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ABSTRACT. In the present paper, is proposed a method to approximate the Hilbert transform of a given function
f on (0,+∞) employing truncated de la Vallée discrete polynomials recently studied in [25]. The method generalizes
and improves in some sense that introduced in [24] based on a truncated Lagrange interpolating polynomial, since is
faster convergent and simpler to apply. Moreover, the additional parameter defining de la Vallée polynomials helps to
attain better pointwise approximations. Stability and convergence are studied in weighted uniform spaces and some
numerical tests are provided to asses the performance of the procedure.
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1. INTRODUCTION

Let H(f, t) be the Hilbert transform of f

(1.1) H(f, t) =

∫ ∞

0

f(x)

x− t
w(x)dx,

where w(x) = e−xxα is a Laguerre weight, and the integral in (1.1) is understood in the Cauchy
principal value sense. In numerical analysis and in approximation theory, the approximation
of Hilbert transforms over bounded or unbounded regions, represents a relevant topic, since
it arises in several problems of the applied sciences, such as image analysis, optics, signal pro-
cessing, fluid mechanics, electrodynamics. A collection of problems can be found in [13, Vol
I , II]. In addition, Hilbert transforms and their derivatives can appear in singular and hyper-
singular integral equations, which in turn are possible tools to model several physics problems
[20, 14, 15]. The literature dealing with numerical methods to approximate Hilbert transforms
is rich. We cite among them [9, 21, 1, 12, 3, 5, 22, 7, 8, 10, 23] and the references contained in it.
Concerning the approximation of H(f, t) by global methods based on Laguerre zeros, we recall
two product-type integration rules, one obtained by approximating f by truncated Lagrange
polynomials [5], the other by discrete de la Vallée Poussin polynomials [25]. In both these
rules, the coefficients are obtained by recurrence relations depending on t, and hence requiring
a considerable computational effort when H(f, t) is needed for a large number of points. So
they are efficient, but “expensive”. Another significant and reliable approach is given by the
truncated Gauss-Laguerre rule, suitable “modified” to overcome numerical instability due to
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the closeness of some Gaussian node to the singularity t [8]. Such rule largely applied also
in other contexts (see e.g. [4, 8, 2]) is simpler than the previous ones, but not employable in
methods for solving integral equations, since it requires the choice between two sequence of
Gauss-Laguerre nodes, according to the position of the singularity t. To overcome in some
sense the aforesaid issues, in [24] it was introduced a method to approximate the function

F(f, t) =

∫ ∞

0

f(x)− f(t)

x− t
w(x)dx,

by means of suitable truncated Lagrange polynomials based on Laguerre zeros (say it L-method),
and to compute H(f, t) = F(f, t) + f(t)H(1, t). By this way, for any t are required always the
same samples of F(f). In the present paper, we want to generalize the L-method and im-
prove it in some sense, proposing to approximate F(f) by the sequence of discrete de la Vallée
Poussin (VP) polynomials V m

n (w,F(f)), recently introduced and studied in [25]. Analogously
to the L-method, the polynomial V m

n (w,F(f)) requires the samples of the function F(f) at
j << n zeros of the Laguerre polynomial pn(w). Moreover, V m

n (w,F(f)) depends on the ad-
ditional parameter 1 ≤ m ≤ n − 1, which in turns can be fruitfully used to reduce possible
Gibbs phenomenon. As it is known, the latter affects Lagrange interpolating approximation,
especially when the interpolated function presents isolated “pathologies” (peaks, cusps, etc.).
In addition, the Lebesgue constants associated to VP polynomials, are uniformly bounded in
weighted spaces of continuous functions, whereas those of the Lagrange processes diverge
logarithmically at least.

The outline of the paper is as follows. In Section 2 are collected some notations and prelimi-
nary results useful to introduce the proposed numerical method. The latter is stated in Section
3, accompanied by the study of the stability and convergence, and error estimates in suitable
spaces of functions. Finally, in Section 4, a selection of numerical tests is proposed.

2. NOTATIONS AND PRELIMINARY RESULTS

Along all the paper the notation C will be used several times to denote a positive constant
having different values in different formulas. We will write C ̸= C(a, b, . . .) in order to say
that C is independent of the parameters a, b, . . ., and C = C(a, b, . . .) to say that C depends on
a, b, . . .. Moreover, if A,B > 0 are quantities depending on some parameters, we will write
A ∼ B, if there exists an absolute constant C > 0, independent on such parameters, such that
C−1B ≤ A ≤ CB.

Denote by IPm the space of all algebraic polynomials of degree at most m.

2.1. Orthogonal Polynomials. For w(x) = e−xxα, α > −1, let {pn(w)}n be the correspond-
ing sequence of orthonormal polynomials with positive leading coefficients, i.e.

pn(w, x) = γn(w)x
n + terms of lower degree, γn(w) > 0.

Denoted by {xn,k(w)}nk=1 the zeros of pn(w), it is known that [27]

(2.2)
C
n
< xn,1(w) < xn,2(w) < . . . < xn,n(w) < 4n+ 2α− Cn 1

3 , C ̸= C(n).

For any fixed 0 < ρ < 1 the node xn,j , j = j(n), is defined as

(2.3) xn,j(w) = min {xn,k(w) : xn,k(w) ≥ 4nρ, k = 1, 2, .., n} .

As it is known, the zeros of pn(w) interlace those of pn+1(w), i.e.

(2.4) xn+1,k(w) < xn,k(w) < xn+1,k+1(w), k = 1, 2, . . . , n.
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Moreover, inside the interval [0, xn+1,j1(w)] where j1 is defined as

(2.5) xn+1,j1(w) = min {xn+1,k(w) : xn+1,k(w) ≥ 4(n+ 1)ρ, k = 1, 2, .., n+ 1} ,

the distance between two consecutive zeros of pn+1(w)pn(w) can be estimated as [4, Lemma
2.1]

(2.6) xn,k(w)− xn+1,k(w) ≥ C
√

xn+1,k(w)

n
, k = 1, 2, . . . , j,

uniformly in n ∈ N.
Finally, we recall the “truncated” Gauss-Laguerre rule introduced in [18] and based on the

first j zeros of pn(w), j defined in (2.3),

(2.7)
∫ ∞

0

f(x)w(x)dx =

j∑
k=1

f(xn,k(w))λn,k(w) +Rm(f),

where {λn,k(w)}nk=1 are the Christoffel numbers w.r.t. w and Rn(f) is the remainder term.

2.2. Function Spaces. Introducing the weight u(x) = e−
x
2 xγ , γ ≥ 0, we consider the space

Cu of the functions f continuous in any closed subset of ]0,∞[, such that

lim
x→+∞

(fu)(x) = 0, and, if γ > 0, also lim
x→0+

(fu)(x) = 0,

endowed with the norm ∥f∥Cu
= supx≥0 |f(x)|u(x). The error of best approximation of f ∈ Cu

by algebraic polynomials of degree ≤ n is defined as

En(f)u = inf
P∈IPn

∥(f − P )u∥∞.

For s ∈ IN, s ≥ 1, let Ws(u) be the Sobolev-type space

Ws(u) =
{
f ∈ Cu : f (s−1) ∈ AC(IR+), ∥f (s)φsu∥∞ < ∞

}
, φ(x) =

√
x,

where AC(IR+) denotes the set of the functions which are absolutely continuous on every
closed subset of IR+, equipped with the norm

(2.8) ∥f∥Ws(u) = ∥f∥Cu
+ ∥f (s)φsu∥∞.

In order to deal with more refined subspaces of Cu, for any λ ∈ IR+ let Zλ(u) be the Zygmund-
type space

Zλ(u) =

{
f ∈ Cu : sup

t>0

Ωr
φ(f, t)u

tλ
< +∞

}
of parameter 0 < λ < r, r ∈ IN, where

Ωr
φ(f, t)u = sup

0<h≤t
∥u∆r

hφf∥Irh , t > 0

is the main part of the r−th φ−modulus of smoothness, Irh =
[
4r2h2, C

h2

]
, being C a fixed

positive constant, and

∆r
hφf(x) =

r∑
k=0

(−1)k
(
r

k

)
f (x+ hφ(x)(r − k)) ,

equipped with the norm

∥f∥Zλ(u) = ∥f∥Cu + sup
t>0

Ωr
φ(f, t)u

tλ
.
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En(f)u can be estimated in Zygmund and Sobolev subspaces as follows [6, 16]

En(f)u ≤ C
∥f∥Ws(u)√

ns
, ∀f ∈ Ws(u),(2.9)

En(f)u ≤ C√
nλ

∥f∥Zλ(u), ∀f ∈ Zλ(u),(2.10)

where in both the cases C ̸= C(n, f).

2.3. VP filtered approximation. For a given n ∈ IN and with m ∈ IN s.t. 1 ≤ m ≤ n − 1, the
discrete VP filtered polynomial V m

n (w, f) approximating a given function f ∈ Cu is defined as
[25]

(2.11) V m
n (w, f, x) =

j∑
k=1

f(xn,k(w))Φ
m
n,k(x), x ≥ 0

with j defined in (2.3), and the fundamental VP polynomials defined as

(2.12) Φm
n,k(x) = λn,k(w)

n+m−1∑
i=0

µm
n,ipi(w, xn,k(w))pi(w, x),

where µm
n,i are called “filter coefficients”

(2.13) µm
n,i :=

1 if i = 0, . . . , n−m,
n+m− i

2m
if n−m+ 1 ≤ i ≤ n+m− 1.

The polynomial V m
n (w, f) ∈ IPn+m−1 and does not interpolate f .

One of the main features proved in [25] is the boundedness of the map V m
n (w) : f ∈ Cu → Cu

under proper assumptions on w and u. This means to deal with a polynomial sequence uni-
formly convergent to any function f ∈ Cu, behaving as a near–best approximation polynomial
sequence. This property similarly holds in [−1, 1] for filtered de la Vallée Poussin polynomials
w.r.t. Jacobi polynomials, introduced and studied in [28].

Theorem 2.1 ([25]). For any f ∈ Cu, under the assumption

(2.14) max

{
α

2
− 1

4
, 0

}
< γ < min

{
α

2
+

7

6
, α+ 1

}
then, fixing θ ∈ (0, 1) and choosing m = ⌊nθ⌋, the map V m

n (w) : Cu → Cu is uniformly bounded w.r.t.
n, i.e.

(2.15) ∥V m
n (w, f)∥Cu

≤ C∥f∥Cu
, ∀f ∈ Cu, C ̸= C(n,m, f).

Moreover, with 0 < ρ < 1 fixed to define the index j in (2.3),

(2.16) ∥(f − V m
n (w, f))∥Cu

≤ C
(
Eq(f)u + e−An∥f∥Cu

)
, q = min

{
n−m,

⌊
n

ρ

(1 + ρ)

⌋}
,

with the positive constants C, A independent of n,m, f.

We point out that Theorem 2.1 has been proved in [25], under more general relationships
between n and m.
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2.4. Truncated Lagrange interpolation. With j defined in (2.3), in [17] it was introduced the
truncated Lagrange polynomial L∗

n+1(w, f) defined as

(2.17) L∗
n+1(w, f, x) :=

j∑
k=1

f(xn,k(w))ℓn,k(x),

where

(2.18) ℓn,k(x) =
pn(w, x)

p′n(xk)(x− xk)

4n− x

4n− xk
, k = 1, 2, . . . , j,

are fundamental Lagrange polynomials based on the zeros of pn(w, x)(4n − x). L∗
n+1(w, f)

interpolates the function at the first j zeros of pn(w) and vanishes at the remaining nodal points
xn,j+1(w), . . . , xn,n(w), 4n. In particular, for ρ = 1 L∗

n+1(w, f) coincides with the Lagrange
polynomial Ln+1(w, f), interpolating f at all the zeros of pn(w, x)(4n− x). It is known that the
norm of the operator L∗

n+1(w) : f ∈ Cu → Cu, i.e. the weighted Lebesgue constant

(2.19) ∥L∗
n+1(w)∥Cu

= sup
∥fu∥=1

∥L∗
n+1(w, f)u∥ = sup

x≥0

j∑
k=1

|ℓn,k(x)|
u(x)

u(xn,k(w))
,

as n → ∞ diverge at least as log n. To be more precise, the following result holds

Theorem 2.2 ([17]). Let w(x) = e−xxα, α > −1 and u(x) = e−
x
2 xγ , γ ≥ 0. Under the assumption

(2.20) min

(
0,

α

2
+

1

4

)
≤ γ ≤ α

2
+

5

4
,

we have

(2.21) ∥L∗
n+1(w, f)∥Cu ≤ C∥f∥Cu log n, ∀f ∈ Cu, C ̸= C(n, f).

Remark 2.1. We point out that in [19] it was proved that

(2.22) ∥Ln+1(w, f)∥Cu ≤ C∥f∥Cu log n, ∀f ∈ Cu, C ̸= C(n, f),

if and only if the assumption (2.20) holds.

3. THE METHOD

Let us start from the relation

(3.23) H(f, t) = F(f, t) + f(t)H(1, t), F(f, t) =

∫ ∞

0

f(x)− f(t)

x− t
w(x)dx,

and assume from now on α < 1, since in the case α ≥ 1 we deal equivalently with H̃(g, t) :=∫∞
0

g(x)
x−t w̃(x)dx, g(x) := f(x)x[α], w̃(x) = e−xxα−[α]. Now, taking into account that H(1, t)

can be computed by [11, p. 1086, 9.213]

(3.24) H(1, t) =

{
−e−tEi(t), α = 0

−πtαe−t cot((1 + α)π) + Γ(α)1F1(1, 1− α,−t), α ̸= 0,

where Ei(t) and 1F1(a, b, x) are the exponential integral function and the Confluent Hypergeo-
metric function, respectively, we focus on the approximation of F(f). To this end, we recall a
result proved in [24], which relates the smoothness of F(f) to that of f .
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Lemma 3.1. For any f ∈ Zλ+1(u), under the assumption 0 ≤ γ < α+ 1
4 , the function F(f) ∈ Zλ(u),

and

(3.25) En(F(f))u ≤ C
∥f∥Zλ+1(u)√

nλ
, C ̸= C(n, f).

Belonging F(f) to a subspace of Cu allows to approximate F(f) by the sequence of VP
polynomials defined in (2.11), i.e. to consider

(3.26) F(f, t) ∼ V m
n (w,F(f), t) =

j∑
k=1

Φm
n,k(t)F(f, xn,k(w)).

By Lemma 3.1, and Theorem 2.1 combined with estimate (2.10), under the assumption

max

{
α

2
− 1

4
, 0

}
≤ γ < α+

1

4
,

F(f) can be uniformly approximated by V m
n (w,F(f)), and the error is

(3.27) ∥F(f)− V m
n (w,F(f))∥Cu

≤ C
∥f∥Zλ+1(u)√

nλ
, ∀f ∈ Zλ+1(u).

However, the computational problem in constructing (3.26) is the lack of the samples
{F(f, xn,k(w))}jk=1, unknown in the general case. To overcome this problem, the integrals
F(f, xn,k(w)), k = 1, 2, . . . , j are approximated by the (n + 1)-th truncated Gauss-Laguerre
rules w.r.t. the weight w, i.e.,

F(f, xn,k(w)) ∼
j1∑
i=1

λn+1,i(w)
f(xn+1,i(w))− f(xn,k(w))

xn+1,i(w)− xn,k(w)
, k = 1, . . . , j,

being for every fixed ρ ∈ (0, 1) the index j1 defined in (2.5). Note that possible numerical
cancellation arising in case t is “too close” to any Gauss-Laguerre nodes is avoided, since the
zeros of pn(w) are far enough from the Gaussian nodes xn+1,k(w) in view of (2.6). Now we
prove that these further approximations F(f, xn,k(w)) ∼ Fn+1(f, xn,k(w)), induce errors of the
same orders as ∥F(f)− V m

n (w,F(f))∥Cu
. This is stated in the next lemma.

Lemma 3.2. For any f ∈ Zλ+1(u), under the assumption 0 ≤ γ < α+ 1
4 , the following error estimate

holds true

(3.28) ∥F(f)−Fn+1(f)∥Cu
≤ C

∥f∥Zλ+1(u)√
nλ

, C ̸= C(n, f).

Proof. First we recall that under the assumption 0 ≤ γ < α + 1
4 , for any f ∈ Zλ+1(u) in [24,

Lemmas 5.5, 5.7] there were proved Fn+1(f) ∈ Zλ+1(u) and

(3.29) En(Fn(f))u ≤ C
∥f∥Zλ+1(u)√

nλ
.

As a consequence, for any Pn ∈ IPn

∥F(f)−Fn(f)∥Cu ≤ C (En(F(f))u + En(Fn(f))u)

and in view of estimates (3.25) and (3.29), (3.28) follows. □

In conclusion, we approximate the function F(f) by the sequence {V m
n (w,Fn+1(f))}n, i.e.,

(3.30) F(f, t) = Σn(F , t) + en,m(f, t), ,
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being

Σn(f, t) :=

j∑
k=1

Φm
n,k(t)Fn+1(f, xn,k(w))

=

j∑
k=1

Φm
n,k(t)

j1∑
i=1

λn+1,i(w)
f(xn+1,i(w))− f(xn,k(w))

xn+1,i(w)− xn,k(w)
.

Next Theorem states conditions under which formula (3.30) is stable and convergent

Theorem 3.3. For any f ∈ Zλ+1(u), λ > 0, under the assumption

max

(
0,

α

2
− 1

4

)
≤ γ < α+

1

4
,(3.31)

∥Σn(f)∥Cu
≤ C∥f∥Zλ+1(u),(3.32)

and

∥en,m(f)∥Cu
≤ C

∥f∥Zλ+1(u)√
nλ

,(3.33)

C ̸= C(n, f).

Proof. First we prove (3.32). Using Σn(f, t) = V m
n (w,Fn+1(f), t), by Theorem 2.1, under the

assumption (3.31),
∥Σn(f)∥Cu

≤ C∥Fn+1(f)∥Cu

and by Lemma 3.2 and (3.25), (3.32) follows. To estimate (3.33), start from

|en,m(f, t)|u(t) = |F(f, t)− V m
n (w,Fn+1(f), t)|u(t)

≤ |F(f, t)−Fn+1(f, t)|u(t)
+ |Fn+1(f, t)− V m

n (w,Fn+1(f), t)|u(t)
=: A1(t) +A2(t).(3.34)

Under the assumption f ∈ Zλ+1(u) by Lemma 3.2

(3.35) A1(t) ≤ C
∥f∥Zλ+1(u)√

nλ
,

and by Theorem 2.1 combined with estimate (3.29), we get

(3.36) A2(t) ≤ C Eq(Fn+1(f))u ≤ C
∥f∥Zλ+1(u)√

nλ
,

and (3.33) follows combining (3.35),(3.36) with (3.34) □

3.1. Comparison between VP-method and L-method. As previously said, in [24] the function
F(f, t) has been approximated by using truncated Lagrange polynomials interpolating F(f, t)
and based on Laguerre zeros. To be more precise, denoted by w+(x) = e−xxα+1, w−(x) =
e−xxα−1 in the case α > 0, the following work-scheme has been considered:

(3.37) F(f, t) ∼

{
L∗
n+1,1(w

+,Fn+1(f), t) − 1
4 < α ≤ 0

L∗
n+2(w

−,Fn(f), t), α > 0,

where Fn+1(f, t) =
∑j

i=1 λn+1,i(w)
f(xn+1,i(w))−f(t)

xn+1,i(w)−t , L∗
n+1,1(w

+,Fn+1(f), x) is the truncated La-

grange polynomial based on the knots {xn,k(w
+)}nk=1 ∪ {4n} ∪ {t1}, with t1 =

xn,1(w
+)

2 , and



Approximation of the Hilbert transform on (0,+∞) by using discrete de la Vallée Poussin filtered polynomials 121

L∗
n+2(w

−,Fn(f), t) is the truncated polynomial based on the knots {xn+1,k(w
−)}nk=1 ∪ {4n}. It

was necessary introduce two different paths, in order to consider interpolation processes hav-
ing Lebesgue constants behaving always as log n, for any choice of α, γ satisfying (3.31). The
VP-method, unlike the L-method, is simpler to construct, since involves only one approximant,
without distinguishing two cases, whatever are the values of α and γ satisfying (3.31).

About the rate of convergence, the L-method results a little bit slower than the VP-method,
due to the presence of the extra factor log n (see [24, Theorems 3.2-3.3]. In conclusion from the
theoretical and computational point of view, the VP-method represents a simpler strategy to
obtain a little bit faster convergence.

4. NUMERICAL EXAMPLES

We have tested the VP-method and compared the results with those taken by using the L-
method on some test functions. Here we go to propose a selection of three examples which
seem to be more exhaustive to highlight the performance of the VP-method in comparison
with the L-method. In each tests we have considered the approximation only of the function
F(f), this being the main topic we are dealing with. We precise that:

•
eV P
n,m(F , t) = |V m

n (w,Fn+1(f), t)−F(f, t)|u(t),
eLag
n (F , t) = |L∗

n+1(Fn+1(f), t)−F(f, t)|u(t),

are the weighted pointwise errors related to the approximation of F(f) only.
•

∥eV P
n,m(F)∥ = max

t∈Y
eV P
n,m(F , t),

∥eLag
n (F)∥ = max

t∈Y
eLag
n (F , t),

are the maximum weighted errors on Y , where Y is a sufficiently large mesh of equis-
paced points in the range (0, a) with a > 0 sufficiently large.

• The parameter θ ∈ (0, 1) defining m = ⌊nθ⌋ in V m
n (w,Fn+1(f), t), has been selected as

that giving the minimal absolute error eV P
n,m(F , t).

• The exact values, always unknown, have been computed for n = 2048, m = n/2.
• All the computations have been performed in double-machine precision (eps ∼ 2.22044e−
16).

• In each test we have selected two values of t > 0 providing the pointwise absolute er-
rors |eV P

n,m(F , t)|u(t) (first column), the values of n and θ in the first and second columns,
respectively. The errors |eLag

n (F , t)|u(t) are reported in the fifth column, while the third
column contains the number j of functions evaluations in both the VP-rule and the L-
rule. Moreover, in each tests are given also the maximum absolute errors taken over
proper ranges of t.

• Some graphs are stated to highlight the benefits offered by the VP-method, by suitably
modulating the parameter m to reduce pointwise errors, especially in case f presents
isolated “pathologies” (peaks, cusps, etc.), i.e. reducing Gibbs phenomenon, which af-
fects Lagrange interpolating polynomials not only around the localized “pathological”
point, but also along subinterval “far” from the point itself.

Example 4.1.

F(f, t) =

∫ ∞

0

f(x)− f(t)

x− t
e−xx0.6dx, f(x) =

1

100 + 10(x− 3)2
, α = 0.6.
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According to the conditions stated for both the VP-method and L-method, we take the parameter γ =
0.05. In Tables 1, are reported the results related to the pointwise approximation for t = 3, and t = 10.
The approximate values are in this case

F(f, 3)u(3) ∼ 2.0516e− 04, F(f, 10)u(10) ∼ −5.0389e− 06.

In this case f(x) ∈ Zλ(u), ∀λ > 0, and presents a peak for x = 3. As Table 1 shows, better results are
attained on average by VP-method, and the machine precision is catched for some n.

n θ j |eV P
n,m(F , t)|u(t) |eLag

n (F , t)|u(t)
20 1.0e-01 19 1.00e-07 9.23e-08
50 1.0e-01 32 3.52e-09 2.20e-09
150 3.0e-01 56 1.47e-14 1.35e-12
250 1.0e-01 73 6.62e-15 6.02e-15
350 2.0e-01 87 3.36e-17 1.07e-16

n θ j |eV P
n,m(F , t)|u(t) |eLag

n (F , t)|u(t)
20 5.0e-01 19 1.12e-08 3.23e-08
50 3.0e-01 32 2.18e-11 1.43e-09
150 1.0e-01 56 1.09e-13 2.47e-13
250 2.0e-01 73 1.30e-16 4.84e-16
350 1.0e-01 87 1.65e-18 1.25e-17

TABLE 1. Ex.1: t = 3 (up), t = 10 (down)

In Table 2 are given the maximum absolute errors attained for increasing values of n in [0, 10], and a
moderate better performance of the VP-method w.r.t. the L-method is confirmed.

n ∥eV P
n,m(F)u∥ ∥eLag

n (F)u∥
20 6.66e-07 6.27e-07
50 6.98e-09 1.87e-08
150 1.98e-12 1.02e-11
250 8.11e-15 1.49e-14
350 1.04e-15 2.76e-15

TABLE 2. Ex.1: maximum errors in [0, 10]

We conclude proposing the graph of the pointwise absolute errors attained for n = 150, choosing the
“optimal” θ for any point t (Fig. 1), and as expected, and the pointwise errors by the VP-method are
better than those attained by the L-method. In addition, we have produced in Fig. 2 also the graph of the
pointwise absolute errors for θ = 0.1 , to highlight that also for θ fixed, the previous trend is confirmed.

Example 4.2.

F(f, t) =

∫ ∞

0

f(x)− f(t)

x− t

e−x

x
1
8

dx, f(x) =
ex/4

(1 + x2)4
, α = −1/8, γ = 0.5.

In this test f ∈ Zλ(u),∀λ > 0, and grows exponentially as x → +∞. In Table 3 are reported the
pointwise errors for t = 1 and t = 15. The approximate values are

F(f, 1)u(1) ∼ −3.9662e− 01, F(f, 15)u(15) ∼ −7.0825e− 05.
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FIGURE 1. Ex. 1: pointwise absolute errors for n = 150, θ optimal

,

FIGURE 2. Ex. 1: pointwise absolute errors for n = 150, θ = 0.1

In Table 4 are given the maximum absolute errors attained for increasing values of n in [0, 10], and a
moderate better performance of the VP-method w.r.t. the L-method is confirmed.

Example 4.3.

F(f, t) =

∫ ∞

0

f(x)− f(t)

x− t
e−xdx, f(x) = |x− 1|1.5|x− 1.5|1.9 α = 0, γ = 0.

The approximate values for t = 1 and t = 1.5 are

F(f, 1)u(1) ∼ 5.6531e− 02, F(f, 1.5)u(1.5) ∼ 2.4085e− 01.
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n θ j |eV P
n,m(F , t)|u(t) |eLag

n (F , t)|u(t)
50 3.0e-01 34 2.20e-05 1.41e-04
150 5.0e-01 61 4.38e-07 7.81e-07
250 2.0e-01 79 4.46e-09 7.36e-09
350 1.0e-01 93 2.67e-10 3.03e-10
450 1.0e-01 106 1.51e-11 1.42e-11
550 1.0e-01 117 8.56e-13 7.58e-13
650 1.0e-01 127 4.38e-13 3.56e-13

n θ j |eV P
n,m(F , t)|u(t) |eLag

n (F , t)|u(t)
50 5.0e-01 34 1.92e-05 7.87e-05
150 1.0e-01 61 3.69e-08 1.64e-07
250 2.0e-01 79 9.14e-10 3.30e-09
350 1.0e-01 93 1.05e-11 1.02e-11
450 1.0e-01 106 2.93e-12 1.81e-12
550 1.0e-01 117 1.56e-14 3.78e-14
650 2.0e-01 127 1.92e-14 2.03e-13

TABLE 3. Ex.2: t = 1 (up), t = 15 (down)

n ∥eV P
n,m(F)u∥ ∥eLag

n (F)u∥
50 4.17e-04 6.8490e-04
150 2.64e-06 2.5247e-06
250 1.82e-08 1.27e-08
350 5.34e-10 6.18e-10
450 3.19e-11 3.06e-11
550 2.16e-12 2.08e-12
650 1.40e-12 2.46e-12

TABLE 4. Ex.2: maximum errors in [0, 10]

The graph of the function F(f, t)u(t), in a range including the critical points 1 and 1.5 is shown in
Figure 3. In Table 6 are given the maximum absolute errors attained for increasing values of n in [0, 10].

We conclude with the pointwise absolute errors for n = 200, in the case of θ chosen “optimal” for
each t (Figure 4 ), and for θ fixed, namely θ = 0.5 (Figure 5).

CONCLUSIONS

We have proposed a method to approximate the Hilbert transform with a Laguerre weight.
It employs filtered VP approximation of the function F(f), and improves a previous method
based on the interpolation of the same function by truncated Lagrange polynomials. Indeed,
w.r.t. to this, the new method converges a little bit faster. Moreover, while the Lagrange based
method requires two different approaches, according to α > 0 or not, the proposed rule does
not. The algorithm, easier to implement, essentially requires zeros and weights of the Gauss-
Laguerre rule, efficiently computable by the Golub-Welsh algorithm. Moreover, differently
from the modified Gauss-Laguerre rule [8], we use always the same samples of the density
function f at the Laguerre zeros, whatever are the values of t for which to compute F(f), t).
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n θ j |eV P
n,m(F , t)|u(t) |eLag

n (F , t)|u(t)
50 9.00e-01 41 7.21e-04 3.76e-03
100 8.00e-01 60 2.87e-04 1.44e-03
200 1.00e-01 86 1.10e-03 1.06e-03
400 9.00e-01 122 4.16e-04 5.16e-04
800 1.00e-01 173 1.63e-04 1.51e-04
1000 9.00e-01 194 1.21e-04 1.55e-04

n θ j |eV P
n,m(F , t)|u(t) |eLag

n (F , t)|u(t)
50 1.00e-01 41 2.41e-03 2.28e-03
100 8.00e-01 60 2.10e-05 4.86e-04
200 7.00e-01 86 6.85e-05 3.13e-04
400 6.00e-01 122 6.83e-05 9.85e-05
800 4.00e-01 173 2.75e-06 6.14e-05
1000 2.00e-01 194 4.74e-07 4.90e-06

TABLE 5. Ex.3: t = 1 (up), t = 1.5 (down)

,

FIGURE 3. Graph of F(f, t)u(t), t ∈ [0.8, 2.1]

n ∥eV P
n,m(F)u∥ ∥eLag

n (F)u∥
50 2.6824e-03 6.4905e-03
100 6.9861e-04 2.6261e-03
200 2.3962e-03 2.3353e-03
400 1.0617e-03 1.0656e-03
800 7.7203e-04 7.5605e-04

TABLE 6. Ex.3: maximum errors in [0, 10]

None recurrence relation is required as in product integration type rules [26]. In addition, due
to the presence of the localizing parameter 0 < m < n, oscillations and overshoots around
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,

FIGURE 4. Ex. 3: pointwise absolute errors for n = 200, θ optimal

,

FIGURE 5. Ex. 3: pointwise absolute errors for n = 200, θ = 0.5

“pathological” points of the function to be approximated, more present in Lagrange interpola-
tion, are reduced.
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