fi on A as the
coefficient functional corresponding to ei. Let us call the collection (fi)i∈I
as the collection of coefficient functionals associated with (ei)i∈I .

Definition 3.2. Let (ei)i∈I be an orthonormal collection in a topological algebra
A. Let D be the directed set of all non empty finite subsets of the set I. Suppose
that for each x ∈ A, there is a unique collection (λi)i∈I of scalars such that the net(∑
i∈F

λixi

)
F∈D

converges to x; and let us say that the series
∑
i∈I

λixi converges to

x, in this case. Then this collection (ei)i∈I is called as an orthonormal generalized
basis in A.

Remark.

(a) If (ei)i∈I is an orthonormal generalized basis in A, then each coefficient
functional fi corresponding to ei is continuous on A. Moreover, x =∑
i∈I

fi(x)ei,∀x ∈ A.

(b) Let us have a meaning as explained in the previous definition when the
expressions of the form “x =

∑
i∈I

xi” are used.

Theorem 3.1. Let T : A → B be a homomorphism from a topological algebra A
into a topological algebra B. Let (ei)i∈I be an orthonormal generalized basis in A.

Suppose T

(∑
i∈I

λiei

)
=
∑
i∈I

λiT (ei) for every
∑
i∈I

λiei ∈ A. Then T is continuous,

if A is an F-algebra. T is bounded, if A is a sequentially complete locally convex
topological algebra.
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Proof: Let D be the directed set of all non empty finite subsets of I, directed by

the inclusion relation. For each F ∈ D, let us define TF : A→ B by TF

(∑
i∈I

λiei

)
=∑

i∈F
λiT (ei), for every

∑
i∈I

λiei ∈ A. Then T

(∑
i∈I

λiei

)
is the limit of the net(

TF

(∑
i∈I

λiei

))
F∈D

. Let (fi)i∈I be the collection of continuous coefficient func-

tionals on A, associated with (ei)i∈I . Let us note that {T (ei) : T (ei) 6= 0, i ∈ I} is
a total orthonormal set in the closure E of the span of {T (ei) : i ∈ I} in B. (Take
E = {0}, when T = 0.) Let gj be the coefficient functional on E corresponding
to T (ej) for which T (ej) 6= 0. Each gj is continuous on E. Let (xδ)δ∈D be a net
that converges to zero in A. If T (ej) 6= 0, then (fj(xδ))?∈D converges to zero, and
hence (fj(xδ)T (ej))δ∈D converges to zero. Thus, (gj(T (xδ))T (ej))δ∈D converges to
zero, when T (ej) 6= 0. So, each TF is continuous on A, whenever F is a singleton
subset of I. Hence, each TF is continuous on A, for every F ∈ D. Theorem 2.1
and Theorem 2.2 are now applied along with Proposition 2.5 to get the desired
conclusions.

Theorem 3.2. Let T : A → B be a homomorphism from a topological algebra
A into a topological algebra B. Let (ei)i∈I be an orthonormal generalized ba-
sis in A such that (T (ei))i∈I is an orthonormal generalized basis in B. Suppose

T

(∑
i∈I

λiei

)
=
∑
i∈I

λiT (ei) for every
∑
i∈I

λiei ∈ A. Then T has a closed graph in

A×B.

Proof: Let fi and gi be the continuous coefficient functionals corresponding to ei
and T (ei), respectively, for every i ∈ I. Then fi = gi ◦ T, ∀i ∈ I. Let (xδ)δ∈D be a
net which converges to zero in A such that (T (xδ))δ∈D converges to some y in B.
Then (fi(xδ))δ∈D converges to 0, and (gi(T (xδ)))δ∈D converges to gi(y), for every
i ∈ I. Since gi(T (xδ)) = fi(xδ),∀i ∈ I, ∀δ ∈ D, then gi(y) = 0,∀i ∈ I. This implies
that y = 0. Thus T has a closed graph in A×B.

Corollary 3.3. If A and B are F−algebras in the previous theorem, then T is
continuous. If A is a sequentially complete locally convex algebra and B is an
F−algebra in the previous theorem, then T is bounded.

Proof: Let us apply the classical closed graph theorem for the first part, and let
us apply Theorem 2.3 for the second part.

All the results stated above and all classical theorems used for them are applica-
ble even for conjugate linear mappings. Let us use this fact in the remaining part
of this article. Let us observe that an involution in a complex algebra is a conjugate
linear mapping.

4. Involutions

Let us first establish a representation theorem for involutions in topological alge-
bras with orthonormal generalized bases. One representation theorem of this type
is given in the article [17], but for orthonormal bases.
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Theorem 4.1. Let A be a topological algebra with an orthonormal generalized basis
(ei)i∈I . Let ∗ be an involution in A. Then there is a bijection P : I → I such that(∑
i∈I

λiei

)∗
=
∑
i∈I

λieP (i) =
∑
i∈I

λP (i)ei,∀
∑
i∈I

λiei ∈ A.

Proof: For j ∈ I, let e∗j =
∑
i∈I

λiei. Then e∗je
∗
j = e∗j implies

∑
i∈I

λ2i ei =
∑
i∈I

λiei so

that λ2i = λi,∀i, or equivalently, λi = 0 or 1,∀i ∈ I. Let Ij = {i ∈ I : λi = 1} 6= ∅,

because e∗j 6= 0. If k ∈ Ij , then 0 6= e∗jek =

(∑
i∈Ij

ei

)
ek = ek, e

∗
k = eje

∗
k so that

0 6= e∗k =
∑
i∈Ik

ei = ej

( ∑
i∈Ik

ei

)
= ej , and hence e∗k = ej . Thus, Ij contains only

one element, say, P (j),∀j ∈ I. Note that P (P (j)) = j, because (e∗j )
∗ = ej ,∀j ∈ I.

Let x =
∑
i∈I

λiei. Then xej = λjej so that x∗e∗j = λje
∗
j or x∗eP (j) = λjeP (j),∀j ∈

I. So, x∗ei = λP (i)ei,∀i ∈ I. This proves that

(∑
i∈I

λiei

)∗
=
∑
i∈I

λieP (i) =∑
i∈I

λP (i)ei, ∀
∑
i∈I

λiei ∈ A.

Corollary 4.2. If A in the previous theorem is an F−algebra, then the involution
is continuous. If A in the previous theorem is a sequentially complete locally convex
topological algebra, then the involution is bounded.

Proof: Let us apply the classical uniform boundedness theorem for the first part.
Let us apply Theorem 2.2 along with Proposition 2.5 for the second part.

5. Orthonormal directed generalized bases

Let us follow the article [13] to consider directed sets (D,≤) having the proper-
ties: (a) {α ∈ D : α ≤ β} is finite, for every β ∈ D; and (b) {α ∈ D : α ≥ β} is
infinite, for every β ∈ D. Let us proceed with these additional assumptions on all
directed sets. These conditions (a) and (b) are satisfied by the directed set N× N
used in the article [11].

Definition 5.1. Let (eα)α∈D be a net in a topological algebra A such that e2α =
eα 6= 0,∀α ∈ D, and such that eαeβ = 0 whenever α 6= β in D. Then (eα)α∈D is
called an orthonormal directed generalized basis, if for each x ∈ A, there is a unique

net (λα)α∈D of scalars such that the net

( ∑
α≤β

λαeα

)
β∈D

converges to x in A. Let

us say in this case that the directed series
∑
α∈D

λαeα converges to x.

One can follow the earlier arguments to derive the following results.

Theorem 5.1. Let T : A → B be a homomorphism from a topological algebra A
into a topological algebra B. Let (eα)α∈D be an orthnormal directed generalized
basis in A such that (T (eα))α∈D is an orthonormal directed generalized basis in B.

Suppose T

( ∑
α∈D

λαeα

)
=
∑
α∈D

λαT (eα), for every
∑
α∈D

λαeα ∈ A. Then T has a

closed graph in A×B.
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Theorem 5.2. Let A be a topological algebra with an orthonormal directed general-
ized basis (eα)α∈D. Let ∗ be an involution in A. Then there is a bijection P : I → I

such that

( ∑
α∈D

λαeα

)∗
=
∑
α∈D

λαeP (α) =
∑
α∈D

λP (α)eα,∀
∑
α∈D

λαeα ∈ A.

Theorem 5.3. Let us now further assume that the directed set (D,≤) satisfies the
condition: {α ∈ D : α 6≥ β} is finite, for every β ∈ D. Let T : A → B be a homo-
morphism from a topological algebra A into a topological algebra B. Let (eα)α∈D be

an orthnormal directed generalized basis in A. Suppose T

( ∑
α∈D

λαeα

)
=
∑
α∈D

λαT (eα),

for every
∑
α∈D

λαeα ∈ A. Then T is continuous, if A is an F−algebra. T is bounded,

if A is a sequentially complete locally convex topological algebra.

Corollary 3.3 can be now restated without changing the words as a corollary to
the previous theorem.

Corollary 5.4. Let us now further assume that the directed set (D,≤) satisfies the
condition: {α ∈ D : α 6≥ β} is finite, for every β ∈ D. If A in Theorem 5.2 is an
F−algebra, then the involution is continuous. If A in Theorem 5.2 is a sequentially
complete locally convex topological algebra, then the involution is bounded.

6. Conclusion

This article has chosen some known techniques and has applied them to new
concepts of orthonormal generalized bases and orthonormal directed generalized
bases. It is possible to extend some techniques used in this article to some more
algebras. But, there is always a need for new techniques to tackle open problems
in the theory of automatic continuity.
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